用户名: 密码: 验证码:
运动性动情周期抑制雌性大鼠的骨变化及其影响机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青春发育期是骨量快速增长的关键时期,青春期进行适宜的体育运动能够有效地促进骨量的增加。长期进行大强度运动可能导致女运动员发生运动性闭经,故耐力项目女运动员表现出较高的运动性闭经发病率。大量文献报道运动性闭经女运动员的峰值骨量显著低于正常人,而峰值骨量的高低与骨质疏松发生的危险率密切相关。据有关文献统计,即使予成年耐力项目闭经女运动员补充雌激素、V_K等制剂,其骨质疏松、骨质降低的发生率仍居高不下。就目前有关运动性闭经女运动员骨状况研究的文献报道结果来看,大多仅局限于对运动性闭经女运动员的骨密度、骨代谢等指标变化进行简单的描述,对于长期高强度运动—骨量丢失的关系以及骨质降低的产生机制尚不能全面阐释,因此,大大限制了有关研究的深入及骨质疏松的有效预防和治疗。本研究以2月龄雌性大鼠为实验对象,经过十周大强度跑台运动训练,通过模拟长期耐力运动训练后女运动员出现的运动性闭经病理现象,建立运动性动情周期抑制动物模型,探讨运动性闭经状态下骨变化、影响因素及其产生机制,以期为闭经女运动员骨质降低现象的预防和治疗,儿童少年女运动员合理运动负荷方案的制定提供实验依据。
     一 运动性动情周期抑制动物模型的建立
     本研究以青春期雌性大鼠作为研究对象,随机分为对照组、中等强度运动组、大强度运动组(n=20,跑台运动,每周6天,共10周),跑台运动过程中连续观察各组的动情周期(阴道脱落细胞)、体重、血红蛋白、尿素氮、血乳酸等指标的变化;跑台运动结束后,测定血液雌激素、孕激素、皮质醇的浓度。结果发现,对照组、中等强度运动组的各项指标无显著性变化,而大强度运动组大鼠的动情周期长时间停留在动情间期,体重的增长幅度显著低于对照组,Hb呈现逐渐性降低趋势,BUN、Bla出现波动性升高,表明长期大强度耐力训练过程中,雌性大鼠相继出现运动性疲劳,这些运动性疲劳诊断指标均可作为评价运动性动情周期抑制动物模型的参考指标。十周大强度跑台运动结束后,与对照组相比,大强度运动组大鼠血清雌激素、孕激素均显著性降低,皮质醇水平显著升高,出现类似于闭经女运动员的激素改变特征,说明本研究建立的运动性动情周期抑制动物模型是成功的,以此模型模拟耐力项目女运动员闭经现象具有可行性。运动性动情周期抑制雌性大鼠经过20天的休息,各项指标均有所恢复,表明十周大强度耐力运动形成的运动性动情周期抑制现象经过一定时间的休息是可以逆转的。
     二、运动性动情周期抑制雌性大鼠的骨变化
     目前关于骨变化的资料多集中在骨代谢、骨密度等临床指标的观察,本研究通过对骨结构、骨代谢、骨密度、骨生物力学特征等多个层面指标的观察,探讨运动
    性动情周期抑制对骨的影响。本部分实验采用光镜观察股骨、椎骨的显微结构,透
    射电镜观察股骨的超微结构变化,比色法测定骨代谢指标,单光子吸收法(sPA)
    测定骨密度,三点弯曲试验测定股骨、胫骨的生物力学特征。结果发现,中等强度
    运动组雌性大鼠骨显微结构显示骨皮质增厚,成骨细胞数目增多,超微结构显示发
    育骨细胞数目增多,骨形成有关的生化指标升高,骨密度提高,骨的最大载荷、弹
    性载荷均升高:运动性动情周期抑制雌性大鼠骨的显微结构显示皮质骨变薄,破骨
    细胞数目增多,骨小梁变薄,数目减少,超微结构显示衰老骨细胞增多,成骨细胞
    的内质网肿胀,破骨细胞线粒体的晴减少;与对照组相比,运动性动情周期抑制雌
    性大鼠骨形成指标ALP、BGP降低,骨吸收指标TRACP上升,运动性动情周期抑
    制雌性大鼠胫骨骨矿含量BMC、BMC/BW指标显著性降低,运动性动情周期抑制
    雌性大鼠股骨、胫骨的最大载荷、弹性载荷、刚性系数均降低。恢复组经过休息后,
    骨的结构、骨代谢指标、骨密度和生物力学参数均有恢复。结果表明中等强度跑台
    运动,促进了骨量的提高,有助于骨的生长发育,而长期大强度耐力运动能够破坏
    骨结构,降低骨的功能,提示长期耐力运动对骨的生长发育具有显著抑制作用。十
    周大强度跑台运动对运动性动情周期抑制大鼠骨的抑制作用经过20天休息可以恢
    复,其抑制现象是可逆的。
     三、运动性动情周期抑制雌性大鼠骨代谢相关因子在骨量中的作用
     激素通过与受体结合,形成激素一受体复合物,与其基因特异序列结合调节
    IGF一1等骨代谢因子的水平发挥其调节骨代谢的作用,ER、IGF一1正是作为重要的
    调节因子参与了骨代谢的调节过程。本部分实验采用放射免疫分析法测定血清
    IGF一1的变化,免疫组织化学法测定骨组织ER的变化。结果发现,与对照组相比,
    中等强度运动组大鼠血清IGFI水平显著升高,运动性动情周期抑制雌性大鼠血清
    IGF-1明显降低,提示适量运动对大鼠的骨组织产生了适宜的机械应力,导致IGF一1
    水平升高,有助于骨形成。长期耐力运动表现为以性激素水平降低为特征的对H一P一G
    轴的功能的抑制作用,导致成骨细胞IGF一1合成能力降低,出现骨量的降低。青春
    期性激素的分泌、性激素受体的正常表达是骨量积累的重要条件。中等强度跑台运
    动雌性大鼠骨组织的ER表达增加,适宜的机械刺激促进了ER的表达,表明ER参
    与了机械刺激对骨的调节作用,ER的表达升高有助于骨细胞对机械应变做出积极
    应答。运动性动情周期抑制大鼠骨?
