用户名: 密码: 验证码:
啤酒超高浓酿造中酵母代谢的分析与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以一株啤酒工业酿造酵母(Saccharomyces pastorianus)FBY0095为研究对象,并与其诱变得到的优良超高浓(VHG)酿造酵母(S. pastorianus)L6对比,以阐明VHG酿造对酵母生理代谢的影响为目标,在充分了解酿酒酵母胞内碳源代谢途径、辅因子代谢过程和代谢环境的基础上,运用代谢工程和微生物生理学的理论和方法,在代谢水平对影响VHG酿造酵母发酵速率和生理活性的关键因素进行分析和调控。主要研究结果如下:
     (1)以酿酒酵母(S. pastorianus)FBY0095为初始菌株对其进行UV照射和甲基磺酸乙酯复合诱变,然后在含有高浓度麦芽糖和乙醇的培养基上进行驯化培养。突变菌株L3和L6在含有15%(w/v)麦芽糖和15%(w/v)乙醇培养基上表现较好的生长状态。突变株L3和L6的VHG发酵速率比初始菌株FBY0095显著提高,使发酵周期缩短了21.43%。VHG发酵结束时(28d),相对初始菌株FBY0095,突变株L3和L6的残糖较低,乙醇浓度较高,细胞活力较高,其生产的啤酒乙酸乙酯含量显著下降,风味明显改善。
     (2)以不同浓度的葡萄糖和麦芽糖为底物,模拟啤酒酿造过程(厌氧和低温发酵),研究了糖浓度对酿酒酵母(S. pastorianus)FBY0095和优良VHG酿酒酵母(S. pastorianus)L6发酵特性的影响。运用拟稳态方法定量分析了酵母胞内的代谢通量,并分析了酵母胞内糖酵解途径关键酶(己糖激酶、磷酸果糖激酶和丙酮酸激酶)活性及其对代谢流的定量调控作用。结果发现,随着糖浓度升高,酵母FBY0095糖酵解途径的代谢通量和关键酶活逐渐降低。在VHG条件下,酵母L6糖酵解途径的代谢通量和关键酶活均比酵母FBY0095的高。酵母胞内磷酸果糖激酶和丙酮酸激酶对代谢通量控制作用较强,可认为这两种酶的催化反应是糖酵解流的关键调控步骤。
     (3)研究了不同浓度麦汁对酿酒酵母(S. pastorianus)FBY0095和优良VHG酿酒酵母(S. pastorianus)L6胞内辅因子(磷酸腺苷和辅酶I)代谢的影响,并且分析了辅因子对发酵速率的调控作用。随着麦汁浓度升高酵母FBY0095胞内ATP含量和能荷(EC)水平逐渐升高,对磷酸果糖激酶和丙酮酸激酶起到抑制作用,从而导致糖利用速率降低。麦汁浓度升高导致酵母FBY0095胞内NADH/NAD~+值升高,使乙醇生成速率降低,胞内代谢流分布也发生了变化。另外,在VHG条件下,酵母L6胞内ATP含量、EC水平和NADH/NAD~+值比酵母FBY0095的低,因此酵母L6的代谢活性,糖利用速率和乙醇生成速率均比FBY0095高。
     (4)研究了不同浓度麦汁对酿酒酵母(S. pastorianus)FBY0095和优良VHG酿酒酵母(S. pastorianus)L6胞内代谢环境的影响,主要是分析了胞内H+动态变化过程,并阐述了乙醇压力对细胞膜的影响。随着麦汁浓度升高,酵母FBY0095细胞膜上H+-ATPase活性逐渐降低,胞内H+输出能力降低,从而导致胞内pH降低,胞内代谢环境酸化,不利于代谢反应进行,并且胞内外pH差异也相应降低,导致酵母细胞对底物的利用能力下降。当乙醇浓度达到4%(w/v)时酵母代谢活性受到显著的抑制。另外,相对酵母FBY0095,酵母L6的细胞膜不饱和度较高,使其耐乙醇性能升高,代谢环境得到改善。
     (5)研究了不同分子量大豆肽对酿酒酵母(S. pastorianus)FBY0095生长和耐乙醇性能的影响,结果发现大豆肽分子量小于1kDa时有利于酵母细胞生长,分子量为3~5kDa的大豆肽可提高酵母的耐乙醇性能。将0.2%大豆肽添加到含有12%(w/v)乙醇的YNB培养基中,发现大豆肽吸附于细胞表面,使细胞膜透性降低,细胞活性升高。添加大豆肽使酵母的耐乙醇和代谢相关基因(OLE1、ELO1、TPS1、PMA1和MAL1)的表达水平升高,特别是OLE1基因提高最显著。在VHG酿造过程中添加0.2%大豆肽(3kDa < Mw < 5kDa)使酵母发酵性能显著提高,并且使酵母细胞膜不饱和度增加,提高了细胞的耐乙醇性能,从而使H+-ATPase活性增加,改善胞内代谢环境。
This dissertation chose the metabolism of carbon sources, cofactors and environment in an industry brewer’s yeast (Saccharomyces pastorianus) FBY0095 and its variant (S. pastorianus) L6 with improved very high gravity (VHG) fermentation performances as the model system to study the principal physiological and metabolic characteristics. The effect of VHG condition on fermentation rate and physiological activity of yeast at the metabolic level were investigated in detail. The main results were described as follows:
     (1) The brewer’s yeast FBY0095 (S. pastorianus) was used as starting strain to select variants for efficient VHG brewing by UV irradiation and ethyl methanesulfonate mutagenization combined with the domestication of ultra-high concentration of maltose and ethanol. Two variants (L3 and L6) screened displayed the better growth profile and the improvedα-glucosides transport and alcohol dehydrogenase activity on the plates with 15% (w/v) maltose and 15% (w/v) ethanol. Moreover, compared with FBY0095, both L3 and L6 variants showed faster fermentation rates, and their fermentation times were decreased in 21.43%. Furthermore, there were increases in apparent attenuation and ethanol concentration and improvement on flavor of resulting beer by L3 and L6 at the end of VHG fermentation (28 d).
     (2) The effect of concentration of glucose and maltriose on fermentation performances of S. pastorianus FBY0095 and S. pastorianus L6 with improved VHG fermentation performances under low temperature and anaerobic conditions were investigated. Furthermore, the metabolic flux and its control by glycolytic key enzymes (hexokinase, phosphofructokinase and pyruvate kinase) were quantitatively analyzed. The metabolic flux and key enzymes activities in S. pastorianus FBY0095 were decreased with the increase in wort gravity. The metabolic flux and key enzymes activities in S. pastorianus L6 were higher than those in S. pastorianus FBY0095 under VHG condition. Furthermore, the metabolic flux in S. pastorianus cells was intensely controlled by phosphofructokinase and pyruvate kinase, meaning that the catalytic reactions of the two key enzymes were regulation steps of glycolysis flux.
     (3) The effect of wort gravity on cofactors (adenosine phosphate and coenzyme I) in S. pastorianus FBY0095 and S. pastorianus L6 with improved VHG fermentation performances and the regulation of intracellular cofactors to fermentation rate were investigated. The ATP content and EC level in S. pastorianus FBY0095 were increased with the increase in wort gravity, which resulted in the decrease in wort sugars consumption. The increase in NADH/NAD~+ value in S. pastorianus FBY0095 companied with the increase in wort gravity, which led to the decrease in ethanol production rate and the changes of metabolic flux distribution in S. pastorianus FBY0095. In addition, the ATP content, EC level and NADH/NAD~+ value in S. pastorianus L6 were lower than those in S. pastorianus FBY0095, which resulted in the improved metabolic activity of S. pastorianus L6 and the increases in wort sugars consumption rate and ethanol production rate.
