用户名: 密码: 验证码:
耐力运动训练对大鼠骨骼肌线粒体能量代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过检测大鼠骨骼肌腺苷酸含量,线粒体呼吸链氧化酶(COX、NOX)活性和抗氧化能力(SOD、GSH活性和MDA含量),阐明不同强度的耐力运动训练对骨骼肌腺苷酸含量,线粒体呼吸链氧化酶的活性以及骨骼肌抗氧化能力的影响规律,从线粒体呼吸链氧化酶活性的运动适应性变化和骨骼肌抗氧化能力变化两个角度探索不同强度的耐力运动训练后骨骼肌出现能量代谢适应性变化的可能机制。方法:将40只SD雌性大鼠参照Bedford报道大鼠最大摄氧量的标准,随机分为安静组(C)、小强度组(L)、中等强度(M)和大强度组H),每组10只,即:安静组(C):常规饲养不运动;大、中、小强度组训练两天,休息一天,再训练三天,休息一天。共持续7周;实验结束时将大鼠按组分批处理取大鼠内侧腓肠肌和比目鱼肌。HPLC法测定骨骼肌ATP、ADP和AMP含量;分光光度法测定NADH、CCO氧化酶活性和抗氧化酶SOD、GSH活性和MDA含量。
     结果:
     1.腺苷酸方面:腓肠肌的ATP、AMP值均高于比目鱼肌的ATP、AMP值,比目鱼肌的ADP值均高于腓肠肌。小强度训练不但使腓肠肌ATP、AMP含量和比目鱼肌的ATP、ADP和能荷含量显著提高(P<0.05),也使腓肠肌的能荷非常显著提高(P<0.01)。中强度训练不但使腓肠肌的ATP、AMP含量、能荷和比目鱼肌的ATP、ADP含量非常显著提高(P<0.01),也显著提高了比目鱼肌的能荷(P<0.05)。大强度训练后,腓肠肌的ATP较安静组显著下降(P<0.05),能荷降低非常显著(P<0.01)。
     2.呼吸链氧化酶方面:小强度训练使比目鱼肌的NOX、COX活性提高非常显著(P<0.01)。中强度训练不但使腓肠肌的NOX、COX活性和比目鱼肌的NOX活性显著提高(P<0.05),也非常显著提高了比目鱼肌的COX活性(P<0.01)。大强度训练后,腓肠肌的NOX、COX活性提高非常显著(P<0.01)。
     3.抗氧化能力方面:小强度训练使比目鱼肌的GSH活性显著提高(P<0.05), SOD非常显著提高(P<0.01),腓肠肌的MDA含量显著提高(P<0.05)。中强度训练不但使腓肠肌的SOD、GSH活性、MDA含量和比目鱼肌的SOD活性显著提高(P<0.05)。大强度训练后,腓肠肌的SOD、GSH活性提高非常显著(P<0.01),而比目鱼肌的MDA含量提高显著(P<0.05)。
     4.比目鱼肌能荷与COX、NOX活性存在非常显著或显著的正相关性(r=0.752),((r=0.844),比目鱼肌ATP与COX活性存在非常显著的正相关性(r=0.716)。慢肌的能荷升高受NOX、COX活性调节,且COX活性更敏感一些,而ATP的升高则主要受COX活性的调节。
     5.比目鱼肌能荷与GSH、SOD活性存在显著或非常显著的高度正相关性(r=0.720)(r=0.925),比目鱼肌ATP与SOD活性存在非常显著的正相关性(r=0.773)。慢肌的能荷升高受SOD、GSH活性调节,且SOD活性更敏感一些,而ATP的升高则主要受SOD活性的调节。
     6.比目鱼肌的NOX与SOD、GSH活性具有显著性正相关(r=0.793)(r=0.726),比目鱼肌的COX与SOD、GSH活性具有显著或非常显著性正相关(r=0.843)(r=0.669),腓肠肌COX与GSH具有显著的中度正相关(r=0.586)。
     结论:
     1.小、中强度除对骨骼肌的ATP,能荷有较大提高外,对慢肌的ADP敏感性较高,而对快肌的AMP敏感性较高。
     2.小强度训练显著提高慢肌的呼吸链氧化酶活性和抗氧化能力;大强度显著提高快肌的呼吸链氧化酶活性和抗氧化能力。
     3.耐力训练可以通过提高SOD和GSH活性,保证细胞膜的完整,提高呼吸链氧化酶的活性,使骨骼肌出现能量代谢适应性提高,尤其是慢肌的线粒体能量代谢。
Purpose:Through detecting the content of adenosine acid, the activity of oxidase of mitochondria respiratory chain (COX, NOX)and the anti-oxidation capacity (the activity of SOD, GSH and the content of MDA) in skeletal muscle of rats, we expound the influence rule of the content of adenosine acid,the activity of oxidase of mitochondria respiratory chain, and the oxidation resistance ability in the skeletal muscle during different intensity endurance movement training. From the standpoint of the change of running suitability of the activity of oxidase of mitochondria respiratory chain and the anti-oxidation capacity, we investigate possible mechanism of adaptive changes in energy metabolism of the skeleton muscle; after different intensity endurance trainings.
