用户名: 密码: 验证码:
多模态功能磁共振成像早期预测抗癫痫药物治疗新诊断癫痫患者疗效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本研究拟采用前瞻性设计,通过多模态功能磁共振技术,从脑功能与脑结构两个方面寻找能够早期预测、预报抗癫痫药物疗效的影像学标记,阐释其可能的机制。
     方法
     本研究使用GE3.0T磁共振采集新诊断未服药癫痫患者服用抗癫痫药物前的磁共振静息状态功能数据,弥散张量成像数据以及高分辨率三维结构相数据。完成后随访观察并评价新诊断癫痫患者用药效果,根据癫痫控制情况将新诊断患者分为癫痫治疗无效的未控制组与癫痫治疗有效的控制组。从新诊断癫痫患者脑部低频振幅活动入手,结合临床随访观察结果,利用血氧水平依赖信号,通过与正常对照、耐药性癫痫患者以及癫痫控制良好即将停药患者进行对比,以探寻对药物敏感性不同患者脑区活动的差异,继而构建感兴趣区作为功能连接的节点,辐射全脑探寻功能网络的改变,同时利用弥散张量成像技术对患者全脑白质纤维微结构改变进行评价。
     结果
     共计53名被试者纳入本研究最后数据分析,新诊断未服药癫痫患者21人,其中随访观察证实为癫痫治疗无效的未控制组11人,癫痫治疗有效的控制组10人,与新诊断癫痫患者年龄、性别、利手相匹配正常的对照13人,符合耐药性癫痫诊断标准患者8人,癫痫控制良好即将停药患者11人。结果发现:①新诊断癫痫患者未控制组、患者控制组以及正常对照组三组在双侧楔叶、双侧舌回,右侧枕叶中部以及右侧额下回的低频活动存在显著性差异;相对于正常对照和癫痫控制组,癫痫未控制组在枕叶中、下部尤其是楔叶、舌回等视觉皮层区域的低频活动明显增高,而在额中回、额下回以及左侧顶下小叶处的低频活动受到抑制;癫痫未控制患者低频活动异常增高的视觉皮层区域也在耐药性癫痫患者组中被观察到有低频活动的异常增高,这一区域的异常信号在新诊断癫痫患者癫痫控制组和癫痫控制良好即将停药患者组中没有被观察到;计算枕叶视觉皮层区功率谱后发现在0.01-0.08HZ区域的低频振幅活动,存在癫痫未控制患者>癫痫控制患者>正常对照被试的趋势;计算每一位癫痫未控制患者,癫痫控制患者和正常被试Brodmann17区的平均低频振幅率值,进行三组的单因素方差分析,结果显示三组在Brodmann17区平均低频振幅值存在显著差异(F=6.279,P=0.005);进行两两分析发现:癫痫未控制组与正常被试Brodmann17区的平均低频振幅率值有显著差异(t=3.660,P=0.001),癫痫未控制组与癫痫控制组也有显著差异(t=2.389,P=0.026),控制组Brodmann17区的平均低频振幅率值略高于正常被试,但没有统计差异(t=0.781,P=0.443);构建受试者工作曲线后发现,癫痫未控制组-癫痫控制组曲线下面积为0.846,p=0.004,95%CI [0.690-1.002],证明Brodmann17区平均低频振幅值能将癫痫未控制患者与正常被试区分开,并且当平均低频振幅率取值1.146时,可获得81.8%的灵敏度与76.9%的特异性;癫痫未控制组-癫痫控制组曲线下面积为0.782,p=0.029,95%CI[0.585-0.979],证明Brodmann17区平均低频振幅值能将癫痫未控制患者与癫痫控制患者区分开,并且当平均低频振幅率取值1.201时,可获得72.7%的灵敏度与70.0%的特异性。②全脑体素与Brodmann17区的功能连接发现,癫痫未控制组中与Brodmann17区正性功能连接异常增高区域是:左侧中央后回和双侧顶上小叶;负性功能连接异常增高的区域为:双侧后扣带回、双侧楔前叶下部、内侧前额叶、额上回和额中回。癫痫控制组患者中与Brodmann17区仅在左枕颞交界区有正性功能连接减弱。研究还发现,癫痫未控制组中与Brodmann17区存在异常功能连接的脑区个数与体积均显著多于癫痫控制组。③对反映脑白质微结构完整性的各向异性分数进行的基于白质范围的体素测量研究发现,癫痫未控制组患者双侧额叶下白质,双侧基底节周围白质和左侧额顶交界皮层下白质的各向异性分数异常降低。癫痫控制组患者仅扣带回中部上方白质存在各向异性分数下降,而左侧胼胝体前部各向异性分数则增高。
     结论
     本研究发现静息状态下枕叶视觉皮层区域尤其是Brodmann17区有异常增高低频电活动的新诊断癫痫患者对抗癫痫药物敏感性较低。药物控制这类患者癫痫发作更加困难的原因可能与其大脑Brodmann17区与顶上小叶之间构成了异常联系的功能网络有关。并且这类患者在额叶区域以及额顶交界区域的白质结构的损害可能与耐药性癫痫异常神经网络有关,而损伤数目以及范围的差异可能与患者对药物敏感性相关。
Objective
     In this prospective observational cohort study, we used multimode functionalmagnetic resonance imaging to search the biomarkers which could predictresponse of newly diagnosed epileptic patients to antiepileptic drugs beforedrug taking.