     (4) The effect of wort gravity on metabolic environment, including of the dynamic change process of intracellular H+ and the influence of ethanol stress on membrane, in S. pastorianus FBY0095 and S. pastorianus L6 with improved VHG fermentation performances were investigated. The activities of H+-ATPase on membrane of S. pastorianus FBY0095 decreased with the increase in wort gravity, which resulted in the decrease of H+ efflux rate, intracellular pH, difference of intra- and extracellular pH, and the acidification of intracellular metabolism environment and inactivation of metabolic reactions and carbon sources utilization. The metabolic activity of S. pastorianus cells was obviously inhibited by ethanol of 4% (w/v). In addition, compared to S. pastorianus FBY0095, S. pastorianus L6 displayed that higher unsaturation index of membrane, better ability of ethanol tolerance and improved metabolism environment.
     (5) The effect of soy peptides with different molecular weight on the growth and vitility S. pastorianus FBY0095. The results indicated that the soy peptide (Mw < 1kDa) could increase growth of yeast cells and the soy peptide (3kDa < Mw < 5kDa) could increase ethanol tolerance of yeast cells. The soy peptide (3kDa < Mw < 5kDa) adhere on membrane of S. pastorianus FBY0095 in YNB medium containing ethanol 12% (w/v), which resulted that decrease of permeability of membrane and increase of cells vitality. The effect of soy peptide (3kDa < Mw < 5kDa) on ability of ethanol tolerance of S. pastorianus FBY0095 and the reaction mechanism between soy peptide and yeast cells were investigated. Furthermore, The gene expression level on ethanol tolerance and metabolism (OLE1、ELO1、TPS1、PMA1 and MAL1) of S. pastorianus FBY0095 were increased by addition of 0.2% soy peptide, especially OLE1. S. pastorianus FBY0095 displayed that better fermentation performances, increased membrane unsaturation index, ethanol tolerance ability and H+-ATPase activity and improved metabolism environment by addition of 0.2% soy peptide during VHG brewing.
引文
[1] Tian J. Determination of several flavours in beer with headspace sampling-gas chromatography [J]. Food Chem., 2010, 123: 1318?1321.
    [2]李鸿恩,张玉良,李宗智.我国小麦种质资源主要品质特性鉴定结果及评价[J].中国农科学,1995,5: 28?34.
    [3]顾国贤.啤酒与健康[J].酿酒,2001,28: 33?34.
    [4]管敦仪.啤酒工业手册(修订版)[M].北京:中国轻工业出版社,1998,1?95.
    [5] Huuskonen A., Markkula T., Vidgren V., et al. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts [J]. Appl. Environ. Microbiol. 2010, 76: 1563–1573.
    [6]李林蔚.啤酒超高浓酿造技术的初步研究[D].江南大学,无锡,2008.
    [7] Kunze W.湖北轻工职业技术学院翻译组.啤酒工艺实用技术(第8版) [M].北京:中国轻工业出版社,2008,158?296.
    [8] Stewart G.G., Both-wick R. Recent developments in high gravity brewing [J]. MBAA TQ, 1997, 34: 2641?270.
    [9] McCaig R., McKee J., Pfisterer E. A., et al. Very high gravity brewing-Laboratory and pilot plant trials [J]. J. Am. Soc. Brew. Chem., 1992, 50: 18?26.
    [10]任海波.超高浓酿造技术研究及其在啤酒生产中的应用[D].乌鲁木齐:新疆农业大学, 2007.
    [11]万永泉,于世敏.高浓酿造技术研究进展[M].酿酒科技,2002,1: 56?58.
    [12] Gibson B.R., Lawrence S.J., Leclaire J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiol. Rev., 2007, 31: 535?569.
    [13] Ree E. M. R., Stewart G. G.. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts [J]. J. Inst. Brew., 1997, 103: 287 ? 291.
    [15] Gibson B.R., Boulton C.A., Box W.G., et al. Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation [J]. Yeast, 2008, 25: 549?562.
    [16]樊伟,余俊红.高浓酿造技术在啤酒工业中的应用[J].酿酒,2003,32: 101 ?104.
    [17] Piper P. W. The heat shock and ethanol stress response of yeast exhibit extensive similarity and functional overlap [J]. FEMS Microbiol. Lett., 1995, 134: 121?127.
    [18] Rautio J. J., Anne H. K., Heikki V., et al. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression [J]. Yeast, 2007, 24: 741?760.
    [19] Houghton-Larsen J., Brandt A. Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex [J]. Appl. Environ. Microbiol., 2006, 72: 7176?7182.
    [20]程殿林.啤酒生产技术[M].北京:化学工业出版社,2005,178.
    [21] Francois J.M., Parrou J.L. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae [J]. FEMS Microbiol. Rev., 2001, 25:125?145.
    [22] PátkováJ., ?mogrovi?ováD., BafrncováP., et al. Changes in the yeast metabolism at very high-gravity wort fermentation [J]. Folia Microbiologica, 2000, 45: 335?338.
    [23] Blieck L., Toye G., Dumortier F., et al. Isolation and Characterization of Brewer’s YeastVariants with Improved Fermentation Performance under High-Gravity Conditions [J]. Appl. Environ. Microbiol., 2007, 73: 815–824.
    [24]赵文琪.麦汁和啤酒中游离氨基氮的重要性[J].啤酒科技,2006,3:60–63.
    [25] Michael B. High graviye brewing [M]. 98’Qingdao beer semina, 1998.
    [26] Dickinson J. R., Lanterman M. M., Danner D. J., et al. A 13Cnuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae [J]. J. Biol. Chem., 1997, 272:26871–26878.
    [27] Cooper D. J., Stewart G. G., Bryce J. H. Yeast Proteolytic Activity During High and Low Gravity wort Fermentaiton and its Effect on Head Retention [J]. J. Inst. Brew., 2000, 106:197–201.
    [28] Piddocke M. P. S., Kreisz H. P., Heldt-Hansen K. F., et al. Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts [J]. Appl. Microbiol. Biot., 2009, 84: 453–464.
    [29] Stewart G. G. High Gravity Brewing [J]. Brewers’Guardian, 1999, 128: 31–371.
    [30]彭景龙,吴振强,梁世中.啤酒酵母对高浓麦汁的响应[J].微生物学杂志,2002,22:30–32.
    [31] Huuskonen A., Markkula T., Vidgren V., et al. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts [J]. Appl. Environ. Microbiol, 2010, 76: 1563–1573.
    [32]张穗生,黄日波,周兴.啤酒酵母乙醇耐受性机理研究进展[J].微生物学通报,2009,36:1604–1608.
    [33] Aguilera F., Peinado Q.A., Millan C., et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains [J]. Int. J. Food Microbiol., 2006, 110: 34–42.
    [34] Stukey J.E., McDonough V.M. Martin C.E. The OLE1 gene of Sacchromyces cerevisiae encodes the△9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene [J]. J. Biol. Chem., 1994, 265: 20144–20149.
    [35] Alexandre H., Rousseaux I., Charpentier C. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomy cerevisiae and Kloeckera apiculata [J]. FEMS Microbiol. Lett., 1995, 124: 17–21.
