用户名: 密码: 验证码:
两亲分子设计在抗静电聚烯烃材料与防水抗菌纸中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以研究高分子材料表面功能化理论为核心,以解决聚烯烃抗静电问题、纸质包装材料防水抗菌问题等为应用背景,在研究材料抗静电原理、聚合物接枝原理以及材料抗菌原理基础上设计并合成了多种具有亲水疏水结构的两亲分子,包括可交联型表面活性剂、抗菌表面活性剂、功能化聚乙烯蜡、功能化聚丙烯蜡和梳状两亲聚合物等,将具有两亲结构的表面活化物与聚丙烯、聚乙烯熔融共混,制备了永久型抗静电聚丙烯和聚乙烯;将抗菌功能化聚乙烯蜡制备成乳液用于造纸,制备了具有防水抗菌性能的纸材料,具体工作如下:
     为克服传统小分子抗静电剂容易流失、不耐水等缺点,本文选用具有一个疏水臂、三个亲水臂的吐温类表面活性剂为研究对象,首先将不同疏水臂长、亲水臂长的吐温与司盘和聚丙烯熔融共混制备了抗静电聚丙烯,对试样抗静电性能的影响因素,包括添加量、加工条件、大气湿度等进行了全面的研究,挑选出具有最快迁移速率和抗静电性能最好的抗静电剂吐温40(T40)。并将T40与阳离子聚丙烯(CPP)复配,发现了两者之间存在一定的协同效应。此外,对T40进行双键化改性,得到三双键吐温40(TDB-T40),发现添加TDB-T40的聚丙烯样品经过表面紫外照射后具有一定的耐水洗能力。研究表明,基于T40的抗静电体系能有效地降低PP的表面电阻率,添加量为0.5%时,PP样品的表面电阻率达到1010Ω/sq,水接触角为57°,表面能达到49.5mN/m,即便经超声水洗后表面电阻率也只升高至1011~1012Ω/sq。
     论文研究了一类抗静电效果显著,效果持久的高分子类抗静电剂。将与聚丙烯相容性好的聚烯烃蜡(PEW、PPW)和具有抗静电功能的丙烯酸钠(AAS)通过接枝方法键合在一起,制备了本征体积电导率为105Ω-cm和106Ω·cm的PEW-g-AAS和PPW-g-AAS两种两亲性大分子,将两者分别与聚丙烯熔融共混,制备了PEW-g-AAS/PP和PPW-g-AAS/PP两种抗静电材料。集中研究了它们在不同处理条件下的表面电阻率(ρs)、水接触角、分散效果、介电常数和介电损耗等。结果表明,该类抗静电剂以微米级的片或颗粒形式均匀分散在基体中,通过在聚丙烯内形成导电网络而使电荷流通,当两种抗静电剂添加量为15%时,聚丙烯表面电阻率和体积电阻率分别降为4.7×109Ω/sq,1.5×109Ω·cm和2.5×1010Ω/sq,4.9×109Q·cm,而且该类抗静电剂的加入对聚丙烯的力学性能影响不大,尤为突出的是使聚丙烯抗静电性能具有耐水洗性优点。
     论文在主链阳离子聚合物中引入不同长度的疏水侧链,得到具有梳状结构的两亲聚合物C-ionene。采用电荷密度、FTIR、H-NMR、TGA、最低抑菌浓度(MIC)、抗霉性、粒径及分布、Zeta电位、表面张力等方法对C-ionene进行了研究。结果表明,侧链长度为4个碳原子(即4I)时具有最好的抗菌性能,对大肠杆菌的最低抑菌浓度达到7.8μg/mL,是通过破坏细菌细胞膜令细菌在几秒钟内致死而实现抗菌效果的。
     将C-ionene与低密度聚乙烯(LDPE)混合制备了LDPE/ionene复合材料,采用ATR-FTIR.水接触角、SEM以及采用贴膜法等对其抗静电性能的影响因素(包括C-ionene侧链长度、添加量、大气湿度、耐水洗性等)以及抗菌性能进行了详细的研究。结果表明,侧链长度为12个碳原子(即12I)是最佳的抗静电剂,添加5%时,复合材料表面电阻率降到2.3×109Ω/sq,而且抗静电效果具有持久性和耐水洗性能;LDPE/4I和LDPE/121复合材料具有良好的抗菌效果,其中LDPE/4I (5%)对大肠杆菌的抑菌率达到99.9%以上。
     最后,论文制备了四种乳化性和抗菌性良好的复合的阳离子表面活性剂(S121,S122,S181和S182),用其对PEW和蜂蜡(BEW)进行乳化,得到抗菌的蜡乳液。另一方面将疏水的PEW和具有抗菌性能的PHGH键合在一起,制备了具有两亲性结构的多功能大分子PEW-g-PHGH,然后直接乳化制成抗菌乳液。然后将蜡乳液通过湿部、涂布、浸渍法用于造纸,制备了具有一定的防水、抗菌性能的纸。结果表明,BEW乳液比PEW乳液防水效果好,接枝法制备的蜡乳液不仅抗菌、防水效果显著,而且以化学键与PEW连接的抗菌剂,不易使抗菌剂渗出,具有抗菌长效性和安全性。
The thesis aims to prepare antistatic polyolefin and hydrophobic paper-based material with antimicrobial properties based on the surface modification of polymers. According to the electrostatic dissipative mechanism, principle of polymer grafting and antimicrobial theories, several amphiphilic moceluces with hydrophobic and hydrophilic segments were prepared including crosslinkable surfactants, antimicrobial surfactants, functional polyethylene wax, functional polypropylene wax and comb-like cationic polymers. The antistatic agents with amphiphilic structures were blended with polypropylene (PP) and polyethylene (PE) to fabricate permanent antistatic polyolefin materials, while the polyethylene wax (PEW) and bees wax (BEW) were made into antimicrobial emulsions with the help of antimicrobial surfactants or being modified with antimicrobial agent, and then applied to paper to obtain hydrophobic and antimicrobial paper.