     Methods:In this study, refering to the standard of maximal oxygen intake Bedford reported, 40 SD female big mouse were used and divided randomly into four groups:(1)Control-group (C), (2)low-intensity group (L), (3)medium -intensity (M), (4)high-intensity group (H).Each one has 10.Control-group rats were fed normally. Other -group rats set training two day, take a rest for a day, train again for three days and take a rest for a day. It sustains totally 7 cycles. Soleus (SOL) and medial grastrocnemius (MG) of rats in groups and batches were handled after experiment. Determination of ATP, ADP, AMP, in Skeletal Muscle by HPLC; The activities of cytochrome oxidase(CCO), NADH oxidase and the activities of antioxidase SOD, GSH-PX, and MDA were measured by Spectrophotometry.
     Results:
     1. Adenosine acid:the levels of ATP、AMP of rat gastrocnemius muscle are higher than that of the soleus muscle. The levels of ADP of rat soleus muscle are higher than that of the gastrocnemius muscle. The levels of ATP、AMP of rat gastrocnemius muscle and the levels of ATP、ADP、EC of rat soleus muscle in LG were significantly higher than that in CG (P<0.05). The levels of EC of rat gastrocnemius muscle in LG were significantly higher than that in CG very much (P<0.01). The levels of ATP、AMP、EC of rat gastrocnemius muscle and the levels of ATP、ADP of rat soleus muscle in MG were significantly higher than that in CG very much (P<0.01). The levels of EC of rat soleus muscle in MG were significantly higher than that in CG (P<0.05). The levels of ATP,EC of rat gastrocnemius muscle in HG were significantly decreased than that in CG (P<0.05~0.01).
     2. Oxidase of mitochondria respiratory chain:the levels of NOX、COX of rat soleus muscle in LG were significantly higher than that in CG (P<0.05). The levels of NOX、COX of rat gastrocnemius muscle and the levels of NOX of rat soleus muscle in MG were significantly higher than that in CG very much (P<0.05). The levels of COX of rat soleus muscle in MG were significantly higher than that in CG very much (P<0.01). The levels of NOX、COX of rat gastrocnemius muscle in HG were significantly higher than that in CG very much (P<0.01).
     3. The anti-oxidation capacity:The levels of MDA of rat gastrocnemius muscle and the levels of GSH、SOD of rat soleus muscle in LG were significantly higher than that in CG (P<0.05-0.01). The levels of SOD、GSH、MDA of rat gastrocnemius muscle and the levels of SOD of rat soleus muscle in MG were significantly higher than that in CG (P<0.05). The levels of SOD、GSHof rat gastrocnemius muscle in HG were significantly higher than that in CG very much (P<0.01). The levels of MDA rat soleus muscle in HG were significantly higher than that in CG (P<0.05).
     4. The contents of EC of rat soleus muscle were very positive significant correlated with COX (P< 0.01) and NOX (P< 0.05). The contents of ATP of rat soleus muscle were very positive significant correlated with COX (P< 0.01).The activity of EC of slow muscle can be regulated by NOX、COX, and the COX activeness is more sensitive,but The activity of ATP of slow muscle can be regulated by COX.
     5. The activity of NOX of rat soleus muscle was very positive significant correlated with SOD and GSH (P< 0.05). The activity of COX of rat soleus muscle was very positive significant correlated with SOD (P< 0.05) and GSH (P< 0.01). The activity of COX of rat gastrocnemius muscle was very positive significant correlated with GSH (P< 0.05).