    [36] You K.M., Rosenfield C.L. Knipple D.C. Ethanol tolerance in the yeast Saccharomy cerevisiae is dependent on cellular oleic acid content [J]. Appl. Eenviron. Microbiol., 1994, 69: 1499–1503.
    [37] Stephanopoulos G.N., Aristidou A.A., Nielsen J.,赵学明,白冬梅,等译.代谢工程——原理与方法[M].北京:化学工业出版社,2003,1–11.
    [38] Bailey J. E. Towards a science of metabolic engineering [J]. Science, 1991, 252: 1668–1674.
    [39] Stephanopoulos G., Vallino J.J. Network rigidity and metabolic engineering in metabolite overproduction [J]. Science, 1991, 252, 1675–1681.
    [40]张慧敏.酵母在不同培养环境下中间代谢途径代谢调控过程研究[D].杭州:浙江大学, 2005.
    [41]张青瑞.甘油生物转化1,3-丙二醇过程的代谢通量分析与动态模拟[D].大连:大连理工大学, 2008.
    [42] Peng L.F., Arauzo-Bravo M.J., Shimizu K. Metabolic flux analysis for a ppc mutant Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements [J]. FEMS Microbiol. Lett., 2004, 235: 17–23.
    [43] Bernal V., Carinhas N. Yokomizo A.Y., et al. Cell density effect in the Baculovrus-insect cells system: a quantitative analysis of energetic metabolism [J]. Biotechnol. Bioeng., 2009, 104: 162–180.
    [44]姜岷,黄秀梅,李健.氧化还原电位调控对产琥珀酸放线杆菌代谢通量分布的影响[J].化工学报,2009,60:2555–2561.
    [45] Melzer G., Dalpiaz A., Grote A. Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producting and nol-producting conditions [J]. J. biotechnol., 2007: 405–417.
    [46]卫功元,李寅,堵国城.产朊假丝酵母分批发酵生产谷胱甘肽的代谢通量分析[J].化工学报,2006,57:1410–1417.
    [47] Xu H., Dou W., Xu H. A two-stage oxygen supply strategy for enhanced L-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis [J]. Biochem. Eng. J., 2009, 43: 41–51.
    [48] Becker J., Klopprogge C., Herold A. Metabolic flux engineering of L-lysine production in Corynebacterium crenatum-over expression and modification of G6P dehydrogenase [J]. J. Biotechnol. 2007, 132: 99–109.
    [49] Sanchez A.M., Bennett G.N., San K.Y. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains [J]. Metab. Eng., 2006, 8: 209–226.
    [50]白冬梅,付卫明,赵学明.代谢通量分析优化米根霉R1021发酵生产L(+)-乳酸过程[J].无锡轻工大学学报,2002,21: 554–558.
    [51]李明达,陈霞,韩丹.盐胁迫条件下酿酒酵母的代谢通量分析[J].吉林大学学报,2010,48:699–703.
    [52] Carinhas N., Bernal V., Monteiro F. Improving baculovirus production at high cell density through manipulation of energy metabolism [J]. Metab. Eng. 2010, 12: 39–52.
    [53] Bernal V., Monteiro F., Carinhas N. An integrated anslysis of enzyme activities, cofactor pools and metabolic fluxes in baculovirus-infected Spodoptera frugiperda Sf9 cells [J]. J. Biotchnol., 2010, 150: 332–342.
    [54]李可伟.温度对乳酸通量的调节规律研究[D].天津:天津商业大学,2008.
    [55]王境岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002:63?146.
    [56] Liu L., Li Y., Shi Z., et al. Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD+ availability [J]. J. Biotechnol., 2006, 126: 173?185.
    [57] Liu L.M., Li Y., Li H.Z., et al. Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation [J]. FEMS Yeast Res., 2006, 6: 1117?1129.
    [58] Berthels N.J., Cordero Otero R.R., Bauer F.F., et al. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains [J]. Appl. Microbiol. Biotechnol., 2008, 77: 1083?1091.
    [59] Socorro J.M., Olmo R., Teijon C., et al. Analysis of aluminum-yeast hexokinase interaction: modifications on protein structure and functionality [J]. J. Pprtein Chem., 2000, 19: 199?208.
    [60]刘立明.光滑球拟酵母中糖酵解效率与丙酮酸合成的调控研究[D].无锡:江南大学, 2006.
    [61] Entian K.D., Hilberh F., Opitz H., et al. Isolation of hexokinase PII structural genes with regulatory mutations responsible for glucose repression in yeasts [J]. Mol. Cell. Biol. 1985, 5: 3035?3040.
    [62] Heinisch J.J. Expression of heterologous phosphofructokinase genes in yeast [J]. FEBS, 1993, 328: 35?40.
    [63] Reuter R., Naumann M., Bar J. Purification, molecular and kinetic characterization of phosphofructokinase-I from the yeast Schizosaccharomyces pombe: evidence for and unusual subunit composition [J]. Yeast, 2000, 16: 1273?1285.
    [64] Breitenbach-Schmitt I., Heinisch J., Schmitt H. D., et al. Yeast mutants without phosphofructokinase activity can still perform glycolysis and alcoholic fermentation [J]. Mol. Gen. Genet., 1984, 195: 530?535.
    [65] Breitenbach-Schmitt I., Heinisch J., Schmitt H. D., et al. Genetic and physiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence [J]. Mol. Gen. Genet., 1984, 195: 536?540.
    [66] Heinisch J. Construction and physiological characterization of mutants disrupted in the phofructokinase genes of Saccharomyces cerevisiae [J]. Curr. Genet., 1986, 11: 227?234.
    [67] Andersen H.W., Solem C., Hammer K., et al. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in Strong decreases in growth rate and in glycolytic flux [J]. J. Bacteriol., 2001, 183: 3458?3467.
    [68] Hauf J., Zimmermann F.K., Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae [J]. Enzyme Microb. Technol., 2000, 26: 688?498.
    [69] Pearce A.K., Crimmins K., Groussac E., et al. Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions [J]. Microbiology, 2001, 147: 391?401.
    [70] Ramos A., Neves A.R., Ventura R., et al. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis [J]. Microbiol-SGM, 2004, 150: 1103–1111.
    [71] Pearce A.K., Crimmins K., Groussae E., et al., Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions [J].Microbiology, 2001, 147: 391?401.
    [72]侯进.酿酒酵母辅酶工程[D].济南:山东大学,2009.
    [73]周景文.光滑球拟酵母中ATP的生理功能与作用机制[D].无锡:江南大学, 2009.
    [74] Jensen P.R., Michelsen O. Carbon and energy metabolism of ATPase mutants of Escherichia coli [J]. J. Bacteriol., 1992, 174: 7635?7641.
    [75] Sekine H., Shimada T., Hayashi C., et al. H+-ATPase defect in Corynebacterium glutamium abolishes glutamic acid production with enhancement of glucose consumption rate [J]. Appl. Microbiol. Biotechnol., 2001, 57: 534?540.
    [76]刘立明,陈坚,李华钟,等.氧化磷酸化抑制剂对光滑球拟酵母糖酵解速率的影响[J].生物化学与生物物理进展,2005,32:251?257.
    [77] Rowe S.M., Simpson W.J., Hammond J.R.M. Intracellular pH of yeast during brewery fermentation [J]. Lett. Appl. Microbiol., 1994, 18: 135?137.