     The traditional antistatic agents were easy to wear out thus losing antistatic properties. To fabricate the permanent antistatic PP materials, Tween surfactants with one hydrophobic arm and three hydrophilic arms were investigated as inner antistatic agents of PP. Firstly, a cluster of nonnionic surfactants with different hydrophile-lipophile balance (HLB) were blended with PP to produce antistatic sheet samples. Then, the influence factors of antistatic performance including addition amount, processing conditions and the atmosphere humidity were investigated in detail, and Tween40(T40) was verified as the best antistic agent. Finally, two methods were applied to improve the water endurance of antistatic performance, including combination of T40and cationic PP (CPP) and surface crossliking of modified T40. The results show that T40based antistatic agents were effective to dissipative the electrostatic. The PP/T40(0.5%) sample revealed surface resistivity of1010Ω2/sq, water contact angle of57°and surface energy of49.5mN/m, and the treated sample had surface resistivity of1011~1012Ω/sq after umtrosound cleaning.
     The thesis also focused on a type of polymeric antistatic agents with exerellent antistatic properties. Polyethylene wax grafted with sodium acrylate (PEW-g-AAS) and polypropylene wax grafted with sodium acrylate (PPW-g-AAS), were prepared using a solution grafting method and applied to polypropylene (PP) to enhance antistatic properties. The grafting degree was determined using back titration method and structures were confirmed by Fourier transform infrared spectroscopy (FTIR). The antistatic properties of PEW-g-AAS/PP blends and PPW-g-AAS/PP blends were characterized by surface resistivities (ρs) and volume resistivities (ρv), and a combination of contact angle measurements, scanning electron microscopy (SEM), permittivity and dielectric loss were used to investigate the surface and inner structures of the blends. Results showed ρs and ρv of PEW-g-AAS/PP blends dropped significantly (4-7orders of magnitudes) above a critical addition at10%, where an electrostatic dissipative network formed; PPW-g-AAS revealed an inferior antistatic performance than PEW-g-AAS due to its better compatibility and smaller content of dispersed phase in the matrix. Furthermore, the antistatic blends treated in80℃water,80℃air and room temperature were investigated and the results were interpreted from surface energy. Moreover, the addition of antistatic agent had little impact on tensile strength of the PP matrix.
     The thesis investigated a type of amphiphilic polymers with comb-like structures. The prepared comb-like ionenes (C-ionene) were characterized by charge density, FTIR, H-NMR and TGA, and their antimicrobial properties were investagited via the measurement of the minimal inhibitory concentration (MIC) against the escherichia coli (E. coli) and the anti-mound tests against Aspergillus niger and Chaetomium globosum. Besides, the solution properties including the morphology of the ionene molecular chain and surface tension of ionene solutions were studied by measuring the paticle size, Zeta potential and suface tension. Results showed that the C-ionene with butyl as side chains (41) had the best antimicrobial property, and its MIC reached7.8μg/mL. The C-ionenes inhibited the growth of bacteria by destroying the membranes of bacteria and causing the cytoplasm leaking.
     The LDPE/C-ionene composites were prepared by blending C-ionenes and LDPE, and the antistatic influence including the length of side chain, the addition amount, the atomosphere humidity and water durability were discussed in detail. The surface and inner structures of the composites were characterized by ATR-FTIR, water contact angles and SEM. In addition, the antimicrobial properties of the composites were investigated by growth inhibition of E. coli with membrane adhering-colony counting method. Result showed that the C-ionene with dodecyl as side chains (121) revealed the best antistatic properties. The LDPE/121(5%) composite had permanent antistatic performance with surface resistivitity of2.3×109Ω/sq. The LDPE/4I (5%) composite revealed99.9%growth inhibition of E. coli.
     In order to prepare the waterproof and antimicrobial paper, the antimicrobial PEW and bees wax (BEW) emulsions were prepared and applied to paper using wet end method, roll coating and dip coating method. The antimicrobial wax emulsions were prepared by being emulsified with antimicrobial surfactants (S121, S122, S181and S182) or grafted of polyhexamethylene guanidine hydrochloride (PHGH), and characterized by particle size, Zeta potential and AFM. The hydrophobic and antimicrobial of active paper were investigated by water contact angles, inhibition zone, and growth inhibition against Aspergillus niger and Chaetomium globosum. Results showed BEW emulsions had better effect on waterproof improvement, and the emulsions prepared by grafting method showed significant superiority than the surfactant assistance.
引文
[1]黄良仙,安秋凤,李临生.抗静电剂及其在工业领域的应用.日用化学工业.2004,34(5):308-311
    [2]宋振.塑料抗静电的发展现状.上海化工.2007,32(11):35-37
    [3]T. Tashiro. Antibacterial and Bacterium Adsorbing Macromolecules. Macromol. Mater. Eng.2001,286:63-87
    [4]T. Nonaka, L. Hua, T. Ogata, S. Kurihara. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides-N-isopropylacrylamide copolymers and their functions. J. Appl. Polym. Sci. 2003,87:386-393.
    [5]Y. Uemura, I. Moritake, S. Kurihara, T. Nonaka. Preparation of resins having various phosphonium groups and their adsorption and elution behavior for anionic surfactants. J. Appl. Polym. Sci.1999,72:371-378.