Puberty is the key time in which bone increase rapidly. If people carry on physical activity in puberty, bone mass will accelerate. But high intensity training would lead to athlete secondary amenorrhea(ASA), therefore endurance athlete always put up high athlete secondary amenorrhea rate. Lots of literature reported the peak bone mass of athlete with amenorrhea was very lower than that of control young people. The peak bone mass is correlation with the probability of osteoporosis. Now there are a lot of literature that report the happen rate of osteoporosis in athlete with amenorrhea is very high. Even if estrogen、 vitamine K supplement could not make up the bone loss rate. At present the most study on ASA athlete'bone limited on the ordinary description, which couldn't fully explain the relation with long-time high intensity training induced bone loss and the mechanism on athlete'osteodystrophy. Hence these disturbed the study on prevent and treatment about athlete'osteoporosis. Today we use 2-month female rats carry through training in treadmill for 10 weeks to simulate phenomena of athlete secondary amenorrhea. When we established the model about athletic secondary amenorrhea, we studied the changes of bone in rats with estrous cycle inhibited and discussed the mechanisms of bone in athletic secondary amenorrhea. Our study would offer experiment foundation in order to prevent and therapy atheletes' osteodystrophy and the constitution of children's exercise load. Experiment 1 The foundation of animal model in rats with estrous cycle inhibitedWe used 2-month female rats as our research objective. Rats were devided into three groups: control(n=20), middle intensity training group(n=20), high intensity training group(n=40)(treadmill, 6days/week, lOweeks). During training we study the changes of indexes such as estrous cycle, body weight, Hb, BUN, BLA and so on. After training we assay the capacity of estrogen, progesterone and cortisol in all rats. We found that all indexes were not change in control and middle intensity training group significantly. The estous cycle of rats in high intensity training group were settled in long time. And their body weight were lower than that of control, Hb were reduced gradually, BUN and BLA were elevated fluctuatly. These results indicated high intensity training lead to fatigue, and these fatigue indexes could used to evaluate the foundation of animal model in rats with estous cycle inhibited. After 10 weeks high intensity training , the capacity of estrogen and progesterone were lower than those of control, and the level of cortisol were
    very higher than that of control. These results showed us the foundation of rats model were feasibility in our study. The indexes of rats with estrous cycle inhibited were gradually recovered after 20 days at rest. This told us the phenomena about rats with estrous cycle inhibited were reversed after rest. Experiment 2 The changes of bone in rats with estrous cycle inhibitedAt present the data were mostly focus on clinic indexes such as bone metabolism biochemics parameter and bone mineral density. We study the effect of estrous cycle inhited on bone through multi ways. We use microscopes and transmission electron microscopes to observe the structure of femur and vertebra in four groups. Colorimetry was used to measure bone metabolism indexes. Single photon absorb assay was used to measure bone mineral density. 3-point bending test was used to measure biomechanics in femur and tibiae. The microscopes'result show the cortex area was larger , the amount of ob and bone cell were more in middle intensity training group than that in control. The indexes reflecting bone forming were elevated. The bone mineral density were increased. The maxium load and elasticity load were all elevated in middle intensity training group. The microscopes result show cortex wre thinner and oc were increased and the number of girder were fewer in high intensity training group. The transmission electron microscopes result show old bone cell were more and endosarc was swell
引文
1 施新猷.现代医学实验动物学[M].北京:人民军医出版社,2000.330-332
    2 连晓媛,丁岩,陈奇等,重复制动应激对雌性大鼠卵巢功能的影响,中药新药与临床药理,2004,15(6).-373-376
    3 王人卫、陆爱云、陈佩杰等,递增负荷的运动性闭经动物模型的建立.中国运动医学杂志,2000,19(3):293-296.
    4 许豪文,冯炜权、王元勋主编,运动生物化学,高等教育出版社,172-182
    5 郑陆,隋波,潘力平等,过度训练动物模型的建立,中国运动医学杂志,2000,19(2).-179-181
    6 浦钧宗等编,优秀运动员机能评定手册,北京,人民卫生出版社,1989:63-66
    7 胡杨、李国盛、黄安萍等,运动性闭经某些性激素分泌特点的动物模型建立.北京体育学院学报,1991,51(1):12—15.
    8 王人卫,陆爱云,郭仕达等.运动性动情周期抑制的大鼠下丘脑、垂体、血浆β-EP和性激素的变化.上海体育学院学报,2001,25(3):31—36.
    9 崔丽萍,佟启良,张崇理.月经失调运动员下丘脑—垂体—卵巢的内分泌变化.中国运动医学杂志,1996,15(1):35—39。
    10 杨安峰、王平等,大鼠的解剖和组织,科学出版社.1985:6-30.
    11 曹长安,朱新生.EDTA微波快速脱钙法,第一军医大学学报,1997(2):105
    12 陈璐璐,夏文芳,曾天舒等。去卵巢大鼠骨髓源性破骨样细胞增殖、分化的改变及雌激素的影响,中华老年医学杂志,2003,22(6).-356-359
    13 曹玲,丁寅.雌激素和流体剪切力对成骨细胞增殖和功能的影响,实用口腔医学杂志,2003,19(5).-475-478
    14 章明放等,运动对雌性大鼠去势后骨质疏松的作用—骨组织形态计量学观察,中华骨科杂志,1994,14(6):365
    15 陈明 吴小涛,骨质疏松症生化指标研究进展,铁道医学.2000,28(6):425-426
    16 李双庆.骨转换生化指标临床应用研究进展,国外医学.内分泌学分册,2002,22(4):221-223
    17 陈璐璐,余达林,Niels T Foged.孕酮从基因水平调节骨钙素的合成。中华内分泌代谢杂志,1998,14(3):190—192.