     Methods
     In this study, the MRI data of newly diagnosed epileptic patients, healthycontrols, drug-resistant epileptic patients, and drug withdrawal patients wereacquired by using G.E.3.0-Tesla scanner. Functional images data werecollected by using an echo-planar imaging sequence. Three dimensionalT1-weighted images data were collected magnetization-prepared rapidgradient echo imaging. Fractional anisotropy (FA) values were derived fromdiffusion tensor imaging (DTI). Different brain regions with low-frequencyfluctuations of spontaneous brain activity in newly diagnosed epilepticpatients with different response to antiepileptic drugs were examined by themean fractional low-frequency fluctuations (mfALFF) using resting-state functional MRI Then the different brain regions were chose for the region ofinterests (ROIs) to built functional connectivity maps to evaluate thedifferences of functional networks in different patients with differentresponse to drugs. Additionally, DTI technology was used to detect thedifferences of white fiber microstructures among different subjects.
     Results
     21newly diagnosed epileptic patients,13healthy controls,8drug-resistantepileptic patients and11drug withdrawal patients were recruited into thisstudy. The results showed that:
     1.mfALFF analysis: there were widespread mfALFF differences amongseizure uncontrolled (SUC) group, seizure controlled (SC) group, andhealthy controls throughout the bilateral cuneus lobe, bilateral lingual gyrus,right middle occipital gyrus, and right inferior frontal gyrus. The SUCpatients showed increased activity mainly in middle occipital gyrus,especially in the cuneus and lingual gyrus, while there was decreasedactivity in the middle frontal gyrus, the inferior frontal gyrus and the inferiorparietal lobule compared with the SC group and healthy controls. Wedemonstrated that the Brodmann17area showed the most significant groupdifferences in mfALFF, and the amplitude low-frequency fluctuations(ALFF) values in the region exhibited a general pattern of ALFF healthycontrols      2.Functional connectivity analysis: the “default mode” was existed in allhealthy controls and patients. This mode mainly included the posteriorcingulated cortex, medial prefrontal cortex, inferior parietal lobule andinferior temporal gyrus. Compared with the healthy controls and the SCpatients, the SUC patients showed significant increased positive functionalconnectivity with the Brodmann17area in the left posterior central gyrusand the bilateral superior parietal lobule, while increased negative functionalconnectivity with the Brodmann17area in the bilateral posterior cingulatedcortex, bilateral inferior precuneus, medial prefrontal cortex, superior frontalgyrus, and middle frontal gyrus. Compared with the healthy controls, therewas only occipitotemporal junction region that showed decreased positiveconnectivity with Brodmann17area in SC patients. We also found that therewere more brain regions with abnormal functional connectivity in SUCpatients than in SC patients.
     3. DTI analysis: Compared with the healthy controls, the SUC patientsshowed significantly decreased fractional anisotropy values in the whitefibers under bilateral frontal cortex and the junction cortex of frontal andparietal. There was decreased fractional anisotropy value in the white fibersabove middle cingulated cortex and increased fractional anisotropy value inthe corpus callosum in the SC patients.
     Conclusion
     We find that the abnormal high level of spontaneous brain activity in theoccipital visual cortex region, in particular, the Bromann17area,significantly correlates with the poor response to antiepileptic drugs innewly diagnosed epileptic patients. The abnormal connectivity amongBrodmann17area and superior parietal lobules and the damage of whitefiber microstructures under the frontal and the junction of frontal-parietalcortex may be involved in the formation of antiepileptic drug-resistantnetworks.
引文
[1] Beleza P. Refractory epilepsy: a clinically oriented review [J]. Eur Neurol.2009,62(2):65-71.
    [2] ILAE Commission Report. The epidemiology of the epilepsies: future directions.International League Against Epilepsy [J]. Epilepsia.1997,38(5):614-8.
    [3] Sander J W. Some aspects of prognosis in the epilepsies: a review [J]. Epilepsia.1993,34(6):1007-16.
    [4] Ng P W. Monotherapy or polytherapy for epilepsy revisited: a quantitativeassessment [J]. Epilepsia.1996,37(1):108.
    [5] Brodie M J, Dichter M A. Antiepileptic drugs [J]. N Engl J Med.1996,334(3):168-75.
    [6] Shetty a K, Zaman V, Hattiangady B. Repair of the injured adult hippocampusthrough graft-mediated modulation of the plasticity of the dentate gyrus in a ratmodel of temporal lobe epilepsy [J]. J Neurosci.2005,25(37):8391-401.
    [7] Jung K H, Chu K, Lee S T, et al. Region-specific plasticity in the epileptic rat brain:a hippocampal and extrahippocampal analysis [J]. Epilepsia.2009,50(3):537-49.
    [8] Volk H A, Loscher W. Multidrug resistance in epilepsy: rats with drug-resistantseizures exhibit enhanced brain expression of P-glycoprotein compared with ratswith drug-responsive seizures [J]. Brain.2005,128(Pt6):1358-68.
    [9] Gulledge a T, Stuart G J. Excitatory actions of GABA in the cortex [J]. Neuron.2003,37(2):299-309.
    [10]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance inepilepsy [J]. Brain.2006,129(Pt1):18-35.
    [11] Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustainhippocampal synaptic transmission [J]. Science.2008,322(5907):1551-5.
    [12]Thompson R J, Jackson M F, Olah M E, et al. Activation of pannexin-1hemichannels augments aberrant bursting in the hippocampus [J]. Science.2008,322(5907):1555-9.
    [13]Wozny C, Kivi A, Lehmann T N, et al. Comment on "On the origin of interictalactivity in human temporal lobe epilepsy in vitro"[J]. Science.2003,301(5632):463;author reply
    [14]Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma [J]. Epilepsia.2011,52(4):657-78.
    [15]Devinsky O. Patients with refractory seizures [J]. N Engl J Med.1999,340(20):1565-70.
    [16]Grutzendler J, Kasthuri N, Gan W B. Long-term dendritic spine stability in theadult cortex [J]. Nature.2002,420(6917):812-6.
    [17]Stephens D J, Allan V J. Light microscopy techniques for live cell imaging [J].Science.2003,300(5616):82-6.