    [78] Hysert D.W., Morrison N.M. Studies on ATP, ADP and AMP concentrations in yeast and beer [J]. J. Am. Soc. Brew. Chem., 1977, 35: 160?167.
    [79] Dombek K.M., Ingram L.O. Intracellular accumulation of AMP as a cause for the decline in rate of ethanol production by Saccharomyces cerevisiae during batch fermentation [J]. Appl. Environ. Microbiol., 1988, 54: 98? 104.
    [80] Pedro M.R., Guimaraes J.L. The adenylate energy charge and spedific fementation rate of brewer’s yeasts fermentating high and very gravity worts [J]. Yeast, 2008, 25: 47?58.
    [81]秦义,董志姚,刘立明.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25:161?169.
    [82]董志姚.光滑球拟酵母中NADH代谢对其糖酵解途径的影响[D].无锡:江南大学,2008.
    [83] Lin H. Bennett G.N., San K.Y. Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli [J]. J. Ind. Microbiol. Biotechno., 2005, 32: 87?93.
    [84] Sanchez A.M., Bennett G.N., San K.Y. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant [J]. Biotechnol. Prog., 2005, 21: 358?365.
    [85] Panagiotou G., Christakopoulos P., Villas-Boas S.G., et al. Fermentation performance and intracellular metabolite profiling of Fusarium oxysporum cultivated on glucose-xylose mixture [J]. Enzyme Microb. Technol. 2005, 36: 100?106.
    [86] Zaunmuller T., Eichert M., Richter H., et al. Variations in the energy metabolism of biotechnologically relevant beterofermentative lactic acid bacteria during growth on sugars and organic acids [J]. Appl. Microbiol. Biotechno., 2006, 72: 421?429.
    [87] de Felipe F.L., Kleerebezem M., de vos W.M., et al. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase [J]. J. Bacteriol., 1998, 180: 3804?3808.
    [88] Du C.Y. Yan H., Zhang Y.P., et al. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae [J]. Appl. Microbiol. Biotechnol. 2006, 69: 554?563.
    [89] Zhang Y.P., Li Y., Du C.Y., et al. Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae [J]. Metab. Eng. 2006, 8: 578?586.
    [90] Cordier H., Medes F., Vasconcelos I., et al. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production [J]. Metab. Eng. 2007, 9: 364?378.
    [91] dos Santos M.M., Raghevendran V., Kotter P., et al. Manipulation of malic enzyme in Saccharomyces crevisiae for increasing NADPH production capacity aerobically in different cellular compartments [J]. Metab. Eng., 2004, 6: 352?363.
    [92] Heux S., Cachon R., Dequin S. Cofactor engineering in Saccharmoyces cerevisiae: expression of a h2o-forming NADH oxidase and impact on redox metabolism [J]. Metab. Eng., 2006, 8: 303?304.
    [93] Zhou J., Liu L., Shi Z., et al. ATP in current biotechnology: regulation, application and perspectives [J]. Biotechnol. Adv., 2009, 27: 94?101.
    [94] Casey G., Ingledew W.M. High gravity brewing: influence of pitching rate and wort gravity on early yeast viability [J]. J. Am. Soc. Brew. Chem., 1983, 41: 148?152.
    [95] McCaig R., McKee J., Pfisterer E.A., et al. Very high-gravity-laboratory and pilot plant trials [J]. J. Am. Soc. Brew. Chem., 1992, 41: 148?152.
    [96] Briggs D.E., Boulton C.A., Brookes P.A., et al. Brewing: science and practice [M]. Woodhead, Cambridege, UK, 2004.
    [97] Chi Z., Arneborg N. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae [J]. J. Appl. Microbiol., 1999, 86: 1047?1052.
    [98] Aguilera F., Peinado R.A., Millan C., et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strais [J]. Int. J. Food Microbiol., 2006, 110: 34?42.
    [99] Singer M.A., Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose [J]. Trends. Biotechnol., 1998, 16: 460?468.
    [100] Kaino T., Takagi H. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses [J]. Appl. Microbiol. Biotchnol., 2008, 79: 273?283.
    [101] Van Voorst F., Houghton-Larsen J., Jonson L., et al. Genome-wide identification of genes required for growth of Saccharomyces cerevsiae under ethnol stress [J]. Yeast, 2006, 23: 351?359.
    [102] Chandler M., Stanley G.A., Rogers P., et al. A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae [J]. Annals Microbiol. 2004, 54: 427?454.
    [103] Dinh T.N., Nagahisa K., Yoshikawa K., et al. Analysis of adaptation to high ethanol concentration in Saccharomy cerevisiae using DNA microarray [J]. Bioprocess Biosyst. Eng., 2009, 8: 292?297.
    [104] Alexandre H., Ansanay-Galeot V., Dequin S., et al. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J]. FEBS Lett., 2001, 498: 98?103.
    [105] Du X., Takagi H. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species [J]. Appl. Microbiol. Biotechnol., 2007, 75: 1343?1351
    [1] Gibson B., Lawrence S.J., Leclaire J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiol. Rev., 2007, 31: 535?569.
    [2] Huuskonen A., Markkula T., Vidgren V., et al. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts [J]. Appl. Environ. Microbiol, 2010, 76: 1563–1573.
    [3]任海波.超高浓酿造技术研究及其在啤酒生产中的应用[D].乌鲁木齐:新疆农业大学, 2007.
    [4] Cooper D.J., Stewart G.G., Bryce J.H. Some reasons why high gravity brewing has a negative effect on head retention [J]. J. Inst. Brew., 1998, 104: 83–87.
    [5] Pérez-Carrillo E., Cortés-Callejas L.M., et al. Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis [J]. Biotechnol. Lett., 2011, 33: 301–307.
    [6] Pereira F.B., Guimar?es P.M.R., Teixeira J.A., et al. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes [J]. Biotechnol. Lett., 2010, 32: 1655–1661.
    [7] Lodolo E.J., Kock J.L.F., Axcell B.C., et al. The yeast Saccharomyces cerevisiae– the main character in beer brewing [J]. FEMS Yeast Res., 2008, 8: 1018–1036.
    [8] Rautio J.J., Huuskonen A., Vuokko H., et al. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression [J]. Yeast, 2007, 24: 741–760.
    [9] Bayrock D. P., Ingledew W. M. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology [J]. J. Ind. Microbiol. Biot., 2001, 27: 87–93.
    [10] Blieck L., Toye G., Dumortier F., et al. Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions [J]. Appl. Environ. Microbiol., 2007, 73: 815–824.
    [11] Casey G., Chen E., Ingledew W. High gravity brewing production of high levels ofethanol without excessive concentrations of esters and fusel alcohols [J]. J. Am. Soc. Brew. Chem., 1985, 43: 179–182.
    [12] Piddocke M.P., Kreisz S., Heldt-Hansen H.P., et al. Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts [J]. Appl. Microbiol. Biot., 2009, 84: 453–464.
    [13] Hollatz C., Stambuk B.U. Colorimetric determination of activeα-glucoside transport in Saccharomyces cerevisiae [J]. J. Microbiol. Meth., 2001, 46: 253?259.
    [14]刘立明.光滑球拟酵母中糖酵解效率与丙酮酸合成的调控研究[D].无锡:江南大学, 2006.
    [15] Kim S.Y., Lee B.M., Cho J.Y. Relationship between glucose catabolism and xanthan production in Xanthomonas oryzae pv. Oryae [J]. Biotechnol. Lett., 2010, 32: 527–531.