    18 张培珍、乔志源,不同负荷游泳运动对雄性老龄小鼠骨代谢状况影响的研究.北京体育大学学报,.2002,25(1).-58-60
    19 王人卫,高勇,陆爱云等,大强度运动训练对雌性大鼠性激素和骨密度的影响,中国运动医学杂志,2003,22(2).-121-125
    20 张林.不同强度运动对骨质疏松大鼠生物力学性能的影响.体育科学,2000,20(5).-72-76
    21 步斌 古福明、李晋唐等,大负荷训练对大鼠生物力学特性影响的实验研究成都体育学院学报,1997,23(4).-71-77
    22 曲强,万新海,陈翠珠.雌激素通过调节骨髓来源的成骨细胞所产生的细胞因子抑制破骨细胞功能,中国骨质疏松杂志,2002,8(1).-8-9
    23 熊正文 朱光君 黄勇,骨组织的脱钙及其免疫组织化学技术的探讨,中国组织化学与细胞化学杂志,.2002,11(3).-347-349
    24 陈一冰,李靖、熊正英等,运动对大鼠骨细胞凋亡及IGF-1表达的影响,中国运动医学杂志,2003,22(4):418-419.
    25 鲍丽颖,王佩云.不同形式的运动对生长期大鼠下肢骨纵向生长的影响,天津体育学院学报.2003,18(3).:-63-65
    26 刘博,陶树清,尹文哲.雌性大鼠成骨细胞内雌激素受体表达的研究,哈尔滨医科大学学报,2004,(?)(2).-179-181
    27 毛杉杉 李国盛,大鼠运动性动情周期抑制时子宫雌、孕激素受体变化研究,天津体育学院学 报.1999,14(2):26-28
    28 郑雨,陈东风,周健洪等.去卵巢大鼠骨质疏松对下丘脑雌激素α受体的影响,解剖学研究,2004,26(2).-127-129
    29 王蕴红,张冰,金丽颖等.运动对大鼠下丘脑β-EP及GnRH的影响.体育科学,1997,17(2):73-74。
    30 郑陆.递增负荷运动中下丘脑—垂体—卵巢轴功能变化的特点、机制及其意义.华东师范大学博士学位论文,2004年。
    31 奥斯伯,金斯顿编.精编分子生物学实验指南.北京.科学出版社.1998,125,714.
    32 李永明等著.实用分子生物学方法手册,科学出版社,2001年,第4版,243-244
    33 李茂欣 权金星 朱任之.一种从骨组织提取RN真的新方法的研究,兰州大学学报(自然科学版),2000.36(5):134-135
    34 李丁 苏海川 赵锦荣等.骨组织总RN真的提取,第四军医大学学报,1999.20(12):1056
    35 赵伟,神经肽和神经帝质对下丘脑正中隆起促性腺激素释放激素神经元末梢的调节,生理科学进展,1991,22:235-239。
    36 王人卫,陆爱云,郭仕达等.运动性动情周期抑制的大鼠下丘脑、垂体、血浆β-EP和性激素的变化.上海体育学院学报,2001,25(3):31—36.
    37 颜军,金其贯,顾晓明 运动训练对应激大鼠中枢和外周β-内啡肽含量的影响 体育与科学2001,22(1):58-61
    38 李红武 陈佩杰 吕望山.大强度运动后大鼠下丘脑垂体和血浆中β-EP、Dyn Al-13水平的变化,体育与科学,2000,21(3):29-33
    39 苑晓玲 王蕴红 邹延艾.运动对大鼠下丘脑GnRH和β-EP含量的影响,中国运动医学杂志.2000.19(3):270-272
    01 郑雨,陈东风,周健洪等。去卵巢大鼠骨质疏松对下丘脑雌激素α受体的影响,解剖学研究,2004,26(2).127-129
    41 肖新华 廖二元 胡平安等.尼尔雌醇对人成骨样MG63细胞护骨素和骨钙素基因表达的影响,中华内分泌代谢杂志,2004,20(1):56-58
    42 苏欣 廖二元 朱旭萍等,雌二醇对人成骨细胞护骨素、护骨素配体及其相关因子的调节,中华老年医学杂志,2004,23(3):153-156
    43 杨召 杨华 姚振强等.雌激素对去卵巢大鼠松质骨中骨保护素mRNA表达的影响,中国矫形外科杂志,2003,11(6):399-402
    44 孙兴昌,刘丽霞编,骨质疏松的预防,化学工业出版社,1996,p245
    45 杨欣,郑淑蓉,陈荣京等,北京地区女性峰值骨密度与雌激素受体基因多态性的相关因素分析,中国妇产科临床杂志,2004,5(3).197-200
    46 龚慧慈 刘海伦,骨密度的遗传学,国外医学。内分泌学分册,003,23(2).84-85
    47 何进卫,黄琪仁,章振林等,雌激素受体α和维生素D受体基因多态性与上海市妇女峰值骨量的关系,中华内分泌代谢杂志,2004,20(2).-140-142
    48 矫杰,孟迅吾,邢小平等,北京地区汉族妇女瘦素受体基因Gln223Arg多态性和骨密度的关系,中华内科杂志.2004,43(4).-276-279
    49 吴久玲,渠川琰,严仁英等.生长突增期少女骨密度的研究,中华预防医学杂志,1997,31(1):24-26
    50 戴昕,朱一力,何玲.运动训练与成年女运动员骨密度关系研究,北京体育师范学院学报1998.10(1):46-51
    51 张一民,刑文华,曾云贵.青春突增期不同发育类型女生骨矿成分和性激素水平特征研究,体育科学.1997.17(2):62-67.
    52 郑陆.生殖激素及抗生殖激素在运动性月经失调中的作用,中国运动医学杂志1997,16(3):203-207
    53 矫伟,张一民,王秀荣等.我国优秀艺术体操运动员月经状况与骨矿含量的研究,体育科 学,1997.17(1):54-58。
    54 王锡群,郑湘武,体育锻炼及月经状况对女大学生骨矿含量影响的调查分析,中国学校卫生,1998,19(4):270
    55 安胜军,张永祥.雌激素受体亚型及其配体调节基因转录机制的研究,生理科学进展,2002,33(2):309-312.