     Conclusions:
     1. Except to the activity of ATP, EC of skeletal muscle was sensitive to LG and CG training,the activity of ADP was sensitive to slow muscle in LG and CG, but the activity of AMP was sensitive to fast muscle in LG and CG.
     2. The activity of oxidase of mitochondria respiratory chain and the anti-oxidation capacity in slow muscle of rats in LG were obviously improved. The activity of oxidase of mitochondria respiratory chain and the anti-oxidation capacity in fast muscle of rats in HG were obviously improved.
     3. After endurance sports training, the activity of SOD and GSH were obviously improved, so that the integrity of cell membrane was assured. The changes of CCO activity is closely related to mitochondrial energy metabolism enhancement, particularly mitochondrial energy metabolism in slow muscle.
引文
[1]邓树勋,洪泰田,曹志发.运动生理学[M].北京:高等教育出版社,1999:7
    [2]Masako H, Yuji Y, Yoshiyuki K. Molecular Biology of Oxygen Tolerance in Lactic Acid Bacteria:Functions of NADH Oxidases and Dpr in Oxidative Stress [J]. Journal of Bioscience and Bioengineering,2000,90(5):484-493.
    [3]潘秀清.间歇性低氧训练对有氧代谢能力的影响及其时效性研究[J].南京体育学院学报(自然科学版),2006,5(3):49—52.
    [4]吉力立.运动中自由基生成:线粒体的作用[J].天津体育学院学报,2000,15(1).
    [5]李斌.大鼠死后腓肠肌组织兴奋性及能量物质变化规律的研究[D].四川:四川大学华西基础医学与法医学院,2006.
    [6]潘峰,孙玮,王一健,等.反相高效液相色谱分析大鼠脑组织腺苷酸[J].解放军预防医学杂志,2001,19(5):343——345.
    [7]林家仕,林子俺,刘英杰.高效液相色谱分析不同低氧训练模式下大鼠心肌组织腺苷酸含量变化特征[J].体育科学,2009,29(2):65—69.
    [8]柳君泽,高文祥,蔡明春等.ATP浓度和缺氧暴露对大鼠脑线粒体RNA和蛋白质体外合成的影响[J].生理学报,2002,54(6):485-489.
    [9]柳君泽,高文祥,曹利飞等.低压缺氧大鼠脑线粒体内腺苷酸含量及能荷的变化[J].第三军医大学学报,2003,25(24):343—345
    [10]孙飞,周强军,孙吉对等.线粒体呼吸链膜蛋白复合体的结构[J].生命科学,2008,20(4):566—578.
    [11]任超学,闫巧珍,黄海等.两种低氧模式对大鼠骨骼肌SDH和CCO的影响[J].中国体育科技,2009,45(2):112—116.
    [12]李兵,柳君泽,陈丽芬.大鼠低压缺氧心肌及线粒体腺苷酸含量及分布的变化[J].西北国防医学杂志,2005,26(2):90—92.
    [13]张燕婉,龙村,史世勇.反相离子对高效液相色谱法测定心肌组织中的磷酸腺苷[J].色谱,2000,18(4):322—324.
    [14]罗刚,张国斌,谢增柱等.缺氧大鼠心肌线粒体呼吸功能、ATP含量的变化[J].1997.
    [15]张国华,朱一力,贺道远等.不同时间运动骨骼肌AMP/ATP比值及AMPK活性的变化特点[J].北京体育大学学报,2008,31(6):776—778.
    [16]王翔,洪峰,魏源.三种强度长期训练对大鼠心肌肌球蛋白ATP酶活性和线粒体计量学的影响[J].首都体育学院学报,2002,14(1):52—54.
    [17]王奕,金国琴,徐维蓉等.调心方对Ap所致Alzheimer痴呆大鼠线粒体呼吸功能的影响[J].中国老年学杂志,2008,22:206—207.
    [18]林锡煌,项小燕,方柏山.NADH氧化酶的应用研究进展[J].化学工程与装备,2007,2:53—56
    [19]邱宏,金国琴,张学礼等.调心方对氧化损伤型类AD大鼠能量代谢的影响[J].中药药理与临床,2002,18(1):18—21.
    [20]马志科,咎林森.细胞色素C在生物医学方面的研究进展[J].畜牧兽医杂志,2006,25(5):30—32.