    [16] Zheng Y., Zhang K., Wang C., et al. Improving acetic acid production of Acetobacter pasteurianus AC2005 in hawthorn vinegar fermentation by using beer for seed culture [J]. Int. J. Food Sci. Tech., 2010, 45: 2394?2399.
    [17] Gabriel P., Dienstbier M., MatoulkováD., et al. Optimised acidification power test of yeast vitality and its use in brewing practice [J]. J. Inst. Brew., 2008, 114: 270?276.
    [18] Vidgren V., Multanen J.P., Ruohonen L., et al. The temperature dependence of maltose transport in ale and lager strains of brewer’s yeast [J]. FEMS Yeast Res., 2010, 10: 402–411.
    [19] Zastrow C.R., Mattos M.A., Hollatz C., et al. Maltotriose metabolism by Saccharomyces cerevisiae [J]. Biotechnol. Lett., 2000, 22: 455–459.
    [20] Viigand K., Alam?e T. Further study of the Hansenula polymorpha MAL locus: characterization of theα-glucoside permease encoded by the HpMAL 2 gene [J]. FEMS Yeast Res., 2007, 7: 1134?1144.
    [21] de Smidt O., du Preez J.C., Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review [J]. FEMS Yeast Res., 2008, 8: 967–978.
    [22] Sigler K., Mikyska A., Kosar K., et al. Factors affecting the outcome of the acidification power test of yeast quality: critical reappraisal [J]. Folia microbial, 2006, 51, 525–534.
    [23] Patino H., Edelen C., Miller J. Alternatiove measures of yeast vitality: use of cumulativeacidification power and conductance [J]. J. Am. Soc. Brew. Chem., 1993, 51: 128–132.
    [24] Yu Z., Zhao H., Wan C., et al. The Dynamic changes of proton efflux rate in Saccharomyces pastorianus strains during high gravity of very high gravity brewing [J]. J. Inst. Brew., 2011, 117: 176?181.
    [25]李小军,徐鹏,栾静.耐高渗酿酒酵母的代谢流分析[J].食品与生物技术学报,2009,28: 356–360.
    [26] Dijck P.V., Colavizza D., Smet P., et al. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells [J]. Appl. Environ. Microbiol, 1995, 61: 109–115.
    [27] Odumeru J.A., D'Amore T., Russell I., et al. Alterations in fatty-acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock [J]. J. Ind. Microbiol., 1993, 11: 113–119.
    [28]管敦仪.啤酒工业手册(修订版)[M].北京:中国轻工业出版社, 2007, 369–373.
    [1] Lodolo E.J., Kock J.L.F., Axcell B.C., Brooks M. The yeast Saccharomyces cerevisiae– the main character in beer brewing [J]. FEMS yeast Res., 2008, 8: 1081–1036.
    [2] Rautio J.J., Huuskonen A., Vuokko H., Vidgren V., Londesborough J. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression [J]. Yeast, 2007, 24: 741–760.
    [3] Piddocke M. P. S., Kreisz H. P., Heldt-Hansen K. F., Nielsen L. O. Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts [J]. Appl. Microbiol. Biot., 2009, 84: 453–464.
    [4] Blieck L. G., Toye F., Dumortier K. J., Vertrepen F. D., Delvaux J. M., Vandijck P. Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions [J]. Appl. Environ. Microb., 2007, 73: 815–824.
    [5] Bayrock D. P., Ingledew W. M. Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology [J]. J. Ind. Microbiol. Biot., 2001, 27: 87–93.
    [6] Nagahisa K. T., Nakajima K., Yoshikawa T., Hirasawa Y., Katakura C., Furusawa S., Shimizu H. DNA microarray analysis on Saccharomyces cerevisiae under high carbon dioxide concentration in fermentation process [J]. Biotechnol. Bioprocess Eng., 2005, 10: 451?461.
    [7] Gibson B.R., Lawrence S.J., Leclaire J.P.R., Powell C.D., Smart K.A. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiol. Rev., 2007, 31: 535?569.
    [8] Chen Z., Liu H.J., Zhang J.A., Liu D.H. Cell physiology and metabolic flux response of Klebsiella pneumoniae to aerobic conditions [J]. Process Biochem., 2009, 44: 862–868.
    [9] Stephanopoulos G.N., Aristidou A.A., Nielsen J.,赵学明,白冬梅,等译.代谢工程——原理与方法[M].北京:化学工业出版社,2003,1–11.
    [10] Arense P., Bernal V., Iborra J.L., Cánovas M. Metabolic adaptation of Escherichia coli to long-term exposure to salt stress[J]. Process Biochem., 2010, 45: 1459?1467.
    [11] Liu L., Li Y., Shi Z., Du G., Chen J. Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD+ availability [J]. J. Biotechnol., 2006, 126: 173?185.
    [12] Reuter R., Naumann M., B?r J., Haferburg D., Kopperschl?ger G. Purification, molecular and kinetic characterization of phosphofructokinase-I from the yeast Schizosaccharomyces pombe: evidence for an unusual subunit composition [J]. Yeast, 2008, 16: 1273?1285.
    [13] Susan-Resiga D., Nowak T. The proton transfer step catalyzed by yeast pyruvate kinase [J]. J. Biol. Chem., 2003, 278: 12660?12671.
    [14] Yu M.A., Wei Y.M., Zhao L., Jiang L., Zhu X.B., Qi W. Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide [J]. J. Ind. Microbiol. Biotechnol., 2007, 34: 151?156.
    [15] Bernal V., Carinhas N., Yokomizo Y.Y., Carrondo M.J.T., Alves P.M. Cell density effect in the bauculovirus-insect cells system: a quantitative analysis of energetic metabolism [J]. Biotechnol. Bioeng., 2009, 104: 162?178.
    [16] Melzer G., Dalpiaz A., Grote A., Kucklick M., G?cke Y., Jonas R., Dersch P., Franco-Lara E., N?rtemann B., Hempel D.C. Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylas-producing and non-producing conditions [J]. J Biotechnol., 2007, 132: 405?417.
    [17] ven Eunen K., Dool P., Canelas A.B., Kiewiet J., Bouwman J., van Gulik W.M., Westerhoff H.V., Bakker B.M. Time-dependent regulation of yeast glycolysis upon nitrogen starvation depends on cell history [J]. IET Syst. Biol., 2010, 4: 157?168.
    [18] Liu H.J., Li Q., Liu D.H., Zhong J.J. Impact of hyperosmotic condition on cell physiology and metabolic flux distribution of Candida krusei [J]. Biochem. Eng. J., 2006, 28; 92?98.
    [19] Rossell S., van der Weijden C.C., Lindenbergh A., Tuijl A., Francke C., Bakker B.M., Westerhoff H.V. Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae[J]. PNAS, 2006, 103: 2166–2171.
    [20] Shen Y., Zhao X.Q., Ge X.M., Bai F.W. Metabolic flux and cell cycle analysis indicating new mechanism underlying process oscillation in continuous ethanol fermentation withSaccharomyces cerevisiae under VHG conditions [J]. Biotechnol. Adv., 2009, 27: 1118?1123.
    [21]王境岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002:63?146.
    [22]单祖华.完全封闭发酵条件下酿酒酵母的生长代谢及其代谢通量分析[D].陕西农林科技大学,西安,2008.