    [18]Xiao Z, Gong Y, Wang X F, et al. Altered expression of synaptotagmin I in temporallobe tissue of patients with refractory epilepsy [J]. J Mol Neurosci.2009,38(2):193-200.
    [19]Kwan P, Brodie M J. Early identification of refractory epilepsy [J]. N Engl J Med.2000,342(5):314-9.
    [20]Achard S, Bullmore E. Efficiency and cost of economical brain functional networks[J]. PLoS Comput Biol.2007,3(2):e17.
    [21]Stam C J, De Haan W, Daffertshofer A, et al. Graph theoretical analysis ofmagnetoencephalographic functional connectivity in Alzheimer's disease [J]. Brain.2009,132(Pt1):213-24.
    [22]Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis ofstructural and functional systems [J]. Nat Rev Neurosci.2009,10(3):186-98.
    [23]Pierpaoli C, Jezzard P, Basser P J, et al. Diffusion tensor MR imaging of the humanbrain [J]. Radiology.1996,201(3):637-48.
    [24]Song a W, Harshbarger T, Li T, et al. Functional activation using apparent diffusioncoefficient-dependent contrast allows better spatial localization to the neuronalactivity: evidence using diffusion tensor imaging and fiber tracking [J]. Neuroimage.2003,20(2):955-61.
    [25]Guye M, Parker G J, Symms M, et al. Combined functional MRI and tractographyto demonstrate the connectivity of the human primary motor cortex in vivo [J].Neuroimage.2003,19(4):1349-60.
    [26]Filippi M, Rocca M A, Falini A, et al. Correlations between structural CNS damageand functional MRI changes in primary progressive MS [J]. Neuroimage.2002,15(3):537-46.
    [27]Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motorcortex of resting human brain using echo-planar MRI [J]. Magn Reson Med.1995,34(4):537-41.
    [28]Wang Z, Yan C, Zhao C, et al. Spatial patterns of intrinsic brain activity in mildcognitive impairment and Alzheimer's disease: a resting-state functional MRI study[J]. Hum Brain Mapp.2011,32(10):1720-40.
    [29]Lowe M J, Phillips M D, Lurito J T, et al. Multiple sclerosis: low-frequencytemporal blood oxygen level-dependent fluctuations indicate reduced functionalconnectivity initial results [J]. Radiology.2002,224(1):184-92.
    [30]Liang M, Zhou Y, Jiang T, et al. Widespread functional disconnectivity inschizophrenia with resting-state functional magnetic resonance imaging [J].Neuroreport.2006,17(2):209-13.
    [31]Hoptman M J, Zuo X N, Butler P D, et al. Amplitude of low-frequency oscillationsin schizophrenia: a resting state fMRI study [J]. Schizophr Res.2010,117(1):13-20.
    [32]Anand A, Li Y, Wang Y, et al. Activity and connectivity of brain mood regulatingcircuit in depression: a functional magnetic resonance study [J]. Biol Psychiatry.2005,57(10):1079-88.
    [33]Greicius M D, Flores B H, Menon V, et al. Resting-state functional connectivity inmajor depression: abnormally increased contributions from subgenual cingulatecortex and thalamus [J]. Biol Psychiatry.2007,62(5):429-37.
    [34]Proposal for revised clinical and electroencephalographic classification of epilepticseizures. From the Commission on Classification and Terminology of theInternational League Against Epilepsy [J]. Epilepsia.1981,22(4):489-501.
    [35]Proposal for revised classification of epilepsies and epileptic syndromes.Commission on Classification and Terminology of the International League AgainstEpilepsy [J]. Epilepsia.1989,30(4):389-99.
    [36]Friston K J, Frith C D, Frackowiak R S, et al. Characterizing dynamic brainresponses with fMRI: a multivariate approach [J]. Neuroimage.1995,2(2):166-72.
    [37]Lowe M J, Mock B J, Sorenson J A. Functional connectivity in single andmultislice echoplanar imaging using resting-state fluctuations [J]. Neuroimage.1998,7(2):119-32.
    [38]Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for "Pipeline" DataAnalysis of Resting-State fMRI [J]. Front Syst Neurosci.2010,4(13.
    [39]Zou Q H, Zhu C Z, Yang Y, et al. An improved approach to detection of amplitudeof low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF [J]. JNeurosci Methods.2008,172(1):137-41.
    [40]Ledberg A, Akerman S, Roland P E. Estimation of the probabilities of3D clustersin functional brain images [J]. Neuroimage.1998,8(2):113-28.
    [41]Song X W, Dong Z Y, Long X Y, et al. REST: a toolkit for resting-state functionalmagnetic resonance imaging data processing [J]. PLoS One.2011,6(9):e25031.
    [42]Zang Y F, He Y, Zhu C Z, et al. Altered baseline brain activity in children withADHD revealed by resting-state functional MRI [J]. Brain Dev.2007,29(2):83-91.
    [43]Lu H, Zuo Y, Gu H, et al. Synchronized delta oscillations correlate with theresting-state functional MRI signal [J]. Proc Natl Acad Sci U S A.2007,104(46):18265-9.
    [44]Shmuel A, Leopold D A. Neuronal correlates of spontaneous fluctuations in fMRIsignals in monkey visual cortex: Implications for functional connectivity at rest [J].Hum Brain Mapp.2008,29(7):751-61.
    [45]Goldman R I, Stern J M, Engel J, Jr., et al. Simultaneous EEG and fMRI of thealpha rhythm [J]. Neuroreport.2002,13(18):2487-92.
    [46]Li S J, Li Z, Wu G, et al. Alzheimer Disease: evaluation of a functional MR imagingindex as a marker [J]. Radiology.2002,225(1):253-9.
    [47]Zhang Z, Lu G, Zhong Y, et al. Altered spontaneous neuronal activity of thedefault-mode network in mesial temporal lobe epilepsy [J]. Brain Res.2010,1323(152-60.