    [21]陈绮文.低氧训练方法述评[J].辽宁体育科技,2005,12(6):51-53.
    [22]高炳宏.模拟低氧训练的新方法与新进展[J].体育科研,2005,26(2):44-49.
    [23]卢文彪,徐晓阳.力竭性运动对鼠肝功能的影响及恢复手段(综述)[J].吉林体育学院学报,2002,18(1):48-51.
    [24]江晓斌.耐力训练和力竭运动对大鼠红细胞高铁血红蛋白含量和NADH—细胞色素b5还原酶的影响[D].上海:华东师范大学,2004.
    [25]陈彩珍,卢健.有氧运动协同抗氧化剂对老年小鼠肾脏线粒体质和量的影响[J].成都体育学院学报,2005,31(1):89—-93.
    [26]李开刚,陆绍中,冯连世等.不同强度耐力训练后大鼠骨骼肌酶活性适应性变化的研究[J].中国运动医学杂志,2002,21(2):166—169.
    [27]王晖.低氧预适应对小鼠有氧运动能力的影响[D].上海:华东师范大学,2004:7-15.
    [28]张勇,张薇,时庆德等.急性运动心肌缺氧对大鼠心肌纤维和线粒体膜结构及功能的影响[J].天津体育学院学报,1997,12(1):19—-21.
    [29]代毅,柯遵渝.间歇性低氧训练对大鼠心肌、骨骼肌有氧代谢酶与运动能力的影响研究[J].成都体育学院学报,2003,29(5):91—93.
    [30]王茂叶.间歇性低氧训练对小鼠机体细胞色素氧化酶和琥珀酸脱氢酶的影响[J].天津体育学院学报,2005,20(6):2635.
    [31]潘秀清.间歇性低氧训练对有氧代谢能力的影响及其时效性研究[J].南京体育学院学报,2006,5(3):49—51.
    [32]赵婷婷,陈世益,丁树哲.一次长时运动和耐力运动对大鼠骨骼肌mtNOS及COXⅣ、 SOD活性的影响[J].西安体育学院学报,2009,26(1):64—66.
    [33]闻剑飞,刘玉倩,王海涛等.运动中线粒体活性氧产生机制的研究进展[J].河北师范大学学报,2009,33(2):271—274
    [34]李卫平.VE干预和模拟高原训练对大鼠抗氧化能力及能量代谢有关酶的影响[D].广州:华南师范大学,2003
    [35]“复方抗氧化制剂”对大鼠运动能力和骨骼肌自由基代谢影响的研究[J].中国体育科技,2005,41(3):17—19
    [36]冯美云,冯炜权等.1,6一二磷酸果搪营养液对人体抗疲劳能力的影响[J].中国运动医学杂志.1997,15(3):219-224.
    [37]沈勇伟.1,6一二磷酸果搪对提高小鼠运动耐力的研究[J].浙江体育科学.1998,20(5):36-38.
    [38]房冬梅等,1,6一二磷酸果榕对大负荷运动大鼠心肌组织的影响[J].体育与科学.1999,20(3):11-14.
    [39]张士祥,冯美云等.1,6一二磷酸果锗营养液的小鼠肾脏、心肌、骨骼肌组织及其血清自由基代谢的影响[J].北京体育大学学报.1996,19(3):23-29.
    [40]谭军.FDP对运动性疲劳大鼠骨骼肌与血中酶活性及自由基代谢影响的研究[D].湖南长沙:湖南师范大学,2005.
    [41]潘玮敏,杨建昌.不同负荷训练对大鼠骨骼肌细胞膜自由基代谢、膜流动性及Na+-K+-ATP酶活性的影响[J].西安体育学院学报,2004,21(3):51—53.
    [42]Supinski G. Nethery D. DiMarco A. Effect of free radical scavengers on endotoxininduced respiratory muscle dysfunction. Am. Rev. Respir. Dis.1993,148:1318-1324.
    [43]陶占泉,李文辉,何兵.力竭运动后小鼠自由基反应的动态观察[J].南京师大学报,1998,21(4):83—87.
    [44]崔建华,王引虎,张西洲等.红景天对高原人体运动后自由基和血清肌酸激酶的影响[J].航天医学与工程,2001,14(6):448—451.