    [6]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003
    [7]赵国玺.表面活性剂作用原理.北京:中国轻工业出版社,2003
    [8]A. Nicholls, K. Sharp, B. Honig. Protein folding and association:insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 1991,11:281-296
    [9]刘德荣.表面活性剂的合成及应用.成都:四川科技出版社,1995
    [10]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社,2001
    [11]刘程,江小海,李宝珍,张万福.表面活性剂应用大全.北京:北京工业大学出版社,1992
    [12]M. Rosch. Nonionic Surfactants. New York:Marcel Dekker.1966
    [13]蒋庆哲,宋昭峥,赵密福,柯明.表面活性剂科学与应用.北京:中国石化出版社,2006
    [14]王云斐,刘云.Gemini型表面活性剂的合成进展.精细化工.2004,2:98-103
    [15]金勇,苗青,张彪,曹志峰.Bola型表面活性剂合成及其应用.化学进展.2008,06:918-930
    [16]F. M. Menger, C. A. Littau. Gemini-surfactants:synthesis and properties. J. Am. Chem. Soc.1991,113(4):1451-1452
    [17]沈一丁.高分子表面活性剂.北京:化学工业出版社,2002
    [18]钱浩,林志勇,张莹雪.大分子表面改性剂的设计合成研究进展.华侨大学学报(自然科学版).2006,27(4):337-342
    [19]陈汉佳,祝亚非,张艺,许家瑞.添加型聚丙烯大分子表面改性剂PP-g-PEG的制备及其应用.高分子学报.2007,2:203-208
    [20]陈汉佳,祝亚非,张艺,许家瑞.聚丙烯大分子表面改性剂PP-g-PMMA的制备及应用.高分子材料科学与工程.2007,23(3):80-84
    [21]陈汉佳,祝亚非,张艺,许家瑞.聚丁二烯/聚甲基丙烯酸丁酯接枝共聚物的合成及表征.中山大学学报(自然科学版).2006,45(4):54-57
    [22]陈旭东,许家瑞.大分子表面改性剂改性聚丙烯表面性能的影响因素.中山大学学报(自然科学版).2004,43(5):41-43
    [23]赵择卿.高分子材料抗静电技术.北京:纺织工业出版社,1991
    [24]吕咏梅.抗静电剂开发与生产现状.中国石油和化工.2003,11:37-39
    [25]赵择卿,陈小立.高分子材料导电和抗静电技术及应用.北京:中国纺织出版社,2006
    [26]C. Mark, Zaretsky. Some Electrostatic Design Issues for a Thermal Receiver. J. Electrostat.1999,46:221-230
    [27]李燕云,尹振晏,朱严瑾.抗静电剂综述.北京石油化工学院学报.2003,11(1):29-34
    [28]M. Narkis, G. Lidor, A. Vaxman, L. Zuri. New injections moldable electrostatic dissipative (ESD) composites based on very low carbon black Loadings. J. Electrostat. 1999,47:201-214
    [29]蒋平平.国内外磷酸酯表面活性剂合成与应用研究现状及发展趋势.日用化学工业.1997,3:32-37
    [30]张凌军,谢鸽,合成抗静电剂IRGSTAT.塑料助剂.2005,2:34-36
    [31]Y. C. Liu, Y. Xiong, D. N. Lu. Surface characteristics and antistatic mechanism of plasma-treated acrylic fibers. Applied Surface Science.2006,252:2960-2966
    [32]王丽丽.塑料抗静电技术的发展及应用.塑料科技.2004,6:44-48
    [33]刘素芳.塑料抗静电剂的发展现状.聚合物与助剂.2004,4:15-21
    [34]M. A. Soto-Oviedo, O. A. Araujo, R. Faez, M. C. Rezende, M. A. De Paoli, M. D. Paoli. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synthetic Metals.2006,156: 1249-1255
    [35]V. Sittinger, A. Pflug, W. Werner, C. Rickers, M. Vergo. Production of MF and DC-pulse sputtered anti-reflective/anti-static optical interference coatings using a large area in-line coater. Thin Solid Films.2006,502:175-180
    [36]H. K. Kima, Y. B. Kimb, J. D. Cho, J. W. Hong. Synthesis and characterization of radiation-curable monomers for antistatic coatings. Progress in Organic Coatings.2003, 48:34-42
    [37]C. R. Martins, MA. De Paoli. Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. European Polymer Journal.2005,41: 2867-2873
    [38]R. Wycisk, R. Pozniak, A. Pasternak. Conductive polymer materials with low filler content. J. Electrostat,2002,56:55-66
    [39]L. Karasek, M. Sumita. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites. J. Mater. Sci.1996,31:281-289.
    [40]周建萍,丘克强.抗静电高分子复合材料研究进展.工程塑料应用.2003,31(10):60-62
    [41]田瑶珠,于杰,罗筑,陈兴江,郝智,熊玉竹.不同类型四种抗静电剂在PE-HD中的应用效果及机理分析.2004,18(1):32-37
    [42]吕咏梅.抗静电剂开发与生产现状.聚合物与助剂,2004,10(5):8-9
    [43]刁雪峰,贾润礼.抗静电剂在聚烯烃中的应用和研究进展.2007,1:13-16
    [44]李涛.抗静电剂在PP与PE中的应用.现代塑料加工应用.2003,15(1):35-37
    [45]丁运生,王僧山,余章普,查敏.咪唑基离子液体对聚丙烯抗静电性能的影响高分子材料科学与工程.2006,22(6):99-101
    [46]贺天禄,李宝芳,罗英武,王蕾.复合抗静电剂在PP上的应用研究.2003,31(5):41-45
    [47]Y. S. Ding, H. Tang, X. M. Zhang, S. Y. Wu. Antistatic ability of 1-n-tetradecyl-3-methylimidazolium bromide and its effects on the structure and properties of polypropylene. European Polymer Journal.2008,44:1247-1251
    [48]闾兴圣,王庚超.聚苯胺/导电聚合物材料研究进展.功能高分子学报.2003,16(1):107-112.