    56 张林,杨锡让,薛延运动与骨代谢生化标志物研究进展.中国运动医学杂志,1999,18(3):260-261
    57 吴洁,邱勇,张乐等,青少年特发性脊柱侧凸的骨密度变化及与血清IL-6浓度关系的研究,南京大学学报,自然科学版,2004,40(5),-607-612
    58 李伟民,王伟,吕建国等,胰岛素样生长因子-1对骨质疏松大鼠骨形成作用,骨与关节损伤杂志.2004,19(4).-252-254
    59 王喜霆,陆一帆,营养不足与运动性月经周期紊乱及Leptin调节,北京体育大学学报,2001,24(4):489-491
    60 王小燕 不同类型负荷对人体骨密度影响的研究西安体育学院学报1999.16(4):77-80
    61 张林,杨锡让.运动员骨密度变化特点,中国体育科技,1999,35(4):14-17
    62.吕兵,非负荷运动对雌激素缺乏引起骨质疏松的影响,体育学刊,2003,10(3):30-32
    1 E Dale, DH Gerlach, and ALWilhite. Menstrual dysfunction in distance runners. Obstet Gynecol, 1979, 54(1): 47-53.
    2 BL Drinkwater, K Nilson, CH Chesnut C, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med,1984,311(5):277-281.
    3 R Marcus, C Cann, P Madvig, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med. 1985,102(2)158-163.
    4 MP Warren, J Brooks-Gunn, LH Hamilton, et al. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med. 1986,314(21):1348-1353.
    5 S Lamon-Fava, EC Fisher, ME Nelson, et al. Effect of exercise and menstrual cycle status on plasma lipids, low density lipoprotein protein particle size and apolipoproteins. J Clin Endocrinol Metab, 1989, 68:17-21
    6 KE Friday, BL Drinkwater, B Bruemmer, et al. Elevated plasma low-density lipoprotein and high-density lopoprotein cholesteol in amenorrheic athletes: effects of endogenous hormone status and nutrient intake. J Clin Endocrinol Metab, 1993,77:1605-1609.
    7 JH Wilmore, KC Wambsgans, M Brenner, et al. Is there energy conservation in amenorrheic compared with eumenonheic distance runners? J Appl Physiol. 1992,72(l):15-22.
    8 TG Bedford, CM Tipon, NC Wilson, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol, 1979;47(6):1278-1283.
    9 J M manning and FH Bronson. Suppression of puberty in rats by exercise: effects on hormone levels and reversal with GnRH infusion. Am J Physiol Regul Integr Comp Physiol, 1991, 260(4): 717-723.
    10 14 G A Laughlin, and S S C Yen. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab, 1996,81(12):4301-4309.
    11 Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc, 1991,23(1): 15-22.
    12 BL Drinkwater, B Bruemner and C H Chesnut. Menstrual history as a determinant of current bone density in young athletes. JAMA, 1990,263(4):545-548.
    13 Nancy I. Williams, Anne L. Caston-Balderrama, Dana L Helmreich, et al, Longitudinal Changes in Reproductive Hormones and Menstrual Cyclicity in Cynomolgus Monkeys during Strenuous Exercise Training: Abrupt Transition to Exercise-Induced Amenorrhea. Endocrinology, 2001,142(6):2381-2389.
    14 AB Loucks, JF Mortola, L Girton, et al. Alternations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab, 1989,68:402-411.
    15 AB Loucks and SM Horvath. Exercise-induced stress response of amenorrheic and eumenorrheic runners. J Clin Endocrinol Metab, 1984,59:1109-1120.
    16 Biller B, Federoff H, Koenig J, Klibanski A. Abnormal cortisol secretion and responses to corticotropin -releasing hormone in women with hypothalamic amenorrhea. J Clin Endocrinol Metab. 1990, 70:311-317.
    17 JH Ding, CB Sheckter, BL Drinkwater, et al. High serum cortisol levels in exercise-associated amenorrhea. Ann Intern Med, 1988,108(4):530-534.
    18 Kellie M Breen and Fred T Karsch. Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Endocrinology, 2004,145(2) :692-698.
    19 BL Drinkwater, K Nilson, CH Chesnut C, et al. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med,1984,311(5):277-281.
    20 CE Cann, MC Martin, HK Genant, et al. Decreased spinal mineral content in amenorrheic women, JAMA, 1984, 251(5):626-629.
    21 R Marcus, C Cann, P Madvig, et al. Menstrual function and bone mass in elite women distance runners. Ann Intern Med. 1985,102(2): 158-163.
    22 MP Warren, J Brooks-Gunn, LH Hamilton, et al. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Eng1 J Med. 1986, 314(21):1348-1353.
    23 BL Drinkwater, K Nilson, Susan Ott, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA, 1986,256(3):380-382.
    24 S bourrin, C Gany. Adverse effects of strenuous exercise: a densitometric and histomorphometric study in the rat. J Appl Physiol, 1994,76(5):1999-2005.
    25 KC Li, RF Zernicke, RJ Barnard, et al. Differential response of rat limb bones to strenuous exercise. J Appl Physiol, 1991,70(2):554-560.
    26 KM Khan, T Liu-Ambrose, MM Sran, et al. New criteria for female athlete triad syndrome? Br J Sports Med, 2002,36(1): 10-13.
    27 Stefan Judex and Ronald F Zernicke. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol, 2000,88(6):2183-2191.
    28 Zhiqi P, et al. Exercise can provide against bone loss and prevent the decrease in mechanical strength of femoral neck in ovariectomized rats. Journal of Bone and Mineral Research. 1994,9(10):1559.
    29 18 A Eliakim, LG Raisz, JA Brasel, et al. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res. 1997,12(10):1708-1713.
    30 BA Scheven, CA Damen, NJ Hamilton, et al. Stimulatory effects of estrogen and progesterone on progesterone on proliferation and differentiation of normal human osteoblast-like cells in vitro. Biochem Biophys Res Commun. 1992,186(l):54-60.