    [48]Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges showthalamocortical activation and suspension of the default state of the brain [J]. ProcNatl Acad Sci U S A.2005,102(42):15236-40.
    [49]Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatmenttargets [J]. Lancet Neurol.2011,10(2):173-86.
    [50]周扬,王健.视觉皮层分区及其fMRI研究进展[J].现代生物医学进展.2006,6(13):3.
    [51]Guerrini R, Genton P. Epileptic syndromes and visually induced seizures [J].Epilepsia.2004,45Suppl1(14-8.
    [52]Rubboli G, Parra J, Seri S, et al. EEG diagnostic procedures and specialinvestigations in the assessment of photosensitivity [J]. Epilepsia.2004,45Suppl1(35-9.
    [53]Bonmassar G, Schwartz D P, Liu a K, et al. Spatiotemporal brain imaging ofvisual-evoked activity using interleaved EEG and fMRI recordings [J]. Neuroimage.2001,13(6Pt1):1035-43.
    [54]Greicius M D, Krasnow B, Reiss a L, et al. Functional connectivity in the restingbrain: a network analysis of the default mode hypothesis [J]. Proc Natl Acad Sci US A.2003,100(1):253-8.
    [55]Raichle M E, Macleod a M, Snyder a Z, et al. A default mode of brain function [J].Proc Natl Acad Sci U S A.2001,98(2):676-82.
    [56]Tae W S, Joo E Y, Kim J H, et al. Cerebral perfusion changes in mesial temporallobe epilepsy: SPM analysis of ictal and interictal SPECT [J]. Neuroimage.2005,24(1):101-10.
    [57]Nelissen N, Van Paesschen W, Baete K, et al. Correlations of interictal FDG-PETmetabolism and ictal SPECT perfusion changes in human temporal lobe epilepsywith hippocampal sclerosis [J]. Neuroimage.2006,32(2):684-95.
    [58]Blumenfeld H, Mcnally K A, Vanderhill S D, et al. Positive and negative networkcorrelations in temporal lobe epilepsy [J]. Cereb Cortex.2004,14(8):892-902.
    [59]Norden a D, Blumenfeld H. The role of subcortical structures in human epilepsy [J].Epilepsy Behav.2002,3(3):219-31.
    [60]Aghakhani Y, Bagshaw a P, Benar C G, et al. fMRI activation during spike andwave discharges in idiopathic generalized epilepsy [J]. Brain.2004,127(Pt5):1127-44.
    [61]Tassinari C A, Cincotta M, Zaccara G, et al. Transcranial magnetic stimulation andepilepsy [J]. Clin Neurophysiol.2003,114(5):777-98.
    [62]Dagli M S, Ingeholm J E, Haxby J V. Localization of cardiac-induced signal changein fMRI [J]. Neuroimage.1999,9(4):407-15.
    [63]Fox M D, Snyder a Z, Vincent J L, et al. The human brain is intrinsically organizedinto dynamic, anticorrelated functional networks [J]. Proc Natl Acad Sci U S A.2005,102(27):9673-8.
    [64]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages ofAlzheimer's disease: a combined structural and resting-state functional MRI study[J]. Neuroimage.2007,35(2):488-500.
    [65]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRIinvestigation of the resting-state default mode of brain function hypothesis [J]. HumBrain Mapp.2005,26(1):15-29.
    [66]Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network issensitive to different resting-state conditions with limited cognitive load [J]. PLoSOne.2009,4(5):e5743.
    [67]Yang H, Long X Y, Yang Y, et al. Amplitude of low frequency fluctuation withinvisual areas revealed by resting-state functional MRI [J]. Neuroimage.2007,36(1):144-52.
    [1] Biswal B, Yetkin F Z, Haughton V M, et al. Functional connectivity in the motorcortex of resting human brain using echo-planar MRI [J]. Magn Reson Med.1995,34(4):537-41.
    [2] Raichle M E, Macleod a M, Snyder a Z, et al. A default mode of brain function [J].Proc Natl Acad Sci U S A.2001,98(2):676-82.
    [3] Guye M, Parker G J, Symms M, et al. Combined functional MRI and tractographyto demonstrate the connectivity of the human primary motor cortex in vivo [J].Neuroimage.2003,19(4):1349-60.
    [4] Fox M D, Snyder a Z, Vincent J L, et al. The human brain is intrinsically organizedinto dynamic, anticorrelated functional networks [J]. Proc Natl Acad Sci U S A.2005,102(27):9673-8.
    [5]周扬,王健.视觉皮层分区及其fMRI研究进展[J].现代生物医学进展.2006,6(13):3.
    [6] Bonmassar G, Schwartz D P, Liu a K, et al. Spatiotemporal brain imaging ofvisual-evoked activity using interleaved EEG and fMRI recordings [J]. Neuroimage.2001,13(6Pt1):1035-43.
    [7] Posner M I, Sheese B E, Odludas Y, et al. Analyzing and shaping human attentionalnetworks [J]. Neural Netw.2006,19(9):1422-9.
    [8] Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges showthalamocortical activation and suspension of the default state of the brain [J]. ProcNatl Acad Sci U S A.2005,102(42):15236-40.
    [9] Buckner R L, Andrews-Hanna J R, Schacter D L. The brain's default network:anatomy, function, and relevance to disease [J]. Ann N Y Acad Sci.2008,1124(1-38.
    [10]Fransson P. How default is the default mode of brain function? Further evidencefrom intrinsic BOLD signal fluctuations [J]. Neuropsychologia.2006,44(14):2836-45.
    [11] Waites a B, Briellmann R S, Saling M M, et al. Functional connectivity networksare disrupted in left temporal lobe epilepsy [J]. Ann Neurol.2006,59(2):335-43.