    [49]王东周,李光.导电高分子研究概述.合成技术及应用.2001,16(3):36-39
    [50]S. M. Rhodes, B. Higgins, Y. J. Xu, W. J. Brittain Hyperbranched polyol/carbon nanofiber composites. Polymer.2007,48:1500-1509
    [51]申亮,徐景坤.洪啸吟导电高分子在抗静电领域中的应用.中国皮革.2004,33(12):40-43
    [52]J. Stejskal, M. Omastova, S. Fedorova, J. Prokes M. Trchova. Polyaniline and polypyrrole prepared in the presence of surfactants. Polymer.2003,44(5):1353-1358
    [53]潘玮.聚苯胺/涤纶导电织物的导电性能研究.上海纺织科技.1999,27(4):55-57
    [54]杨富祥.接技炭黑及其应用.炭黑工业.1992,3:37-39
    [55]黄兴.炭黑填充型导电塑料的研究与应用.塑料科技.2001,3:4-8
    [56]李炳炎,范汝新.炭黑在聚合物中的应用.精细与专用化学品.2001,9(9):35-38
    [57]李炳炎.炭黑生产与应用手册.北京:化学工业出版社,2000
    [58]谈晓宏,曾繁涤.防静电聚丙烯的研究.绝缘材料通讯.1997,1:10-13
    [59]刘浩,林群球.聚乙烯抗静电性能影响因素的试验研究.2001,32(2):12-13
    [60]吴连波,张伟.塑料的金属化工艺.吉林工学院学报(自然科学版).2002,23(1):27-30
    [61]李书娟,冯钠,张桂霞,陈涛.新型抗静电剂氧化锡对聚丙烯复合材料结构与性能的影响.塑料科技.2007,6:92-96
    [62]周祚万,楚珑晟.氧化锌晶须在树脂基复合材料中的应用.化工新型材料.2001,29(9):45-47
    [63]田雅娟,陈尔凡.四脚状氧化锌晶须及应用.硅酸盐学报.2000,28(2):165-168
    [64]马峰,翟学军.防静电阻燃聚丙烯材料制备方法的研究.物理.2000,29(9):552-555
    [65]周祚万,楚珑晟.氧化锌晶须在树脂基复合材料中的应用.化工新型材料.2001,29(9):45-47
    [66]马峰,翟学军.防静电阻燃聚丙烯材料制备方法的研究.物理.2000,29(9):552-555
    [67]B. N. Maki, S. Nakano, H. Sasaki. Development of a Packaging Material Using Non-bleed-type Antistatic lonomer. Packaging technology and science.2004,17(5):249-256
    [68]徐秀雯.高分子型抗静电剂的制备和应用.研究印染助剂.2003,20(5):50-51
    [69]杜仕国,易建政.抗静电剂的研究进展.塑料工业.1999,27(5):39-41
    [70]李书娟,冯钠,张志永.永久型抗静电剂的研究进展.塑料工业.2006,34(5):29-32
    [71]李鑫,顾利霞.抗静电PET-PEG共聚酯的研究.高分子材料科学与工程.2002.18(5):50-53
    [72]刘美华,张正华.高分子型抗静电剂的制备和应用研究.合成纤维工业.2002,25(2):49-51
    [73]彭锦芳,蔡伟.聚醚多元醇工业进展.现代塑料加工应用.1998,10(6):62-64
    [74]H. R. Thomas, J. O'Malley. Surface Studies on Multicomponent Polymer Systems by X-ray Photoelectron Spectroscopy:Polypropylene/Poly (ethylene oxide) Homopolymer Blends. Macromolecules.1981,14:1316-1320
    [75]M. P. Niranjan, W. D. David. Surface and Bulk Separation in Block Copolymers and Their Blends Polysulfone/Polysiloxane. Macromolecules.1988,21:2689-2696
    [76]D. E. Bergbreiter, B. Srinivas. Surface Selectivity in Blending Polyethylene-poly(ethylene glycol) Block Cooligomers into High-density Polyethylene. Macromolecules.1992,25(2):636-643
    [77]H. Tananka. Pattern Evolution Caused by Dynamic Couping Between Wetting and Phase Separation in Binary Liquid Mixture Containing Glass Particles. Physical Review Letters. 1994,72(16):2581-2584
    [78]P. Wiltzius. Domain Growth and Wetting in Polymer Mixture. Physical Review Letters. 1991,66(23):3000-3003
    [79]谢续明,肖天晶.第三相界面对高分子共混物粗化过程的影响研究.高等化学学报.1998,19(11):1864-1866
    [80]R. L. Mcevoy, S. Krause. Surface Characterization of Ethylene-vinyl and Ethylene-acrylic Acid Copolymers Using XPS and AFM. Polymer.1998,39(21):5223-5239
    [81]J. J. Schmiddt, J. J. Gardella. Surface Studies of Polymer Blends.2. An ESCA, IR and DSC Study of Poly(Caprolactone)/Poly(Vinyl chloride) Homopolymer Blends. Macromolecules.1989,22:4489-4495
    [82]吴人洁.高聚物的表面与界面.北京:科学出版社,1998
    [83]屈小中,金熹高.原子力显微镜在高分子领域的应用.功能高分子学报.1999,61(2):218-224
    [84]黄惠忠.论表面分析及其在材料研究中的应用.上海:科学技术文献出版社,2002
    [85]钟少锋,刘晓云,傅越江,吴幼泉.聚乙烯蜡超细微乳液的制备及其性能研究.印染助
    剂.2012,29(2):32-35
    [86]张辉,董艳勇,强西怀,洪新球.一种阳-非离子改性氧化聚乙烯蜡乳液的制备方法.200910021452
    [87]张辉,崔燕朋,强西怀,王艳娇.聚乙烯蜡的丙烯酸接枝改性及乳化工艺.高分子材料科学与工程.2011,27(12):119-122
    [88]刘裕红.新型材料水溶性聚乙烯蜡乳液的探讨.黔南民族师范学院学报.2009,3:44-46
    [89]文水平.氧化改性聚乙烯蜡微乳液的制备及应用.印染.2010,4:33-35
    [90]强西怀,董艳勇,张辉.氧化聚乙烯蜡乳液的制备及在皮革涂饰中的应用.皮革科学与工程.2010,20(2):50-54
    [91]李凤艳,刘嘉敏,孙桂大.纤维板专用乳化蜡防水添加剂的研制.精细化工.1996,13(5):55-57
    [92]孙凤娇,廖克俭,丛玉凤,于洪波.石蜡改性制备汽车上光用蜡.化学与粘合.2010,32(1):75-78
    [93]丛玉凤,孙凤娇,廖克俭,于洪波.石蜡的改性和乳化型地板上光用蜡的制备.化学工业与工程.2009,26(3):252-255
    [94]佟妍.聚乙烯微粉蜡在精细化工行业中的应用.天津化工.2006,20(1):40-41
    [95]孙洪,夏英.国内外抗菌剂的研究现状及发展趋势.塑料工业.2006,9(30):11-16
    [96]李梅,王庆瑞.抗菌材料的发展及其应用.化工新型材料.1998,5:8-11
    [97]T. D. Lockey, D. D. Ourth. Purification and characterization of lysozyme from hemolymph of heliothis virescens larve. Biochemical and Biophysical Research Communications.1996,220(3):502-508
    [98]王宁,陶红,李博文.无机抗菌剂的研究应用现状与矿物材料开发.矿物岩石地球化学通报.1999,18(1):61-65
    [99]杨明.塑料抗菌剂的近况及对其开发工作的管见.中国首届抗菌材料产业发展大会,北京:2001
    [100]M. Albert, P. Feiertag, G. Hayn. Structure Activity Relationships of Oligoguanidiness Influence of Counterion, Diamine, and Average Molecular Weight on Biocidal Activities. Biomacromolecules.2003,4:1811-1817
    [101]T. J. Franklin, G. A. Snow. Biochemistry of Antimicrobical Action. London:Chapman and Hall,1981:81-89
    [102]李银涛,蒋晓慧.单吡啶季铵盐表面活性剂的合成及杀菌性能.化学研究与应用.2005,7(3):411-413
    [103]李杰,秦秀芬,马淑杰.双季铵盐杀菌剂的合成.化学工程进展.2005,1:59-60