    31 H Okano, H Miannuma, M Soda, et al. Effects of exercise and amenorrhea on bone mineral density in teenage runners. Endocr J, 1995,42(2):271-276.
    32 Rossella Valentino, Silvia Savastano, Antonio Pasquale Tommaselli, et al. The influence of intense ballet training on trabecular bone mass, hormone status, and gonadotropin structure in young women. J Clin Endocrinol Metab, 2001,86(10):4674-4678.
    33 E Stacey, P Kordia, MVJ Hukkanen, et al. Decreased nitric oxide levels and bone turnover in amenorrheic athletes with spinal osteopenia. J Clin Endocrinol Metab, 1998,83(9):3056-3061.
    34 Tomten SE, Falch JA, Birkeland KI, et al. Bone mineral density and menstrual irregularities. A comparative study on cortical and trabecular bone structures in runners with alleged normal eating behavior. Int J Sports Med, 1998,19(2):92-97.
    35 Pettersson U, Stalnacke B, Ahlenius G, et al. Low bone mass density at multiple skeletal sites, including the appendicular skeleton in amenorrheic runners. Calcif Tissue Int, 1999,64(2):117-125.
    36 Zanker CL, Swaine IL. Bone turnover in amenorrhoeic and eumenorrhoeic women distance runners. Scand J Med Sci Sports, 1998,8(l):20-26.
    37 DB Snead, A Weltman, J Y Weltman, et al. Reproductive hormones and bone mineral density in women runners. J Appl Physiol, 1992,72(6):2149-2156.
    38 Rutherford O M. Spine and total body bone mineral density in amenorrheic endurance athletes. J Appl Physiol.l993,74(6): 2904-2908.
    39 RL Wolman, P Clark, E Menally, et al. Menstrual strate and exercise as determinants of spinal trabecular bone density in female athletes. BMJ, 1990,301(6751):516-518.
    40 BL Drinkwater, K Nilson, S Ott, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA, 1998,256(3): 380-382.
    41 S Jonavithula, M P Warren, RP Fox, et al. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstet Gynecol 1993, 81:669-674.
    42 CL Zanker and IL Swaine. Relation between bone turnover, oestradiol, and energy banlance in women distance runners. British Journal of Sports Medicine, 1998,32(2):167-171.
    43 Becky A Kaufman, MP Warren, J E Dominguez, et al. Bone density and amenorrhea in ballet dancers are related to a decreased resting metabolic rate and lower leptin levels. The Journal of Clinical Endocrinology Metabolism, 2002,87(6):2777-2783.
    44 Mark A. Lane, Angela Black, April M. Handy, et al. Energy Restriction Does Not Alter Bone Mineral Metabolism or Reproductive Cycling and Hormones in Female Rhesus Monkeys. Journal of Nutrition., 2001,131:820-827
    45 James J Matsuda, Ronald F Zernicke, et al, Structural and mechanical adaption of immature bone to stenuous exercise. J Appl Phydiol, 1986,60(6):2028-2034.
    46 Hou Jack C H, George J Salem, et al. Structural and mechanical adaptation of immature trabecular bone to strenuous exercise. J Appl Physiol, 1990,69(4):1309-1314.
    47 A Bartke. Role of growth hormone and prolactin in the control of reproduction: what are we learning from transgenic and knock-out animals? Steroids, 1999; 64(9): 598-604.
    48 Y Yoshimura, M Iwashita, M Karube, et al. Growth hormone stimulates follicular development by stimulating ovarian production of insulin-like growth factor-I. Endocrinology, 1994; 135(3): 887 - 894.
    49 Irwin JC, Suen LF, Martina NA, et al. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod, 1999,14[Suppl 2]:90-96.
    50 Wang HS, Chard T. IGF and IGF-binding proteins in the regulation of human ovarian and endometrial function. J Endocrinology, 1999,161(1):1-13.
    51 L. Devoto, L. K. Christenson, J. M. McAllister, et al. Insulin and insulin-like growth factor-I and- II modulate human granulosa-lutein cell steroidogenesis: enhancement of steroidogenic acute regulatory protein (StAR) expression. Mol. Hum. Reprod., 1999; 5(11): 1003 - 1010.
    52 S. Eimerl and J. Orly. Regulation of Steroidogenic Genes by Insulin-Like Growth Factor-1 and Follicle-Stimulating Hormone: Differential Responses of Cytochrome P450 Side-Chain Cleavage, Steroidogenic Acute Regulatory Protein, and 3{beta}-Hydroxysteroid Dehydrogenase/Isomerase in Rat Granulosa Cells.Biol Reprod, 2002; 67(3): 900 - 910.
    53 Nancy I. Williams , Anne L. Caston-Balderrama, Dana L. Helmreich, et al, Longitudinal Changes in Reproductive Hormones and Menstrual Cyclicity in Cynomolgus Monkeys during Strenuous Exercise Training: Abrupt Transition to Exercise-Induced Amenorrhea, Endocrinology, 2001,142( 6 ):2381-2389.
    54 Langdahl BL, Kassem M, Moller MK, et al. The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur J Clin Invest. 1998 Mar;28(3):176-83.
    55 Ljunghall S, Johansson AG, Burman P, et al. Low plasma levels of insulin-like growth factor 1 (IGF-1) in male patients with idiopathic osteoporosis. J Intern Med. 1992 Jul;232(l):59-64.
    56 Bagi CM, De Leon E, Brommage R, et al. Treatment of ovariectomized rats with the complex of rhIGF-I/IGFBP-3 increases cortical and cancellous bone mass and improves structure in the femoral neck.. Calcif Tissue Int, 1995 , 57(l):40-46.
    57 Mora S, Pitukcheewanont P, Nelson JC, et al. Surum lebels of insulin-like growth factor 1 and the density, volume, and cross-sectional area of cortical bone in children. J Clin Endocrinol Metab, 1999,84(8):2780-2783.
    58 Yeh JK, Aloia JF, Chen M, et al. Effect of growth hormone administration and treadmill exercise on serum and skeletal IGF-1 in rats. Am J Physiol, 1994,266 (ptl) :E129-135.