    [45]杨海平.低氧、运动对大鼠骨骼肌细胞凋亡及bcl-2、bax表达的影响[D].北京:北京体育大学,2005.
    [46]袁海平,史仍飞,刘学,等.补充银杏制剂对过度训练大双心肌细胞凋t的影响[J].中国运动医学杂志,2004,23(s):503-506.
    [47]庞辉,何惠,李倩茗.螺旋燕对力竭运动大鼠心肌损伤的保护作用[J].中国临床康复, 2005,8(23):92—95.
    [48]刘小杰,何国庆,熊正英.沙棘油对小鼠心肌自由基代谢和超徽结构的形响[J].营养学报,2002,24(2):126—129.
    [49]邓红,徐晓阳,林文弢等.间歇性低氧运动对大鼠骨骼肌线粒体自由基代谢的影响[J].体育学刊,2007,14(7):57—61.
    [50]乔玉成.谷氨酰胺对急性力竭性游泳大鼠心肌组织MDA、GSH含量的影响[J].西安体育学院学报,2001,18(1):39—40.
    [51]张蕴琨,焦颖,冯炜权等.急性力竭性游泳对小鼠脑、肝、肌组织自由基代谢和血清CK、LDH活性的影响[J].中国运动医学杂志,1995,14(2):69—72.
    [52]曹国华,陈吉棣.运动、锌、铜营养与自由基代谢Ⅰ游泳对小鼠肝脑组织内自由基代谢的影响[J].中国运动医学杂志,1990,9(3):149—151.
    [53]衣雪洁,常波,许豪文等.急性力竭性游泳运动对大鼠肾脏线粒体功能损伤的影响[J].体育科学,2001,21(6):59—61.
    [54]张钩,许康文,毛丽娟.不同强度运动对大鼠心肌线位体功能的影响[J].现代康复,2002,4(9):2356—1357.
    [55]马先英,孔喜良.黄茂生药对运动大鼠心肌自由基损伤的研究[J].中国体育科技,2007,43(5):132—134.
    [56]Cdswell D, Powers S, Dodd S, et al. High intensitytraining-induced changes in skeletal muscle antioxidantenzyme activity [J]. Med Sci Sports Exert,1993,25(10):1135-1140.
    [57]杨海平,王江民,肖琳.低氧、力竭运动对大鼠骨骼肌SOD、MDA及线粒体钙的影响[J].山东体育学院学报,2009,25(5):24-28.
    [58]刘建华,常波,史冀鹏.过度训练对大鼠心肌线粒体膜上功能性酶活性的影响[J].河北体育学院学报,2007,21(2):86-88.
    [59]熊正英,程春凤,战旗.谷氨酰胺及运动训练对大鼠血液某些生化指标的影响[J].西安体育学院学报,2003,20(3):48—60.
    [60]肖建原,赵歌,郭建荣.不同负荷运动训练对大鼠红细胞膜的影响——氧化、抗氧化及膜流动性的变化[J].北京体育大学学报,2003,26(4):472—474.
    [61]邓红,徐晓阳,林文弢等.间歇性低氧运动对大鼠骨骼肌线粒体自由基代谢的影响[J].体育学刊,2007,14(7):57—60
    [62]郭海英,许豪文.耐力训练对大鼠肝脏、股四头肌中谷光甘肽含量的影响[J].浙江体 育科学,1996,18(5):46.
    [63]任昭君,郭成吉,刘洪珍.“复方抗氧化制剂”对训练大鼠一次运动后骨骼肌谷胱甘肽抗氧化系统影响的研究[J].北京体育大学学报,2005,28(2):194—199.
    [64]史业丽,辛晓林,土昌留.不同负荷游泳训练及补硒对衰老大鼠心肌抗氧化能力及血清GOT的影响[J].北京体育大学学报,2002,25(5):636-638.
    [65]陈彩珍等.有氧运动对老年小鼠骨骼肌抗氧化能力的影响[J].中国运动医学杂志,2000,19(3):272—274.
    [66]陈彩珍等.有氧运动训练对老年小鼠骨骼肌抗氧化酶活性的影响[J].浙江体育科学,2000,22(4):58—60.
    [67]陈彩珍等.有氧运动对老年小鼠骨骼肌抗氧化能力的影响[J].中国运动医学,200019(3):272-274.