    [104]A. V. Rudnev, T. G. Dzherayan. Determination of Polyhexamethylene-guanidine by Capillary Electrophoresis. Journal of Analytical Chemistry.2006,61(10):1002-1005
    [105]W. W. Buchberger, I. Hattinger. Characterization of mixtures of biocidal oligoguanidines by capillary electrophoresis and high performance liquid chromatography coupled to mass spectrometry. Journal of Chromatography A.2009,1216:113-118
    [106]L.Y. Qian, Y. Guan, B.H. He, H.N. Xiao. Modified guanidine polymers:Synthesis and antimicrobial mechanism revealed by AFM. Polymer.2008,49:2471-2475
    [107]A. Kanazawa, T. Ikeda, T. Endo. Polymeric phosphonium salts as a novel class of cationic biocides Synergistic effect on antibacterial activity of polymeric phosphonium and ammonium salts. J.appl Polym Sci.1994,53:1245-1249
    [108]T. Ikeda, H. Yamaguchi, S. Tazuke. New polymeric biocides:synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob. Agents Chemother.1984,26:139-144
    [109]T. Ikeda, H. Hirayama, H. Yamaguchi, S. Tazuke, M. Watanabe. Antimicrobial polycationic biocides with pendant active groups:molecular weight dependence of antibacterial activity. Antimicrob. Agents Chemother.1986,30:132-136
    [110]T. Ikeda, S. Tazuke, Makromol. Biologically active polycations and antimicrobial activity of poly (trialkylvinylbenzylammonium chloride)s. Synthesis Chem.1984,185: 869-867
    [111]A. Kanazawa, T. Ikeda, T. Endo. Polymeric Phosphonium Salts as a Novel Class of Cationic Biocides. Ⅲ. Immobilization of Phosphonium Salts by Surface Photografting and Antibacterial Activity of the Surface-Treated Polymer Films. J. Polym. Sci., Part A: Polym. Chem.1993,31:1467-1472
    [112]Y. Sun, T. Y. Chen, S. D. Worley, G. Sun. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J. Polym. Sci., Part A:Polym. Chem. 2001,39:3073-3084
    [113]M. Bankova, N. Manolova, N. Markova, T. Radoucheva, K. Dilova, I. Rashkov. Hydrolysis and Antibacterial Activity of Polymers Containing 8-Quinolinyl Acrylate. J. Bioact. Compat. Polym.1997,12:294-307
    [114]M. Bankova, T. S. Petrova, N. Manolova, I. Rashkov. Homopolymers of 5-chloro-8-quinolinyl acrylate and 5-chloro-8-quinolinyl methacrylate and their copolymers with acrylic and methacrylic acid. Eur. Polym. J.1996,32:569-578
    [115]E. S. Park, W. S. Moon, M. J. Song, M. N. Kim, K. H. Chung. Antifungal effect of carbendazim supported on poly (ethylene-co-vinyl alcohol) and epoxy resin. Int. Biodeterior. Biodegrad.2001,47,209-214
    [116]W. S. Moon, K. H. Chung, D.J. Seol, E. S. Park, J. H. Shim. Antimicrobial effect of monomers and polymers with azole moieties. J. Appl. Polym. Sci.2003,90:2933-2937
    [117]李光,陈红.胍基聚合物的合成及抗菌性能.高分子材料科学与工程,2002,18(4):21-25
    [118]V. Dudler, M. C. Grob, D. Merian. Percolation network in polyolefins containing antistatic additives Imaging by low voltage scanning electron microscopy. Polym. Degrad. Stab.2000,68(3):373-379
    [119]T. Kobayashi, B.A. Wood, A. Takemura, H. Ono. Antistatic performance and morphological observation of ternary blends of poly(ethylene terephthalate), poly(ether esteramide), and Na-neutralized poly(ethylene-co-methacrylic acid) copolymers. J. Electrostat.2006,64(6):377-385
    [120]V. Luca, B. B. Silvia, M. Jose. Kenny Electrodeposited carbon nanotubes as template for the preparation of semi-transparent conductive thin films by in situ polymerization of methyl methacrylate. Carbon.2007,45:2685-2691
    [121]C. S. Li, T. X. Liang, W. Z. Lu, C. H. Tang. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes Composites Science and Technology.2004,64:2089-2096
    [122]V. Dudler, M. C. Grob, D. Merian. Percolation network in polyolefins containing antistatic additives Imaging by low voltage scanning electron microscopy. Polymer Degradation and Stability.2000,68:373-379
    [123]N. A. Aal, F. E. Tantawy, A. A. Hajry, M. Bououdina. New Antistatic Charge and Electromagnetic Shielding Effectiveness from Conductive Epoxy Resin/Plasticized Carbon Black Composites. Polymer Composites.2008,29(2):125-132
    [124]S. Vulpe, F. Nastase, C. Nastase, I. Stamatin. PAN-PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films.2006,495:113-117
    [125]李娜.塑料用抗静电剂的研究进展.贵州化工.2004,29(6):9-10
    [126]丁运生,王僧山,汪涛.抗静电聚丙烯的制备研究.塑料工业.2004,32(5):37-38
    [127]鲍治宇,顾大明.抗静电阻燃聚丙烯的研究.合成树脂及塑料,2001,18(3):26-27
    [128]贺天禄,李宝芳,罗英武,王雷.复合抗静电剂在PP上的应用研究.塑料工业.2003,31(5):43-45
    [129]韦坚红.王坚毅.塑料抗静电剂复配技术.塑料助剂.2003,5:15-18
    [130]N. Maki, S. Nakano, H. Sasaki. Development of a packaging material using non-bleed-type antistatic ionomer. Packag Technol Sci.2004,17(5):249-256