    59 16 TJ Chambers, S Fox, CJ Jagger, et al. The role of prostaglandins and nitric oxide in the response of bone to mechanical forces. Osteoarthritis Cartilage, 1999; 7(4): 422-3.
    60 Palmer RM, Loveridge N, Thomson BM, et al. Effects of a polyclonal antiserum to rat growth hormone on circulating insulin-like growth factor (IGF-1) and igf-binding protein concentrations and the growth of muscle and bone. J Endocrinol, 1994,142(l):85-89.
    61 Rossella Valentino, et al. The influence of intense ballet training on trabecular bone mass, hormone status, and gonadotropin structure in young women. J of clinical endocrinology metabolism 2001,86(10):4674-4678.
    62 CL Zanker and IL Swaine. Relation between bone turnover, oestradiol, and energy balance in women distance runners. British Journal of Sports Medicine, 1998,32(2): 167-171.
    63 M. Ernst, Ch. Schmid, and E. R. Froesch. Enhanced Osteoblast Proliferation and Collagen Gene Expression by Estradiol. PNAS, 1988,85(7):2307-2310.
    64 Kassem M, Okazaki R, Harris SA, et al. Estrogene effects in insulin-linked growth factor gene espression in a human osteoblastic cell line with high levels of estrogen receptor. J Calcif Tissue Int, 1998,62:60-66.
    65 Anette Rickenlund, Maria Thoren, Kjell Carlstrom, et al. Diurnal profiles of testosterone and pituitary hormones suggest different mechanisms for menstrual disturbances in endurance athletes. J Clin Endocrinoloy Metabolism, 2004,89(2):702-707.
    66 Mattias Lorentzon, Ronny Lorentzon, Torbjobn backstrom, et al. Estrogen receptor gene polymorphism, but not estradiol levels, is related to bone density in healthy adolescent boys: a cross-sectional and longitudinal study. J Clin Endocrinol Metab, 1999,84 Cl2) :4597-4601.
    67 EF Eriksen, DS Colvard, NJ Berg, et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science, 1988,241(4861):84-86.
    68 MJ Oursler, P Osdoby, J Pyfferoen, et al. Alian osteoclast as estrogen target cells. Proc Natl Acad Sci. 1991,88:6613-6617.
    69 DB Lubahn, JS Moyer, TS Golding, et al. Alteration of reproductive fenction but not prenatal sexual development agter insertional desruption of the mouse estrogen recptor gene. PNAS, 1993,90:11162-11166.
    70 Eric P Smith, Jeff Boyd, Graeme R. et al. Estrogen Resistance Caused by a Mutation in the Estrogen-Receptor Gene in a Man. N. Engl. J. Med., 1994; 331(16): 1056 -1061.
    71 Windahl SH, Vidal O, Anderson G, et al. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ(?) mice. J Clin Invest, 1999,104(7):895-901.
    72 Cheng MZ, Zaman G, Rawlinson SC, et al. Mechanical loading and sex hormone interactions in organ cultures of rat ulna. J Bone Miner Res 1996 Apr;ll(4):502-ll.
    73 Zaman G, Suswillo RF, Cheng MZ, et al. Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture. J Bone Miner Res, 1997,12(5):769-77
    74 Damien E, Price JS, Layon LE. The estrogen receptors's involvement in osteoblast's adaptive response to mechanical strain. J Bone Miner Res, 1998,13:1275-1282.
    75 Diane M. Klotz, Sylvia Curtis Hewitt, Paolo Ciana, et al. Requirement of Estrogen Receptor-x in Insulin-like Growth Factor-1 (IGF-l)-induced Uterine Responses and in Vivo Evidence for IGF-1/Estrogen Receptor Cross-talk. J. Biol. Chem., Mar 2002; 277: 8531 - 8537.
    76 M Warner, S Nilsson, and JA Gustafsson. The estrogen receptor family. Curr Opin Obstet Gynecol, 1999; 11(3): 249-54.
    77 Vidal O, Kondblom LG, Ohlsson C, et al. Expression and licalization of estrogen receptor-beta in murine and human bone. J Bone Miner Res, 1999,14:923-929.
    78 LK Saxon and CH Turner. Estrogen receptor beta: the antimechanostat? Bone, 2005; 36(2): 185-92.
    79 T Remes, SB Vaisanen, A Mahonen, et al. Aerobic exercise and bone mineral density in middle-aged finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone. 2003,32(4):412-420.
    80 M Suuriniemi, A Mahonen, V Kovanen,,et al. Association between exercise and pubertal BMD is modulated by estrogen receptor alpha genotype. J Bone Miner Res, 2004; 19(11): 1758-65.
    81 AB Loucks, M Verdun, and EM Heath. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol, 1998,84(l):37-46.
    82 Williams NI, Young JC, McArthur JW, et al. Strenuous exercise with caloric restriction: effect on luteinizing hormone secretion. Med Sci Sports Exerc. 1995,27(10):1390-8.
    83 Winterer J, Cutler GB Jr, Loriaux DL. Caloric balance, brain to body ratio, and the timing of menarche. Med Hypotheses. 1984,15(1):87-91.
    84 Wade GN, Schneider JE. Metabolic fuels and reproduction in female mammals. Neurosci Biobehav Rev. 1992,16(2):235-72.
    85 MP Warren and NE Perlroth. The effects of intense exercise on the female reproductive system. Journal of Endocrinology, 2001,170:3-11.
    86 Myerson M, Gutin B, Warren MP, et al. Resting metabolic rate and energy balance in amenorrheic and eumenorrheic runners. Med Sci Sports Exerc, 1991,23(l):15-22.
    87 Anne B. Loucks and Jean R. Thuma. Luteinizing Hormone Pulsatility Is Disrupted at a Threshold of Energy Availability in Regularly Menstruating Women. The Journal of Clinical Endocrinology & Metabolism, 2003,88(1): 297-311.
    88 Nancy I. Williams, Dana L Helmreich, David B. Parfitt, et al. Evidence for a Causal Role of Low Energy Availability in the Induction of Menstrual Cycle Disturbances during Strenuous Exercise Training. The Journal of Clinical Endocrinology & Metabolism, 2001,86(11):5184-5193.