    [12]Loscher W N, Dobesberger J, Szubski C, et al. rTMS reveals premotor cortexdysfunction in frontal lobe epilepsy [J]. Epilepsia.2007,48(2):359-65.
    [13]Blumenfeld H, Mcnally K A, Vanderhill S D, et al. Positive and negative networkcorrelations in temporal lobe epilepsy [J]. Cereb Cortex.2004,14(8):892-902.
    [14]Bartels A, Zeki S. Functional brain mapping during free viewing of natural scenes[J]. Hum Brain Mapp.2004,21(2):75-85.
    [15]Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: theprincipal-component analysis of large (PET) data sets [J]. J Cereb Blood FlowMetab.1993,13(1):5-14.
    [16]Friston K J, Frith C D, Frackowiak R S. Principal component analysis learningalgorithms: a neurobiological analysis [J]. Proc Biol Sci.1993,254(1339):47-54.
    [17]Tassinari C A, Cincotta M, Zaccara G, et al. Transcranial magnetic stimulation andepilepsy [J]. Clin Neurophysiol.2003,114(5):777-98.
    [18]Cordes D, Haughton V M, Arfanakis K, et al. Mapping functionally related regionsof brain with functional connectivity MR imaging [J]. AJNR Am J Neuroradiol.2000,21(9):1636-44.
    [19]Hampson M, Peterson B S, Skudlarski P, et al. Detection of functional connectivityusing temporal correlations in MR images [J]. Hum Brain Mapp.2002,15(4):247-62.
    [20]Lowe M J, Dzemidzic M, Lurito J T, et al. Correlations in low-frequency BOLDfluctuations reflect cortico-cortical connections [J]. Neuroimage.2000,12(5):582-7.
    [21]Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatmenttargets [J]. Lancet Neurol.2011,10(2):173-86.
    [22]Laufs H, Lengler U, Hamandi K, et al. Linking generalized spike-and-wavedischarges and resting state brain activity by using EEG/fMRI in a patient withabsence seizures [J]. Epilepsia.2006,47(2):444-8.
    [23]Norden a D, Blumenfeld H. The role of subcortical structures in human epilepsy [J].Epilepsy Behav.2002,3(3):219-31.
    [24]Aghakhani Y, Bagshaw a P, Benar C G, et al. fMRI activation during spike andwave discharges in idiopathic generalized epilepsy [J]. Brain.2004,127(Pt5):1127-44.
    [25]Dagli M S, Ingeholm J E, Haxby J V. Localization of cardiac-induced signal changein fMRI [J]. Neuroimage.1999,9(4):407-15.
    [26]Lowe M J, Mock B J, Sorenson J A. Functional connectivity in single andmultislice echoplanar imaging using resting-state fluctuations [J]. Neuroimage.1998,7(2):119-32.
    [27]Zang Y F, He Y, Zhu C Z, et al. Altered baseline brain activity in children withADHD revealed by resting-state functional MRI [J]. Brain Dev.2007,29(2):83-91.
    [28]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages ofAlzheimer's disease: a combined structural and resting-state functional MRI study[J]. Neuroimage.2007,35(2):488-500.
    [29]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRIinvestigation of the resting-state default mode of brain function hypothesis [J]. HumBrain Mapp.2005,26(1):15-29.
    [30]Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network issensitive to different resting-state conditions with limited cognitive load [J]. PLoSOne.2009,4(5):e5743.
    [31]Yang H, Long X Y, Yang Y, et al. Amplitude of low frequency fluctuation withinvisual areas revealed by resting-state functional MRI [J]. Neuroimage.2007,36(1):144-52.
    [1] Salvador R, Suckling J, Coleman M R, et al. Neurophysiological architecture offunctional magnetic resonance images of human brain [J]. Cereb Cortex.2005,15(9):1332-42.
    [2] Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-worldhuman brain functional network with highly connected association cortical hubs [J].J Neurosci.2006,26(1):63-72.
    [3] Iturria-Medina Y, Canales-Rodriguez E J, Melie-Garcia L, et al. Characterizingbrain anatomical connections using diffusion weighted MRI and graph theory [J].Neuroimage.2007,36(3):645-60.
    [4] Iturria-Medina Y, Sotero R C, Canales-Rodriguez E J, et al. Studying the humanbrain anatomical network via diffusion-weighted MRI and Graph Theory [J].Neuroimage.2008,40(3):1064-76.
    [5] Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of humancerebral cortex using in vivo diffusion tensor imaging tractography [J]. CerebCortex.2009,19(3):524-36.
    [6] Parvizi J, Van Hoesen G W, Buckwalter J, et al. Neural connections of theposteromedial cortex in the macaque [J]. Proc Natl Acad Sci U S A.2006,103(5):1563-8.
    [7] Raichle M E, Macleod a M, Snyder a Z, et al. A default mode of brain function [J].Proc Natl Acad Sci U S A.2001,98(2):676-82.
    [8] Greicius M D, Krasnow B, Reiss a L, et al. Functional connectivity in the restingbrain: a network analysis of the default mode hypothesis [J]. Proc Natl Acad Sci US A.2003,100(1):253-8.
    [9] Simpson J R, Ongur D, Akbudak E, et al. The emotional modulation of cognitiveprocessing: an fMRI study [J]. J Cogn Neurosci.2000,12Suppl2(157-70.
    [10]Tassinari C A, Cincotta M, Zaccara G, et al. Transcranial magnetic stimulation andepilepsy [J]. Clin Neurophysiol.2003,114(5):777-98.
    [11] Bilevicius E, Yasuda C L, Silva M S, et al. Antiepileptic drug response in temporallobe epilepsy: a clinical and MRI morphometry study [J]. Neurology.2010,75(19):1695-701.
    [12]Leite J P, Neder L, Arisi G M, et al. Plasticity, synaptic strength, and epilepsy: whatcan we learn from ultrastructural data?[J]. Epilepsia.2005,46Suppl5(134-41.