    [23] Nissen T., Schulze U., Nielsen J. Flux distributions in anaerobic, glucose-limitedcontinuous cultures of Saccharomyces cerevisiae [J]. Microbiology, 1997, 143: 203–218.
    [24] Ingraham J.L., Maaloe O., Neidhardt F.C. Growth of the bacterial [M]. Sunderland: Sinauer Associates Sunderland, Mass, 1983.
    [25] Gibson B.R., Boulton C.A., Box W.G., Graham N.S., Lawrence S.J., Linforth R.S.T., Smart K.A. Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation [J]. Yeast, 2008, 25: 549?562.
    [26] Daran-Lapujade P., Rossell S., van Gulik W.M., Luttik M.A.H., de Groot M.J.L., et al., The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels [J]. PNAS, 2007, 104: 15753?15758.
    [27] van den Brink J., Canelas A.B., van Gulik W.M., Pronk J.T., Heijnen J.J., de Winde J.H., Daran-Lapujade P. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism [J]. Appl. Environ. Microb., 2008, 78: 5710?5723.
    [28] Ramos A., Neves A.R., Ventura R., Maycock C., Lopez P., Santos H. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis [J]. Microbiol-SGM, 2004, 150: 1103–1111.
    [29] Pearce A.K., Crimmins K., Groussae E., Hewlins M.J.E., Richard J., et al., Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions [J]. Microbiology, 2001, 147: 391?401.
    [30] Andersen H.W., Solem C., Hammer K., Jensen P.R. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in Strong decreases in growth rate and in glycolytic flux [J]. J. Bacteriol., 2001, 183: 3458?3467.
    [31] Breitenbach-Schmitt I., Schmitt H.D., Heinisch J., Zimmermann F.K. Genetic andphysiological evidence for the existence of a second glycolytic pathway in yeast parallel to the phosphofructokinase-aldolase reaction sequence [J]. Mol. Gen. Genet., 1984, 195: 536–540.
    [32] Hauf J., Zimmermann F.K., Muller S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae [J]. Enzyme Microb. Technol., 2000, 26: 688?498.
    [1] Davies S.E., Brindle K.M. Effects of overexpression of phophofrucokinase on glycolysis in the yeast Saccharomyces cerevisiae [J]. Biochemistry., 1992, 31: 4729?4735.
    [2] Ruijter G.J., Panneman H., Visser J. Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger [J]. Biochim. Biophys. Acta., 1997, 1334: 317?326.
    [3] Cortassa S., Aon M.A. Distributed control of the glycolytic flux in wild-type cells andcatabolite repression mutants of Saccharomyces cerevisiae growing in carbon-linited chemostat cultures [J]. Enzyme Microbial. Technol., 1997, 16: 761?770.
    [4] Fell D.A. Increasing the flux in metabolic pathways: A metabolic control analysis perspective [J]. Biotechnol. Bioeng., 1998, 58: 121?124.
    [5] Liu L.M., Li Y., Li H.Z., Chen J. Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation [J]. FEMS Yeast Res., 2006, 6: 1117?1129.
    [6] Vemuri G.N., Eiteman M.A., McEwen J.E., Olsson L., Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae [J]. PNAS, 2007, 104: 2402?2407.
    [7] Zhou J.W., Liu L.M., Shi Z.P., Du G.C., Chen J. ATP in current biotechnology: Regulation, applications and perspectives [J], Biotechnol. Adv. 2009, 27: 94?101.
    [8] Koebmann B.J., Westerhoff H.V., Snoep J.L., Nilsson D., Jensen P.R. The glycolytic flux in Escherichia coli is controlled by the demand for ATP [J]. J. Bacteriol., 2002, 184: 3909?3916.
    [9] Koebmann B.J., Westerhoff H.V., Snoep J.L., Solem C., Pedersen M.B., Nilsson D., et al. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth [J]. Mol. Biol. Rep., 2002, 29: 41?45.
    [10] Dietzle D.N., Leckie M.P., Magnani J.L, Sughrue M.J., Bergstein P.E. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli II Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose, 1,6-diphosphate, and total adenylates [J]. J. Biol. Chem., 1975, 250: 7195?7203.
    [11]刘立明.光滑球拟酵母中糖酵解效率与丙酮酸合成的调控研究[D].无锡:江南大学, 2006.
    [12] San K.Y., Bennett G.N., Berrios-Rivera S.J., Vadali R.V., Yang Y.J., et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli [J]. Metab. Eng., 2002, 4: 182?192.
    [13] Berrios-Rivera S.J., Bennett G.N., San K.Y. Metabolic engineering of Escherichia coli:Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase [J]. Metab. Eng., 2002, 4: 217?229.
    [14] Zaunmuler T., Eichert M., Richter H., Vnden G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids [J]. Appl. Microbiol. Biotechnol., 2006, 73: 421?429.
    [15] Wahlbom C.F., Hahn-Hagerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae [J]. Biotechnol. Bioeng., 2002, 78: 172?178.
    [16] Dietvorst J., Blieck L., Brandt R., Van Dijck P., Steensma H.Y. Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization [J]. Yeast, 2007, 24: 27?38.
    [17]俞志敏,赵谋明,赵海锋,陈文芳.啤酒高浓酿造对酵母代谢影响的研究进展[J].食品与发酵工业,2009,35: 5?9.
    [18]万春艳,赵海锋,赵谋明.超高麦汁浓度酿造对啤酒酵母代谢的影响[J].食品与发酵工业,2010,12: 55?58.
    [19] Guimaraes P.M.R., Londesborough J.L. The adenylate energy charge and specific fermentation rate of brewer’s yeasts fermenting high- and very high-gravity worts [J]. Yeast, 2008, 25: 47?58.
    [20] Sekine H., Shimada T., Hayashi C., Ishigur A., Tomita F., Yokota A. H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate [J]. Appl. Microbiol. Biotechnol., 2001, 57: 534?540.
    [21] Larsson C., Pahlman I.L., Gustafsson L. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae [J]. Yeast, 2000, 16: 797?809.
    [22] Wang Z., Chen S., Sun M., Yu Z. A fundamental dual regulatory role of citrate on the biosynthesis of thuringiensin and poly-beta-hydroxybutyrate in Bacillus thuringiensis YBT-032[J]. Biotechnol. Lett., 2007, 29: 779?784.
    [23] Sanchez C., Neves A.R., Cavalheiro J., dos Santos M.M., Garcia-Quintans N., Lopez P., et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH [J]. Appl Environ. Microbiol., 2008, 74: 1136?1144.
    [24] Torino M.I., Taranto M.P., de Valdez G.F. Citrate catabolism and production of acetateand succinate by Lactobcillus helveticus ATCC 15807 [J]. Appl. Microbiol. Biotechnol., 2005, 69: 79?85.
    [25]周景文.光滑球拟酵母中ATP的生理功能与作用机制[D].无锡:江南大学, 2009.
    [26] Larsson C., Nilsson A., Blomberg A. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions [J]. J. Bacteriol., 1997, 179: 7243?7250.
    [27] Yoshino M., Murakami K. AMP deaminase reaction as a control system of glycolysis in yeast [J]. J. Biological Chemistry, 1985, 260: 4729?4732.
    [28] Berthels N.J., Otero R.R.C., Bauer F.F., Pretorius I.S., Thevelein J.M. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains [J]. Appl. Microbil. Biotechno., 2008, 77: 1083?1091.
    [29]王境岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002,83?85.