    [131]V. Dudler, M. C. Grob, D. Merian. Polym. Degrad. Stabil.2000,68:373
    [132]T. Kobayashi, B. A. Wood, A. Takemura, H. Ono. Antistatic performance and morphological observation of ternary blends of poly(ethylene terephthalate), poly(ether esteramide), and Na-neutralized poly(ethylene-co-methacrylic acid) copolymers. J. Electrostal.2006,64:377-385
    [133]M. A. Soto-Oviedo, O. A. Araujo, R. Faez, M. C. Rezende, M. D. Paoli. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synthetic Met.2006,156:1249-1255
    [134]K. H. Haas, S. Amberg-Schwab, K. Rose, G. Functionalized coatings based on inorganic-organic polymers and their combination with vapor deposited inorganic thin films. Surf Coat Tech.1999,111:72
    [135]V. Sittinger, A. Pflug, W. Werner, C. Rickers, M. Vergohl, A. Kaiser, B. Szyszka, Production of MF and DC-pulse sputtered anti-reflective/anti-static optical interference coatings using a large area in-line coater. Thin Solid Films.2006,502:175-180
    [136]H. K. Kima, Y. B. Kimb, J. D. Choa, J. W. Honga. Prog. Org Coat.2003,48:34
    [137]刁雪峰,贾润礼.新型抗静电聚丙烯的研制.上海塑料.2007,138(2):17-19
    [138]L. Valentini, S. B. Bon, J. M. Kenny. Electrodeposited carbon nanotubes as template for the preparation of semi-transparent conductive thin films by in situ polymerization of methyl methacrylate. Carbon.2007,45:2685
    [139]R. Wycisk, R. Pozniak, A. Pasternak. Conductive polymer materials with low filler content. J. Electrostal.2002,56:55
    [140]N. A. Aal, F. E. Tantawy, A. Al-Hajry, M. Bououdina. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites. Polym. Composite.2008,125.
    [141]I. Krupa, G. Mikova, I. Novak, I. Janigova, Z. Nogellova, F. Lednicky, J. Prokes. Electrically conductive composites of polyethylene filled with polyamide particles coated with silver. Eur. Polym. J.2007,43(6):2401-2413
    [142]S. M. Rhodes, B. Higgins, Y. J. Xu, W. J. Brittain. Hyper-branched polyol/carbon nanofiber composites. Polymer.2007,48:1500
    [143]C. S. Li, T. X. Liang, W. Z. Lu, C. H. Tang, X. Q. Hu, M. S. Cao, J. Liang. Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Compos. Sci. Technol.2004,64:2089-2096
    [144]C. R. Martins, M. D. Paoli. Ntistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder. Eur. Polym. J.2005,41(12):2867-2873
    [145]M. Omastova, I. Chodak, J. Pionteck. Electrical and mechanical properties of conducting polymer composites. Synthetic. Met.1999,102,1251
    [146]M. Omastova, S. Kosina, J. Pionteck, A. Janke, J. Pavlinec. Synthetic. Met.1996,81,49
    [147]J. P.Yang, Y.J.Yang, J. N. Hou, X. Zhang, W. Zhu, M. Xu. Polymer.1996,37:793
    [148]M. Omastova, J. Pavlinec. Synthesis, Electrical Properties and Stability of Polypyrrole-Containing Conducting Polymer Composites. Polym. Intl.1997,43:109-116
    [149]K. Hausmann. Permanent antistatic agent offers long term performance for films and containers. Plastics Addi. Com.2007,3:40-42
    [150]L. C. Zhu, G. B. Tang, Q. Shi, C. L. Cai, J. H. Yin. Neodymium oxide co-catalyzed melt free radical grafting of maleic anhydride onto co-polypropylene by reactive extrusion. React. Funct. Polym.2006,66(9):984-992
    [151]H. W. Xiao, F. Y. Yu, Y. Yu, S. Q. Huang. Grafting of glycidyl methylacrylate onto chlorinated polypropylene and its bonding to aluminum flake. J. Appl. Polym. Sci.2007, 104:2515-2521
    [152]H. Kaneko, J. Saito, N. Kawahara, S. Matsuo, T. Matsugi, N. Kashiwa. Synthesis and characterization of polypropylene-based polymer hybrids linking poly(methyl methacrylate) and poly(2-hydroxyethyl methacrylate). Polymer.2008,49:4576-4584
    [153]H. J. Chen, X. H. Shi, Y. F. Zhu, Y. Zhang, J. R. Xu. Polypropylene surface modification by entrapment of polypropylene-graft-poly(butyl methacrylate). Appl. Surf. Sci.2008,254:2521
    [154]B. Wong, W. E. Baker. Melt rheology of graft modified polypropylene. Polymer.1997, 38:2781
    [155]O. H. Dimitry, W. M. Sayed, A. M. Mazroua, A. L. G. Seed. Poly(vinyl chloride)/nanoclay nanocomposites-electrical and mechanical properties. Polimero.2009, 54:8
    [156]S. L. Abd-El Messieh, N. N. Rozik. Dielectric and Morphological Studies on Polyester/ Nanosilica Fume Composites. J. Appl. Polym. Sci.2011,122:714
    [157]N. N. Rozik, S. L. Abd-El Messieh, K. N. Abd-El Nour. The effect of modified pluronic on the distribution of fillers in the polyvinyl chloride matrix. J. Appl. Polym. Sci.2010, 115:1732
    [158]T. Ikeda, H. Hirayama, H. Yamaguchi, S. Tazuke, M. Watanabe. Antimicrob. agents ch. 1986,30:132.