    [13]Grutzendler J, Kasthuri N, Gan W B. Long-term dendritic spine stability in theadult cortex [J]. Nature.2002,420(6917):812-6.
    [14]Jung K H, Chu K, Lee S T, et al. Region-specific plasticity in the epileptic rat brain:a hippocampal and extrahippocampal analysis [J]. Epilepsia.2009,50(3):537-49.
    [15]Shetty a K, Zaman V, Hattiangady B. Repair of the injured adult hippocampusthrough graft-mediated modulation of the plasticity of the dentate gyrus in a ratmodel of temporal lobe epilepsy [J]. J Neurosci.2005,25(37):8391-401.
    [16]Rugg-Gunn F J, Eriksson S H, Symms M R, et al. Diffusion tensor imaging ofcryptogenic and acquired partial epilepsies [J]. Brain.2001,124(Pt3):627-36.
    [17]Chen Q, Lui S, Li C X, et al. MRI-negative refractory partial epilepsy: role fordiffusion tensor imaging in high field MRI [J]. Epilepsy Res.2008,80(1):83-9.
    [18]Concha L, Beaulieu C, Gross D W. Bilateral limbic diffusion abnormalities inunilateral temporal lobe epilepsy [J]. Ann Neurol.2005,57(2):188-96.
    [19]Duning T, Kellinghaus C, Mohammadi S, et al. Individual white matter fractionalanisotropy analysis on patients with MRI negative partial epilepsy [J]. J NeurolNeurosurg Psychiatry.2010,81(2):136-9.
    [20]Focke N K, Yogarajah M, Bonelli S B, et al. Voxel-based diffusion tensor imagingin patients with mesial temporal lobe epilepsy and hippocampal sclerosis [J].Neuroimage.2008,40(2):728-37.
    [21]Kimiwada T, Juhasz C, Makki M, et al. Hippocampal and thalamic diffusionabnormalities in children with temporal lobe epilepsy [J]. Epilepsia.2006,47(1):167-75.
    [22]Arfanakis K, Hermann B P, Rogers B P, et al. Diffusion tensor MRI in temporallobe epilepsy [J]. Magn Reson Imaging.2002,20(7):511-9.
    [1] Brodie M J, Shorvon S D, Canger R, et al. Commission on European Affairs:appropriate standards of epilepsy care across Europe.ILEA [J]. Epilepsia.1997,38(11):1245-50.
    [2] Kim K K, Privitera M D, Szaflarski J P. Lessons learned from a comparison oflanguage localisation using fMRI and electrocortical mapping: case studies ofneocortical epilepsy patients [J]. Epileptic Disord.2011,13(4):368-74.
    [3] Alonso-Vanegas M A, Cisneros-Franco J M, Otsuki T. Surgical management ofcavernous malformations presenting with drug-resistant epilepsy [J]. Front Neurol.2011,2(86.
    [4] Mccorry D, Chadwick D, Marson A. Current drug treatment of epilepsy in adults[J]. Lancet Neurol.2004,3(12):729-35.
    [5] Beghi E. Efficacy and tolerability of the new antiepileptic drugs: comparison of tworecent guidelines [J]. Lancet Neurol.2004,3(10):618-21.
    [6] Loscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver:ways out of the current dilemma [J]. Epilepsia.2011,52(4):657-78.
    [7] Kwan P, Brodie M J. Early identification of refractory epilepsy [J]. N Engl J Med.2000,342(5):314-9.
    [8] Perucca E. NICE guidance on newer drugs for epilepsy in adults [J]. BMJ.2004,328(7451):1273-4.
    [9] Taverna S, Sancini G, Mantegazza M, et al. Inhibition of transient and persistentNa+current fractions by the new anticonvulsant topiramate [J]. J Pharmacol ExpTher.1999,288(3):960-8.
    [10]Herrero a I, Del Olmo N, Gonzalez-Escalada J R, et al. Two new actions oftopiramate: inhibition of depolarizing GABA(A)-mediated responses and activationof a potassium conductance [J]. Neuropharmacology.2002,42(2):210-20.
    [11] Waugh J, Goa K L. Topiramate: as monotherapy in newly diagnosed epilepsy [J].CNS Drugs.2003,17(13):985-92.
    [12]Soderpalm B. Anticonvulsants: aspects of their mechanisms of action [J]. Eur J Pain.2002,6Suppl A(3-9.
    [13]Duggal H S, Singh I. Worsening of psychosis or topiramate-induced adverse event?[J]. Gen Hosp Psychiatry.2004,26(3):245-7.
    [14]Froscher W, Schier K R, Hoffmann M, et al. Topiramate: a prospective study on therelationship between concentration, dosage and adverse events in epileptic patientson combination therapy [J]. Epileptic Disord.2005,7(3):237-48.
    [15]Smith M E, Gevins A, Mcevoy L K, et al. Distinct cognitive neurophysiologicprofiles for lamotrigine and topiramate [J]. Epilepsia.2006,47(4):695-703.
    [16]Marson a G, Al-Kharusi a M, Alwaidh M, et al. The SANAD study of effectivenessof valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy:an unblinded randomised controlled trial [J]. Lancet.2007,369(9566):1016-26.
    [17]Marson a G, Al-Kharusi a M, Alwaidh M, et al. The SANAD study of effectivenessof carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate fortreatment of partial epilepsy: an unblinded randomised controlled trial [J]. Lancet.2007,369(9566):1000-15.
    [18]Hu Y, Lu Y, Yu W, et al. Long-term retention rate of topiramate as initialmonotherapy in Chinese patients with newly diagnosed epilepsy: a prospective,observational study [J]. Epilepsy Res.2010,90(3):278-84.