    [30]秦义,董志姚,刘立明,陈坚.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25: 161?169.
    [31] Lin H., Bennett G.N., San K.Y., Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield [J]. Metab. Eng., 2005, 7:116?127.
    [32] Neves A.P., Ventura R, Mansour N., Shearman C., Gasson M.J., Maycock C., et al. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR [J]. J. Biol. Chem. 2002, 277: 28088?28098.
    [33] Stephanopoulos G.N., Aristidou A.A., Nielsen J.,赵学明,白冬梅,等译.代谢工程——原理与方法[M].北京:化学工业出版社,2003,1–11.
    [34]单祖华.完全封闭发酵条件下酿酒酵母的生长代谢及其代谢通量分析[D].陕西农林科技大学,西安,2008.
    [1]樊伟,余俊红.高浓酿造技术在啤酒工业中的应用[J].酿酒,2003,32: 101 ?104.
    [2] Huuskonen A., Markkula T., Vidgren V., et al. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts [J]. Appl. Environ. Microbiol. 2010, 76: 1563–1573.
    [3]李林蔚.啤酒超高浓酿造技术的初步研究[D].江南大学,无锡,2008.
    [4] Casey G., Ingledew W.M. High gravity brewing: influence of pitching rate and wortgravity on early yeast viability [J]. J. Am. Soc. Brew. Chem., 1983, 41: 148?152.
    [5] McCaig R., McKee J., Pfisterer E.A., et al. Very high-gravity-laboratory and pilot plant trials [J]. J. Am. Soc. Brew. Chem., 1992, 41: 148?152.
    [6]张穗生,黄日波,周兴.啤酒酵母乙醇耐受性机理研究进展[J].微生物学通报,2009,36:1604–1608.
    [7] Serrano R., Kielland-Brandt M.C., Jink G.R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+ and Ca2+-ATPase [J]. Nature, 1986, 319: 689–693.
    [8] Serrano R. Structure and function of proton translocating ATPase in plasma membrane of plants and fungi [J]. Biochim. Biophs. Acta., 1988, 947: 1–28.
    [9] Coote P.J., Jones M.V., Seymout I.J., et al. Activity of the plasma H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae [J]. Microbiol., 1994, 140: 1881–1890.
    [10] Yu Z., Zhao H., Wan C., et al. The Dynamic changes of proton efflux rate in Saccharomyces pastorianus strains during high gravity of very high gravity brewing [J]. J. Inst. Brew., 2011, 117: 176?181.
    [11] Leao C., van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae [J]. Biochim. Biophys. Acta., 1984, 774: 43–48.
    [12] Stevens S., Hofmeyr J.H.S. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 1993, 38: 656–663.
    [13] Rosa M.F., Sa-Correia I. In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 1991, 57: 830–835.
    [14] Rosa M.F., Sa-Correia I. Limitations to the use of extracellular acidification for the assessment of plasma membrane H+-ATPase activity and ethanol tolerance in yeasts [J]. Enzyme Microb. Technol., 1994, 16: 808–812.
    [15] Catrwright C.P., Veazey F.J., Rose A.H. Effect of ethanol on activity of the plasma membrane ATPase in, and acculatio of glyine by Saccharomyces cerevisiae [J]. J. Gen. Microbiol., 1987, 133: 857–865.
    [16] Cartwright C.P., Jouroszek J.R., Beaven M.J., et al. Ethanol dissipates the proton motiveforce across the plasma membrane of Saccharomyces cerevisiae [J]. J. Gen. Microbiol., 1986, 132: 369–377.
    [17] Aguilera F., Peinado R.A., Millan C., et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strais [J]. Int. J. Food Microbiol., 2006, 110: 34?42.
    [18]胡纯铿.自絮凝颗粒酵母耐酒精机制研究[D].大连理工大学,大连,2003.
    [19] Aguilera F., Peinado Q.A., Millan C., et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains [J]. Int. J. Food Microbiol., 2006, 110: 34–42.
    [20] Malfeito-Ferreira M., Guerra J.P.M., Loureiro V., Proton extrusion as indicator of the adaptive state of yeast starters for the continuous production of sparkling wines [J]. Am. J. Enol. Viticult., 1990, 41: 219–222.
    [21] Meyrial V., Delgenes J.P., Davison J., et al, Relationship between effect of ethanol on proton flux across plasma membrane and ethanol tolerance, in Pichia stipitis [J]. Anaerobe, 1997, 3: 423–429.
    [22] Patino H., Edelen C., Miller J. Alternative measures of yeast vitality: use of cumulative acidification power and conductance [J]. J. Am. Soc. Brew. Chem., 1993, 51: 128–132.
    [23] Aguilera F., Peinado R.A., Millan C., et al. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains [J]. Int. J. Food. Microbil. 2006, 110: 34–42.
    [24]刘立明.光滑球拟酵母中糖酵解效率与丙酮酸合成的调控研究[D].无锡:江南大学, 2006.
    [25]董建军,史媛英,贾士儒.胞内pH法评价酵母活性的研究[J].酿酒. 2004,31:67–69.
    [26] Verbelen P.J., Dekoninck T.M.L., Saerens S.N.G., et al. Impact f pitching rate on yeast fermentation performance and beer flavor [J]. Appl. Microbiol. Biotechnol. 2009, 82: 155–167.
    [27] Collar C., Bollain C., Angioloni A. Significance of microbial transglutaminase on the sensory, mechanical and crumb grain patterns of enzyme supplemented fresh pan breads [J]. J. Food Eng., 2005, 70: 479–488.
    [28] Rechinger K.B., Siegumfeldt, H. Rapid assessment of cell viability of Lactobacillus delbrueckii subsp. Bulgaricus by measurement of intracellular pH in individual cells using fluorescence ratio imaging microscopy [J]. Int. J. Food Microbiol., 2002, 75: 53–60.
    [29] Martínez de Mara?ón I., Tourdot-Marechal R. Gervais P. Involvement of osmotic cell shrinkage on the proton extrusion rate in Saccharomyces cerevisiae [J]. Int. J. Food microbial., 2001, 67: 241–246.
    [30] Kara B. V., Simpson W. J., Hammond, J. R. M. Prediction of the fermentation performance of brewing yeast with the acidification power test [J]. J. Inst. Brew., 1988, 94: 153–158.
    [31] Fujita K., Matsuyama A., Kobyashi Y. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols [J]. FEMS Yeast Res., 2006, 6: 744–750.
    [32] Stukey J.E., McDonough V.M. Martin C.E. The OLE1 gene of Sacchromyces cerevisiae encodes the△9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene [J]. J. Biol. Chem., 265: 20144–20149.
    [33] Alexandre H., Rousseaux I., Charpentier C. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomy cerevisiae and Kloeckera apiculata [J]. FEMS Microbiol. Lett., 124: 17–21.
    [34]秦晴,胡纯铿,洪美,等.氮源影响酵母耐受超高浓度乙醇发酵胁迫条件[J].化工进展. 2010,29: 1719–1724.
    [35] Gibson B.R., Lawrence S.J., Leclaire J.P.R., et al. Yeast responses to stresses associated with industrial brewery handling [J]. FEMS Microbiol. Rev., 2007, 31: 535?569.
    [1]杜荣茂.天然食品防腐剂[J].中国食品添加剂. 2003, 2: 68–73.
    [2] Boman H.G. Faye C. Cell-free immunity in cecropia– a model system for antimicrobial protein [J]. Eur. Biochem., 1991, 201: 23–31.