    89 Farah S. L. Thong, Cyndy McLean, and Terry E. Graham . Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors . J Appl Physiol, 2000, 88(6): 2037-2044.
    90 Constantini NW, and Warren MP. Menstrual dysfunction in swimmers: a distinct entity. J Clin Endocriol Metab, 1995,80(9):2740-2744.
    91 Mark A. Lane, Angela Black, April M. Handy, et al. Energy Restriction Does Not Alter Bone Mineral Metabolism or Reproductive Cycling and Hormones in Female Rhesus Monkeys. Journal of Nutrition, 2001,131:820-827
    92 J M manning and FH Branson. Suppression of puberty in rats by exercise: effects on hormone levels and reversal with GnRH infusion. Am J Physiol Regul Integr Comp Physiol, 1991,260(4):717-723.
    93 21 SATYA P. KALRA and TAMAS L. HORVATH. Neuroendocrine Interactions between Galanin, Opioids, and Neuropeptide Y in the Control of Reproduction and Appetite. Ann. N.Y. Acad. Sci., 1998, 863: 236 - 240.
    94 Seong-Kyu Han, Martin G Todman, and Allan E. Herbison. Endogenous GABA Release Inhibits the Firing of Adult Gonadotropin-Releasing Hormone Neurons. Endocrinology, 2004,145: 495 - 499.
    95 TL Horvath, I Bechmann, F Naftolin, SP Kalra, et al. Heterogeneity in the neuropeptide Y-containing neurons of the rat arcuate nucleus: GABAergic and non-GABAergic subpopulations. Brain Res, 9, 1997; 756(1-2): 283-6.
    96 Ganapathy K. Bhat, Virendra B. Mahesh, Lin Ping, et al. Opioid-GIutamate-Nitric Oxide Connection in the Regulation of Luteinizing Hormone Secretion in the Rat. Endocrinology, 1998,139(3): 955 - 960.
    97 Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density . Cell, 1997, 89(2): 309-319.
    98 Tsuda E, Goto M, Mochizuke S, et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenisis. Biochem Biophys Res Commun, 1997,234(1):137-142.
    99 Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenisis inhibitory factor (OCIF) :a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998, 139(3): 1329-1337.
    100 Morinaga T, Nakawa N, Yasuda H, et al. Cloning and characterization of the gene encoding human osteoprogeterin/osteoclastogenesis inhibitory factor. Eur J Biochem, 1998,254:685-691.
    101 Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoblastogenesis inhibitory factor/osteoprotegerin. Biochem Biophs Res Commun, 1998, 247(3):610-615.
    102 Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell,1998,93(2):165-176.
    103 Hisataka Yasuda, Nobuyuki Shima, Nobuaki Nakagawa,et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. PNAS, 1998,95(7):3597-3602.
    104 Bucay N, Sarosi 1, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev, 1998,12(9): 1260-1268.
    105 Nakagawa N, Kinosaki M, Yamaguchi K, et al. RANK is essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Comm, 1998,253(2):395-400.
    106 Kong YY, Yoshida H, Sarosi L, et al. OPGL is a key regulation of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999,397(6717):315-323.
    107 Baleman TA, Dunstan CR, Ferguson VL, et al. Osteoprotegerin mitigates tail suspension-induced osteopenia. Bone, 200,26:443-449.
    108 Laura K. Bachrach, Trevor Hastie, May-Choo Wang, et al, Bone mineral acquisition in healthy Asian, Hispanic, Black, and Caucasian youth: a longitudinal study. J. Clin. Endocrinol. Metab. ,1999,84(12):4702-4712.
    109 NA Morrison, JC Qi, A Tokita, et al, Prediction of bone density from vitamin D receptor alleles. Nature,1994,367(6460):284-287.
    110 LA Rubin, GA Hawker, VD Peltekova, et al. Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res. 1999,14(4):633-643.
    111 AW Kung, SS Yeung, and KS Lau. Vitamin D receptor gene polymorphismx and peak bone mass in southern Chinese women. Bone, 1998,22(4):389-393.
    112 Mattias Lorentzon, Ronny Lorentzon, Torbjobn backstrom, et al. Estrogen receptor gene polymorphism, but not estradiol levels, is related to bone density in healthy adolescent boys: a cross-sectional and longitudinal study. J Clin Endocrinol Metab, 1999,84(12):4597-4601.
    113 Jesus Sainz, Jan M, Van Tornout, et al. Association of collagen tyoe 1 α 1 gene polymorphism with bone density in early childhood. J Clin Endocrinol Metab, 1999,84(3):853-855.
    114 DC Welten, HC Kemper, GB Post, et al. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J. Bone Miner. Res. 1994,9(7): 1089-1096.
    115. MJ Valimaki, M Karkkainen, C Lamberg-Allardt, et al. Exercise, smoking and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ, 1994,309(23 ):230-235.
    116. Orie Nakamura, Tomoo Ishii, You Ando, et al. Potential role of vitamin D receptor gene polymorphism in determining bone phenotype in young male athletes. J Appl Physiol. 2002,93(6):1973-1979.
    117. T Remes, SB Vaisanen, A Mahonen, et al. Aerobic exercise and bone mineral density in middle-aged finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone. 2003,32(4):412-420.
    118. SS Dhamrait, L James, DJ Brull, et al. Cortical bone resorption during exercise is interleukin-6 genotype-dependent. Eur J Appl Phyiol. 2003,89(l):21-25.
    119. TL Jarvinen, TA Jarvinen, H Sievanen, et al. Vitamin D receptor alleles and bone's response to physical acivity. Calcif. Tissue Int, 1998,62(5):413-417.
    120. 19 DA Bailey, HA McKay, RL Mirwald, et al. The University of Saskatchewan Bone Mineral Accrual Study: a six year longitudinal study of the relationship physical activity to bone mineral accrual in growing children. J. Bone Miner. Res. 1999,14(10): 1672-1679.