    [19]Adelman J, Freitag F G, Lainez M, et al. Analysis of safety and tolerability dataobtained from over1,500patients receiving topiramate for migraine prevention incontrolled trials [J]. Pain Med.2008,9(2):175-85.
    [20]Hunt S J, Morrow J I. Safety of antiepileptic drugs during pregnancy [J]. ExpertOpin Drug Saf.2005,4(5):869-77.
    [21]Loring D W, Marino S, Meador K J. Neuropsychological and behavioral effects ofantiepilepsy drugs [J]. Neuropsychol Rev.2007,17(4):413-25.
    [22]Arroyo S, Dodson W E, Privitera M D, et al. Randomized dose-controlled study oftopiramate as first-line therapy in epilepsy [J]. Acta Neurol Scand.2005,112(4):214-22.
    [23]Wang Q P, Bai M. Topiramate versus carbamazepine for the treatment of classicaltrigeminal neuralgia: a meta-analysis [J]. CNS Drugs.2011,25(10):847-57.
    [24]Gilliam F G, Veloso F, Bomhof M A, et al. A dose-comparison trial of topiramate asmonotherapy in recently diagnosed partial epilepsy [J]. Neurology.2003,60(2):196-202.
    [25]Fountoulakis K N, Gonda X, Samara M, et al. Antiepileptic drugs and suicidality[J]. J Psychopharmacol.2012,
    [26]Mula M, Sander J W. Negative effects of antiepileptic drugs on mood in patientswith epilepsy [J]. Drug Saf.2007,30(7):555-67.
    [27]Carmona S, Bruera O. Prophylatic treatment of migraine and migraine clinicalvariants with topiramate: an update [J]. Ther Clin Risk Manag.2009,5(3):661-9.
    [28]Privitera M D, Brodie M J, Mattson R H, et al. Topiramate, carbamazepine andvalproate monotherapy: double-blind comparison in newly diagnosed epilepsy [J].Acta Neurol Scand.2003,107(3):165-75.
    [29]Peltola J, Peltola M, Auvinen A, et al. Retention rates of new antiepileptic drugs inlocalization-related epilepsy: a single-center study [J]. Acta Neurol Scand.2009,119(1):55-60.
    [30]Antel J, Hebebrand J. Weight-reducing side effects of the antiepileptic agentstopiramate and zonisamide [J]. Handb Exp Pharmacol.2012,209(433-66.
    [31]Ben-Menachem E, Axelsen M, Johanson E H, et al. Predictors of weight loss inadults with topiramate-treated epilepsy [J]. Obes Res.2003,11(4):556-62.
    [32]Verrotti A, Scaparrotta A, Agostinelli S, et al. Topiramate-induced weight loss: areview [J]. Epilepsy Res.2011,95(3):189-99.
    [33]Bumb A, Diederich N, Beyenburg S. Adding topiramate to valproate therapy maycause reversible hepatic failure [J]. Epileptic Disord.2003,5(3):157-9.
    [34]Mahmoud a A, Rizk T, El-Bakri N K, et al. Incidence of kidney stones withtopiramate treatment in pediatric patients [J]. Epilepsia.2011,52(10):1890-3.
    [35]Adachi M, Oyazato Y, Nishiyama A, et al.[Efficacy of topiramate in childhoodepilepsies][J]. No To Hattatsu.2010,42(5):360-6.
    [36]Mirza N S, Alfirevic A, Jorgensen A, et al. Metabolic acidosis with topiramate andzonisamide: an assessment of its severity and predictors [J]. PharmacogenetGenomics.2011,21(5):297-302.
    [37]Singh S K, Thapa S S, Badhu B P. Topiramate induced bilateral angle-closureglaucoma [J]. Kathmandu Univ Med J (KUMJ).2007,5(2):234-6.
    [38]Spaccapelo L, Leschiutta S, Aurea C, et al. Topiramate-associated acute glaucomain a migraine patient receiving concomitant citalopram therapy: a case-report [J].Cases J.2009,2(1):87.
    [39]Verrotti A, Manco R, Matricardi S, et al. Antiepileptic drugs and visual function [J].Pediatr Neurol.2007,36(6):353-60.
    [40]Yilmaz K, Tatli B, Yaramis A, et al. Symptomatic and asymptomatic hypohidrosisin children under topiramate treatment [J]. Turk J Pediatr.2005,47(4):359-63.
    [41]黄希顺,陈云春,杜芳,李锐,江文.托吡酯治疗癫痫时出现的泌汗障碍的临床分析[J].中国神经精神疾病杂志.2004,30(5):4.
    [42]Cheung E, Wong V, Fung C W. Topiramate-valproate-induced hyperammonemicencephalopathy syndrome: case report [J]. J Child Neurol.2005,20(2):157-60.
    [43]Vila Ceren C, Demestre Guasch X, Raspall Torrent F, et al.[Topiramate andpregnancy. Neonate with bone anomalies][J]. An Pediatr (Barc).2005,63(4):363-5.
    [44]Noyer M, Gillard M, Matagne A, et al. The novel antiepileptic drug levetiracetam(ucb L059) appears to act via a specific binding site in CNS membranes [J]. Eur JPharmacol.1995,286(2):137-46.
    [45]Kuba R, Novotna I, Brazdil M, et al. Long-term levetiracetam treatment in patientswith epilepsy:3-year follow up [J]. Acta Neurol Scand.2010,121(2):83-8.
    [46]Sirsi D, Safdieh J E. The safety of levetiracetam [J]. Expert Opin Drug Saf.2007,6(3):241-50.
    [47]Harden C. Safety profile of levetiracetam [J]. Epilepsia.2001,42Suppl4(36-9.
    [48]Lyseng-Williamson K A. Levetiracetam: a review of its use in epilepsy [J]. Drugs.2011,71(4):489-514.