    [159]L. Bromberg, T. Hatton. Poly(N-vinylguanidine):Characterization, and catalytic and bactericidal properties Polymer.2007,48:7490
    [160]S. R. Williams, E. M. Borgerding, J. M. Layman, W. Q. Wang, K. I. Winey, T. E. Long. Synthesis and characterization of well-defined 12,12-ammonium ionenes:evaluating mechanical properties as a function of molecular weight. Macromolecules.2008,41:5216-22
    [161]A. Rembaum, H. Noguchi. Reactions of N, N, N', N'-Tetramethyl-a, co-diaminoalkanes with α,ω-Dihaloalkanes. Macromolecules.1972,5(3):169-169
    [162]M. P. Raskop, A. Grimm, A. Seubert. Polystyrene immobilized ionenes as novel stationary phase for ion chromatography. Microchim. Acta.2007,158:85-94
    [163]A. V. Pirogov, O. V. Krokhin, M. M. Platonov, Y. I. Deryugina, O. A. Shpigun. Ion-chromatographic selectivity of polyelectrolyte sorbents based on some aliphatic and aromatic ionenes. Chromatogra A.2000,884:31-9
    [164]A. V. Pirogov, M. M. Platonov, O. A. Shpigun. Polyelectrolyte sorbents based on aliphatic ionenes for ion chromatography. J. Chromatogr. A.1999,850:53-63
    [165]L. Chen, S. Y. Yu, Y. Kagami, J. P.Gong, Y. Osada. Surfactant Binding of Polycations Carrying Charges on the Chain Backbone:Cooperativity, Stoichiometry and Crystallinity. Macromolecules.1998,31:787-794
    [166]S. M. Ramirez, J. M. Layman, T. E. Long. Protonatable Ionenes for Nucleic Acid Complexation. Macromol. Biosci.2009,9:1127-1134
    [167]A. N. Zelikin, V. A. Izumrudov. Polyelectrolyte complexes formed by calf thymus DNA and aliphatic ionenes:Unexpected change in stability upon variation of chain length of ionenes of different charge density. Macromol. Biosci.2002,2:78-81
    [168]A. N. Zelikin, A. A. Litmanovich, V. V. Paraschuk, A. V. Sybatchin, V. A. Izumrudov. Conformational changes of aliphatic ionenes in water-salt solutions as a factor controlling stability of their complexes with calf thymus DNA. Macromolecules.2003,36(6):2066-2071
    [169]H. Munstedt, K. C. Radhesh. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials.2005,26(14):2081-8
    [170]W. Zhang, Y. H. Zhang, J. H. Ji. Antimicrobial properties of copper plasma-modified polyethylene. Polymer.2006,47(21):7441-5
    [171]W. Zhang, J. H. Ji, Y. H. Zhang. Effects of NH3,O-2, and N-2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl. Surf. Sci.2007,253(22):8981-5
    [172]A. Conte, G. G. Buonocore, M. Sinigaglia. Antimicrobial activity of immobilized lysozyme on plasma-treated polyethylene films. J. Food Protect.2008; 71(1):119-125
    [173]W. Zhang, Y. H. Zhang, J. H. Ji. Antimicrobial polyethylene with controlled copper release. J Biomed Mater Res A.2007,83(3):838-844
    [174]P. Suppakul, K. Sonneveld, S. W. Bigger. Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil. LWT-Food Sci. Technol.2008,41(5):779-788
    [175]S. Sanchez-Valdes, H. Ortega-Ortiz, V. LFRD. Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer. J. Appl. Polym. Sci.2009,111(2):953-962
    [176]P. A. Zapata, L. Tamayo, M. Paez, E. Cerda, I. Azocar, Rabagliati FM. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic "in situ" polymerization:synthesis, characterization, and antimicrobial behavior. Eur. Polym. J. 2011,47(8):1541-1549
    [177]W. Zhang, P. K. Chu, J. H. Ji, Y. H. Zhang, R. K. Y. Fu, Q. Yan. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer. 2006,47:931-936
    [178]J. Wang, N. Huang, P. Yang, X. Y. Leng. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials.2004,25: 3163-3170
    [179]E. R. Kenawy, S. D. Worley, Broughton R. The chemistry and applications of antimicrobial polymers:A state-of-the-art review Biomacromolecules.2007,8(5):1359-1384
    [180]T. Ikeda, H. Hirayama, K. Suzuki, H. Yamaguchi, Tazuke, S. Polymeric pyridinium salts with well-defined main chain structure. Makromol. Chem.1986,187:333-340
    [181]C. Z. Chen, N. C. Beck-Tan, P. Dhurjati, T. K. Van Dyk, R. A. LaRossa, S. L. Cooper. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials:Structure-activity studies. Biomacromolecules.2000,1:473-480.