    121. DK. Katzman, LK Bachrach, DR Carter, et al. Clinical and anthropometric correlates of bone mineral axquistition in healthy adolescent girls. J Clin Endocrinol Metab, 1991,73(4):1332-1339.
    122. HA McKay, DA Bailey, RL Mirwald, et al. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-yar longitudinal study. J. Pediatr. 1998,133(5):682-687.
    123. SM Nickols-richardson, CM Modlesky, PJ O'Connor, et al. Premenarcheal gymnasts possess higher bone mineral density than controls. Med Sci Sports Exerc,2000,32(l):63-69.
    124. S Bass, G Pearce, M Bradney, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J. Bone Miner. Res. 1998,13(3):500-507.
    125. FL Morris, GA Naughton, JL Gibbs, et al. Prospective 10-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res, 1997,12(9):1453-1462.
    126. P Kannus, H Haapasalo, H Sievanen, et al. The site-specific effects of long-term unilateral activity on BMD and content. Bone, 1994,15(3):279-284.
    127. CJ Blimkie, S Rice, CE Webber, et al. Effects of resistance training on BMC and density in adolescent females. J Physiol Pharmacol, 1996,74(19):1025-1033.
    128. A Kuichi, Y Arai, S Katsuta. Detraining effects on bone mass in young male rats. Int. J. Sports Med. 1998,19(6):245-249.
    129. 29BL Drinkwater, K Nilson, CH Chesnut, et al. Bone mineral content of amenorrhoeic and eumenorrhoeic athletes. N Engl J Med. 1984,311(5)277-281.
    130 AB Loucks and SM Horvath. Exercise-induced stress response of amenorrheic and eumenorrheic runners. Journal of Clinical Endocrinology and Metabolism, 1984,59:1109-1120.
    131 Anette Rickenlund, Maria Thoren, Kjell Carlstrom, et al. Diurnal profiles of testosterone and pituitary hormones suggest different mechanisms for menstrual disturbances in endurance athletes. J Clin Endocrinoloy Metabolism, 2004,89(2):702-707.
    132 JH Wilmore, KC Wambsgans, M Brenner, et al. Is there energy conservation in amenorrheic compared with eumenorrheic distance runners? J Appl Physiol. 1992,72(1): 15-22.
    133 BL Drinkwater, B Bruemner and C H Chesnut. Menstrual history as a determinant of current bone density in young athletes. JAMA, 1990,263(4):545-548.
    134 Warren M Brooks-Gunn K , Fox R, et al. Lack of bone accretion and amenorrhea: evidence for a relative osteoponia in weight-bearing bones. J Clin Endocriol Metab. 1991,72:847-853.
    135 DB Snead, A Weltman, JY Weltman, et al. Reproductive hormones and bone mineral density in women runners. J Appl Physiol, 1992, 72(6):2149-2156.
    136 Warren M, Brooks-Gunn J, Hamilton L, Warren L, et al. Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med, 1986,314:1348-1353.
    137 Raija Korpelainen, Sakari Orava, Jarmo Karpakka, et al. Risk factors for recurrent stress fractures in athletes. The Journal of sports Medicine, 2001,29(3):304-310.
    138 Lavienja A. J. L. M. Braam, Mario H. J. Knapen, Piet Geusens, et al. Factors affecting bone loss in female endurance athletes: a two-year follow-up study. The American Journal of Sports Medicine, 2003,31:889-895.
    139 BL Drinkwater, K Nilson, S Ott, et al. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA, 1998,256(3): 380-382.
    140 S Jonnavithula, MP Warren, RP Fox, et al. Bone density is compromised in amenorrheic women despite return of menses: a 2-year study. Obstetrics Gynecology. 1993,81:669-674.
    141 JE Dook, C James, NK Henderson, et al. Exercise and bone mineral density in mature female athletes. Med.Sci.Sports Exerc. 1997,29(3):291-296.
    142. EJ Lee, KA Long, WL Risser, et al. Variations in bone status of contralateral and regional sites in young athletic women. Med.Sci.Sports Exerc. 1995,27(10):1354-1361.
    143. J Wu, S Ishizaki, Y Kato, et al. The side to side differences of bone mass at proximal femur in female rhythmic sports gymnasts. J Bone Miner Res, 1998,13(5):900-906.
    144. J Morel, B Combe, J Francisco, et al. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int, 2001,12(2):152-157.
    145 F Lima, V De Falco, J Baima, et al. Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med.Sci.Sports Exerc. 2001,33(8):1318-1323.
    146 T H Huang, S C Lin, F L Chang, et al, Effect of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol, 2003,95:300-307.
    147 WM Kohrt,AA Ehsani, and SJ Birge Jr. Effect of exercise involving predominan tly either joint-reaction forces on bone mineral density in older women. Bone, 1997,12(8):1253-1261.
    148. A Eliakim, LG Raisz, JA Brasel, et al. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res. 1997,12(10):1708-1713.
    149. KC Westerlind, JD Fluckey, SE Gordon, et al. Effect of resistance exercise training on cortical and cancellous bone in mature male rats. J Appl Physiol. 1998,84(2).459-464.
    150. DL Wheeler, JE Graves, GJ Miller, et al. Effects of running on the torsional strength .morphometry, and bone mass of the rat skeleton. Med.Sci.Sports Exerc.l995,27(4):520-529.
    151. Frost HM. Bone "mass" and "mechanostat". Anat Rec, 1987,219(l):l-9.
    152. Frost HM. The role of changes in mechanical usage set points in the pathogenesis of ostoporosis. J Bone Miner Res, 1992,7(3):253-261.
    153. Turner CH. Three rules for bone adaption to mechanical stimuli. Bone, 1998,23(5):399-407.
    154. EW Helge and IL Kanstrup. Bone density in female elite gymnasts: impace of muscle strength and sex hormones. Med.Sci.Sports Exerc. 2002,34(l):174-180.
    155. RL Duncan and CH Turner. Mechanotranduction and functional response of bone to mechanical strain. Calcif Tissue Int. 1995,57(5):344-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700