    [49]Shorvon S D, Lowenthal A, Janz D, et al. Multicenter double-blind, randomized,placebo-controlled trial of levetiracetam as add-on therapy in patients withrefractory partial seizures. European Levetiracetam Study Group [J]. Epilepsia.2000,41(9):1179-86.
    [50]Alsaadi T M, Shatzel A, Marquez a V, et al. Clinical experience of levetiracetammonotherapy for adults with epilepsy:1-year follow-up study [J]. Seizure.2005,14(2):139-42.
    [51]French J, Edrich P, Cramer J A. A systematic review of the safety profile oflevetiracetam: a new antiepileptic drug [J]. Epilepsy Res.2001,47(1-2):77-90.
    [52]Weintraub D, Buchsbaum R, Resor S R, Jr., et al. Psychiatric and behavioral sideeffects of the newer antiepileptic drugs in adults with epilepsy [J]. Epilepsy Behav.2007,10(1):105-10.
    [53]Briggs D E, French J A. Levetiracetam safety profiles and tolerability in epilepsypatients [J]. Expert Opin Drug Saf.2004,3(5):415-24.
    [54]Hunt S, Craig J, Russell A, et al. Levetiracetam in pregnancy: preliminaryexperience from the UK Epilepsy and Pregnancy Register [J]. Neurology.2006,67(10):1876-9.
    [55]Nissen-Meyer L S, Svalheim S, Tauboll E, et al. Levetiracetam, phenytoin, andvalproate act differently on rat bone mass, structure, and metabolism [J]. Epilepsia.2007,48(10):1850-60.
    [56]Michaelides C, Thibert R L, Shapiro M J, et al. Tolerability and dosing experienceof intravenous levetiracetam in children and infants [J]. Epilepsy Res.2008,81(2-3):143-7.
    [57]Glauser T A, Cnaan A, Shinnar S, et al. Ethosuximide, valproic acid, andlamotrigine in childhood absence epilepsy [J]. N Engl J Med.2010,362(9):790-9.
    [58]Kwan P, Brodie M J, Kalviainen R, et al. Efficacy and safety of pregabalin versuslamotrigine in patients with newly diagnosed partial seizures: a phase3,double-blind, randomised, parallel-group trial [J]. Lancet Neurol.2011,10(10):881-90.
    [59]Mockenhaupt M, Messenheimer J, Tennis P, et al. Risk of Stevens-Johnsonsyndrome and toxic epidermal necrolysis in new users of antiepileptics [J].Neurology.2005,64(7):1134-8.
    [60]Varghese S P, Haith L R, Patton M L, et al. Lamotrigine-induced toxic epidermalnecrolysis in three patients treated for bipolar disorder [J]. Pharmacotherapy.2006,26(5):699-704.
    [61]Taillia H, Alla P, Fournier B, et al.[Anticonvulsant hypersensitivity syndrome andlamotrigine-associated anticonvulsant hypersensitivity syndrome][J]. Rev Neurol(Paris).2009,165(10):821-7.
    [62]Berwaerts K, Sienaert P, De Fruyt J.[Teratogenic effects of lamotrigine in womenwith bipolar disorder][J]. Tijdschr Psychiatr.2009,51(10):741-50.
    [63]Harden C L, Pennell P B, Koppel B S, et al. Management issues for women withepilepsy--focus on pregnancy (an evidence-based review): III. Vitamin K, folic acid,blood levels, and breast-feeding: Report of the Quality Standards Subcommitteeand Therapeutics and Technology Assessment Subcommittee of the AmericanAcademy of Neurology and the American Epilepsy Society [J]. Epilepsia.2009,50(5):1247-55.
    [64]Shawcross D, Auzinger G. Lamotrigine and the risk of fulminant hepatic failure [J].Lancet.2008,371(9613):649-50.
    [65]Amante M F, Filippini a V, Cejas N, et al. Dress syndrome and fulminant hepaticfailure induced by lamotrigine [J]. Ann Hepatol.2009,8(1):75-7.
    [66]Jankovic S M, Dostic M. Choice of antiepileptic drugs for the elderly: possible druginteractions and adverse effects [J]. Expert Opin Drug Metab Toxicol.2012,8(1):81-91.
    [67]Wong I C, Mawer G E, Sander J W. Adverse event monitoring in lamotriginepatients: a pharmacoepidemiologic study in the United Kingdom [J]. Epilepsia.2001,42(2):237-44.
    [68]Martinez W, Ingenito A, Blakeslee M, et al. Efficacy, safety, and tolerability ofoxcarbazepine monotherapy [J]. Epilepsy Behav.2006,9(3):448-56.
    [69]Buggy Y, Layton D, Fogg C, et al. Safety profile of oxcarbazepine: results from aprescription-event monitoring study [J]. Epilepsia.2010,51(5):818-29.
    [70]Simister R J, Sander J W, Koepp M J. Long-term retention rates of newantiepileptic drugs in adults with chronic epilepsy and learning disability [J].Epilepsy Behav.2007,10(2):336-9.
    [71]Kalis M M, Huff N A. Oxcarbazepine, an antiepileptic agent [J]. Clin Ther.2001,23(5):680-700; discussion645.
    [72]Asconape J J. Some common issues in the use of antiepileptic drugs [J]. SeminNeurol.2002,22(1):27-39.
    [73]Dong X, Leppik I E, White J, et al. Hyponatremia from oxcarbazepine andcarbamazepine [J]. Neurology.2005,65(12):1976-8.
    [74]Knudsen J F, Flowers C M, Kortepeter C, et al. Clinical profile ofoxcarbazepine-related angioneurotic edema: case report and review [J]. PediatrNeurol.2007,37(2):134-7.
    [75]Wang X Q, Lang S Y, Shi X B, et al. Cross-reactivity of skin rashes with currentantiepileptic drugs in Chinese population [J]. Seizure.2010,19(9):562-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700