    [3]吴建中.大豆蛋白的酶法水解及产物抗氧化活性的研究[D].广州:华南理工大学,2003.
    [4]杨兰.高盐稀态酱油发酵过程工艺优化及作用机理的研究[D].广州:华南理工大学,2009.
    [5]张清丽.酪蛋白活性肽对乳酸菌生长代谢及乳酸发酵影响的研究[D].广州:华南理工大学,2011.
    [6]曲永洵.大豆肽的特性及其应用[J].中国油脂,1996,21: 3–5.
    [7] Cruz S., Newbold C.J., Wallace R.J. Influence of the continuous infusinon of peptides, amino or urea on microbial activity in sheep grass hay [J]. Animal. Production, 1992, 54: 503.
    [8]张蓉真,李珑,李建才等.大豆水解蛋白对乳酸菌增殖的促进作用[J].中国粮油学报,1997,12:102–104.
    [9]赵冬梅,李小东,佟玉春,等.大豆肽对细菌及酵母生长的影响[J].农业天地,2001, 5: 35.
    [10] Verbelen P.J., Dekoninck T.M.L., Saerens S.N.G., et al. Impact f pitching rate on yeast fermentation performance and beer flavor [J]. Appl. Microbiol. Biotechnol. 2009, 82:155–167.
    [11]胡纯铿.自絮凝颗粒酵母耐酒精机制研究[D].大连理工大学,大连,2003.
    [12] Izawa S., Ikda K., Takahashi N., et al. Improvement of tolerance to freeze-thaw stress of baker’s yeast by cultivation with soy peptieds [J]. Appl. Microbiol. Biotechnol., 2007, 75: 533?538.
    [13] Ikeda K., Kitagawa S., Tada T., et al. Modification of yeast characteristics by soy peptides: cultivation with soy peptides represses the formation of lpid bodies [J]. Appl. Microbiol. Biotechnol., 2011, 89: 1971?1977.
    [14]陈向,付爱玲.膜穿透肽的应用与穿膜机制研究[J].生命的化学,2008, 88:311?313.
    [15] Ziegler A., Blatter X.L., Seelig A., et al. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. binding mechanism and thermodynamic analysis [J]. Biochem., 2003, 42: 9185?9194.
    [16] Kunze W.湖北轻工职业技术学院翻译组.啤酒工艺实用技术(第8版) [M].北京:中国轻工业出版社,2008,158?296.
    [17] Rautio J. J., Anne H. K., Heikki V., et al. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression [J]. Yeast, 2007, 24: 741?760.
    [18] Rosenfeld E., Beauvoit B. Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae [J]. Yeast, 2003, 20: 1115?1144.
    [19] Ahvenainen J. Lipid composition of aerobically and anaerobically propagated brewer’s bottom yeast [J]. J. Int. Brew., 1982, 88: 367–370.
    [20] O’Connor-Cox E.S.C., Lodolo E.J., Axcell B.C. Role of oxygen in high-gravity fermentations in the absence of unsaturated lipid biosynthesis [J]. J. Am. Soc. Brew. Chem., 1993, 51: 97–107.
    [21] You K.M., Rosenfield C.L. Knipple D.C. Ethanol tolerance in the yeast Saccharomy cerevisiae is dependent on cellular oleic acid content [J]. Appl. Eenviron. Microbiol., 1994, 69: 1499–1503.
    [22] Verbelen P. Feasibility of high cell density fermentatios [D]. Leuven: van de K.U. leuven, 2009.
    [23] Casey G.P., Magnus C.A., Ingledew W.M. High-gravity brewing: effects on nutrition on yeast compostion, fermentative ability and alcohol production [J]. Appl. Environ. Microbiol. 1984, 48: 639–646.
    [24] Ohno T., Takahashi R. Role of wort aeration in the brewing process. Part 1: Oxygen uptake and biosynthesis of lipid by the final yeast [J]. J. Int. Brew. 1986, 92: 84–87.
    [25] Yamada T., Shimoi H., Ito K. High expression of unsaturated fatty acid synthesis gene OLE1 in sake yeasts [J]. J. Bioscience Bioeng., 2005, 99: 512?516.
    [26] Viegas C.A., Cabral M.G., Teixeira M.C. Yeast adaptation to 2,4-dichlorophenoxyacetic acid involves increased membreane fatty acid saturation degree and decreased OLE1 transcription [J]. Biochem. Biophy. Res. Commun., 2005, 330: 271?278.
    [27] Jakobsson A., Westerberg R., Jacobsson A. Fatty acid elongases in mammals: their regulation and roles in metabolism [J]. Precess Lipid Res., 2006, 45: 237?249.
    [28]杨平,李敏慧,潘克俭,等.海藻糖的生物合成与分解途径及其生物学功能[J].生命的化学,2006,26: 233?236.
    [29] Dijck P.V., Colavizza D., Smet P., et al. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells [J]. Appl. Environ. Microbiol., 1995, 61: 109–115.
    [30] Odumeru J.A., D'Amore T., Russell I., et al. Alterations in fatty-acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock [J]. J. Ind. Microbiol., 1993, 11: 113–119.
    [31]万春艳,赵海锋,赵谋明.超高麦汁浓度酿造对啤酒酵母代谢的影响[J].食品与发酵工业,2010,12: 55?58.
    [32] Avonce R.M., Figueroa O., Moscorro O., et al. Overexpression of plant TPS genes in yeast and transgenic plants: high levels of trehalose accumulation [J]. Comparative Biochem. Physiol., 2000, 126: 72?80.
    [33] Serrano R., Kielland-Brandt M.C., Jink G.R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+ and Ca2+-ATPase [J]. Nature, 1986, 319: 689–693.
    [34] Serrano R. Structure and function of proton translocating ATPase in plasma membrane of plants and fungi [J]. Biochim. Biophs. Acta., 1988, 947: 1–28.
    [35] Coote P.J., Jones M.V., Seymout I.J., et al. Activity of the plasma H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae [J]. Microbiol., 1994, 140: 1881–1890.
    [36] Yu Z., Zhao H., Wan C., et al. The Dynamic changes of proton efflux rate in Saccharomyces pastorianus strains during high gravity of very high gravity brewing [J]. J. Inst. Brew., 2011, 117: 176?181.
    [37] Stevens S., Hofmeyr J.H.S. Effects of ethanol, octanoic and decanoic acids on fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 1993, 38: 656–663.
    [38] Fujita K., Matsuyama A., Kobyashi Y. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols [J]. FEMS Yeast Res., 2006, 6: 744–750.
    [39] Alves-Jr S.L., Herberts R.A., Hollatz C. Maltose and maltoriose active transport and fermentation by Saccharomyces cerevisiae [J]. J. Am. Soc. Brew. Chem., 2007, 65: 99–104.
    [40] Vidgren V., Ruohonen L., Londesborough J. Characterization and functionsl anslysis of MAL and MPH loci for maltose utilization in some ale and lager yeast strains [J]. App. Environ. Microbiol., 2005, 71: 7846–7857.
    [41] Dietvorst I., Londesborough I., Steensma H. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotrise transporter [J]. Yeast, 2005, 22: 775–788.
    [42]秦晴,胡纯铿,洪美,等.氮源影响酵母耐受超高浓度乙醇发酵胁迫条件[J].化工进展. 2010,29: 1719–1724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700