    [68]李爽.长期有氧运动对增龄SD大鼠骨骼肌细胞凋亡的影响及其可能机制[D].北京:北京体育大学,2005.
    [69]于得庆,焦玲霞,张雪红,郑明娟,陈国军.DHA,EPA对耐力训练小鼠抗氧化能力影响的实验研究[J].河北工业科技,2005,22(2):64—67.
    [70]刘洪珍,郭建军,武桂新.不同有氧耐力训练对肌组织自由基代谢和抗氧化系统的影响[J].中国运动医学杂志,2000,19(1).99-100.
    [71]郭海英,许豪文.耐力训练对大鼠肝脏、股四头肌谷脱甘肤抗氧化系统降活性的影响[J].中国应用生理学杂志,1999,15(1):55—58
    [72]王长青,刘丽萍等.游泳训练后大鼠骨骼肌细胞自由墓代谢、线粒体膜电位变化与细胞凋亡的关系[J].中国运动医学杂志,2002,21(3):256—260.
    [73]Salminen A, et al. Endurance training reduce the susceptibility of mouse skeketal muscle to LPO in vitro[J]. Acta.Physio.Scand.1983; 117:109-113.
    [74]Leeuwenburgh C, Hollander J, Leichtweis S.Adaptations of glutathione an-tioxidant system to endurance training are tissue and muscle fiber specific[J]. Am J Physiol,1997,272:363-369.
    [75]姜振.高压氧对递增负荷训练大鼠氧自由基与骨骼肌细胞凋亡的影响[J].科技信息(博士专家论坛),13-14.
    [76]李扬.不同运动方式对反映肌肉微损伤指标影响的比较研究[D].北京:北京体育大学,2004.
    [77]高姝娟,刘锡锰, 罗贵民等.NADH诱导的牛心肌线粒体的脂质过氧化[J].吉林大学 自然科学学报,1998,(4):75-78.
    [78]周婕.不同强度运动对大鼠骨骼肌细胞凋亡的影响[D].长沙:湖南师范大学,2004.
    [79]曹桂霞.耐力训练对大鼠心肌Hsp72mRNA表达及急性运动耐受性的影响[D].上海:华东师范大学,2007.
    [80]Ryan AJ, et al. Overtraining of athletes:a round table.Physician and Sports Medicine.1983, 11(6):93-110.
    [81]张国华,朱一力,曾凡星.周耐力训练削弱骨骼肌5’—磷酸腺苷激活的蛋白激酶信号对急性运动的反应[J].中国运动医学杂志,2008,27(6).
    [82]陈丽芬,柳君泽,李兵.低压缺氧对大鼠脑线粒体腺苷酸转运体特性的影响[J].生理学报,2006,58(1):29—33.
    [83]Burkre, Glennll. Horsera dishper oxidase study of the spatial and electrotonic distribution of group Iasynapses on type-identified ankle extensor mo-toneurons in the cat[J]. CompNeurol, 1996(372):465-485
    [84]张国华.不同运动骨骼肌AMPK的变化特点及对mTOR和下游信号的调控[D].北京:北京体育大学,2008.
    [85]Hellsterr-Westing Y, Norman B, Balsom PD, et al..Decreased resting levels of adenine nucleotides in human skeletal muscle after high intensity training[J]. J Appl Physiol,1993, 74(5):2523-2528.
    [86]Karatzaferi C., D E Haan A., Ferguson RA, et al. Phosphocreatine and ATP content single muscle fibres before and after maximun dynamic exercise[J]. Pflugers Archiv,2001.
    [87]C Karatzaferi, A de Haan, W van Mechelen and A J Sargeant. Metabolism changes in single human fibres during brief maximal exercise[J]. Exp Physiol,2001,86:411-415.
    [88]Shephard ER, et al. Oxygen uptake of rats at differentwork intensities[J]. Pflugers Arch Ges Physiol,1976,362:219.
    [89]胡志刚,陈彩珍,卢健.大强度训练对骨骼肌ATP/CP代谢的影响[J].沈阳体育学院学报,2006,25(4).
    [90]赵丽波,张琳,邬英全等.2αβ25-35致PC12细胞模线粒体损伤及人参皂甙对其影响[J].中国实验诊断学,2005,9(1)
    [91]Dudley KDet al. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Phsiol,1982,53:844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700