    [182]H. Sawada, M. Umedo, T. Kawase, T. Tomita, Baba, M. Synthesis and properties of fluoroalkylated end-capped betaine polymers. Eur. Polym. J.1999,35:1611-1617
    [183]T. Nonaka, L. Hua, T. Ogata, S. Kurihara. Synthesis of water-soluble thermosensitive polymers having phosphonium groups from methacryloyloxyethyl trialkyl phosphonium chlorides-N-isopropylacrylamide copolymers and their functions. J. Appl. Polym. Sci. 2003,87:386-393
    [184]Y. Uemura,I. Moritake, S. Kurihara, T. Nonaka. Preparation of resins having various phosphonium groups and their adsorption and elution behavior for anionic surfactants. J. Appl. Polym. Sci.1999,72:371-378
    [185]P. Broxton, P. M. Woodcock. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. Journal of Applied Bacteriology.1984,57: 115-124
    [186]L. Y. Qian, H. N. Xiao. Synthesis of Modified Guanidine-Based Polymers and their Antimicrobial Activities Revealed by AFM and CLSM. Applied Materials& Interfaces. 2011,3:1895-1901
    [187]C. Z. S. Chen, S. L. Cooper. Interactions between dendrimer biocides and bacterial membranes. Biomaterials.2002,23(16):3359-3368
    [188]S. Schlogl, R. Kramer, D. Lenko, H. Schrotner, R. Schaller. Fluorination of elastomer materials. Fluorination of elastomer materials. Eur. Polym. J.2011,47(12):2321-2330
    [189]赵雅琴.纸用石蜡乳液防水剂的制备及防水效果.纸和造纸.2003,4:39-40
    [190]K. Chul-Hwan, C. Sung-Hwan. Development of functional additives and packaging paper for prolonging freshness of cut flowers. J. Korea Techn. Assoc. Pulp. Paper Ind. 2002,34(2):32-41
    [191]C. H. Lee, D. S. An, H. F. Park, D. S. Lee. Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag. Technol. Sci.2003, 16(3):99-106
    [192]C. C. Wang, S. J. Wang. The research on tipping paper antibacterial water-based ink. Packag. Eng.2007,3:7-9
    [193]L. Vermeiren, F. Devlieghere, M. Van Beest, N. Kruijf, J. Debevere. Developments in the active packaging of foods. Trends in Food Science and Technology.1999,10:77-86
    [194]T. Schuman, M. Wikstrom, M. Rigdahl. The effect of hot calendering of the substrate on the barrier properties of poly(vinyl alcohol)-coated papers. Nordic Pulp. Paper Research J.2003,18 (1):81-89
    [195]K. Lahtinen, K. Nattinen, J. Vartiainen. Influence of High-Temperature Heat Treatment on Barrier and Functional Properties of Polyolefin-Coated Papers. Polymer-Plastics Technology and Engineering.2009,48(5):561-569
    [196]T. A. Trezza, J. L. Wiles, P. J. Vergano. Water vapor and oxygen barrier properties of corn zein coated paper. Tappi Journal.1998,81:171-176
    [197]M. Vaha-Nissi, J. Lahti, A. Savolainen, K. Rissa, T. Lepisto. New water based barrier coatings for paper and paperboard. Appita Journal.2001,54(2):106-115
    [198]H. Kjellgren, G. Engstrom. Influence of paper structure on barrier properties of starch-coated greaseproof paper. Nordic Pulp. Paper Research J.2008,23(1):87-90
    [199]K. Lahtinen, P. Maydannik, P. Johansson, T. Kaariainen. Utilisation of continuous atomic layer deposition process for barrier enhancement of extrusion-coated paper. Surface and Coating Technology.2011,205(15):3916-3922
    [200]A. Rodriguez, R. Batlle, C. Nerin. San and Its antimicrobial Property for paper. Proceeding of International Conference on Pulping, Papermaking and Biotechnology. 2008,2:294-298
    [201]N. Bordenave, S. Grepalier, V. Coma. Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules.2010,11(3):88-96
    [202]A. Rodriguez, R. Batlle, C. Nerin. The use of natural essential oils as antimicrobial solutions in paper packaging Part II. Progress in Organic Coatings.2007,60(1):33-38
    [203]L. Y. Qian, R. Kititerakun, H. N. Xiao, B. H. He. Modification of chitosan and its polyelectrolyte complex for enhancing antimicrobial activity and strength of paper.2nd international papermaking and environment conference, Proceeding books A and B. 2008:702-706
    [204]A. Rodriguez-Lafuente, C. Nerin, R. Batlle. Active Paraffin-Based Paper Packaging for Extending the Shelf Life of Cherry Tomatoes. J. Agric. Food Chem.2010,58(11):6780-6786
    [205]CFR. Oxidized Polyethylene. Code of Federal Regulations,21 CFR 172.260; US. GPO:Washington, DC,1990.
    [206]L. Y. Qian, Y. Guan, B. H. He, H. N. Xiao. Modified guanidine polymers:Synthesis and antimicrobial mechanism revealed by AFM. Polymer.2008,49(10):2471-2475
    [207]X. S. Chai, S.H. Yoon. UV Spectroscopic Monitoring Method for Real-Time Wet-End Control of Polymeric Adsorption in Aqueous Fibrous Suspensions. J. Ind. Eng. Chem. 2007,13(2):244-249
    [208]J. Qian, H.G. Zhang, Y. S. Xu. Grafting of maleic anhydride onto polyethylene wax by melt ultrasound and solid co-irradiation. Radiation Effects & Defects in Solids.2010, 165(11):834-844
    [209]N. G. Gaylord, R. Mehta, V. Kumar, M. Tazi. High density polyethylene-g-maleic anhydride preparation in presence of electron doners. J. Appl. Polym. Sci.1989,38:359-371
    [210]T. Hameed, D. K. Potter, E. Takacs. Reactions of Low Molecular Weight Highly Functionalized Maleic Anhydride Grafted Polyethylene with Polyetherdiamine. J. Appl. Polym. Sci.2010,116(4):2285-2297
    [211]Q. Lu, C. W. Macosko, J. Horrion. Melt Amination of Polypropylenes. J. Polym Sci Part A:Polym Chem.2005,43(18):4217-4232
    [212]Z. Ziaee, L. Y. Qian, Y. Guan, P. Fatehi, H. N. Xiao. Antimicrobial/Antimold Polymer-Grafted Starches for Recycled Cellulose Fibers. Journal of Biomaterials Science-Polymer Edition.2010,21(10):1359-1370
    [213]Y. Guan, L. Y. Qian, H. N. Xiao. Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers:Part Ⅰ. Optimization of synthetic conditions and antimicrobial activities. Cellulose.2008,15(4):609-618

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700