用户名: 密码: 验证码:
白藜芦醇对大鼠的抗衰老作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有机体的衰老过程中,免疫功能出现下降的趋势,特异性和非特异性免疫应答均出现相应的变化。免疫老化是一个相当复杂的过程,已有研究表明人类寿命与机体的免疫功能密切相关,免疫系统是机体保护自己免受其他物质损害的对体内外环境的适应和反应体系。同时,免疫系统在细胞和分子水平上与细胞分化发育、肿瘤、自身免疫性疾病等过程密切相关,从根本上参与了机体老化的整个过程。白藜芦醇(Resveratrol, RSV)属于非黄酮类多酚化合物,是许多种子植物包括葡萄和浆果在遇到不利环境中所产生的一种天然的植物抗毒素,实验证据表明白藜芦醇具有抗衰老、抗肿瘤、抗炎症和免疫调节的作用,可以提高老龄小鼠和人的免疫功能。
     尽管白藜芦醇长久以来因其促进健康,抵抗衰老和增强免疫的特性而受到高度评价,但是其调节免疫功能还缺乏系统的科学证据,其增强免疫功能的内在机制不甚明确。本研究拟在于探索白藜芦醇的口服吸收对年轻大鼠、中年大鼠和老年大鼠获得性免疫及谷氨酰半胱氨酸连接酶的影响,为白藜芦醇在免疫调节和抗衰老领域的应用建立数据基础。
     在本研究中,我们使用全自动生化分析仪和血液分析仪测定白藜芦醇对大鼠血液学/生物化学指标的影响,探讨生理条件下白藜芦醇是否影响大鼠的血液学和生物化学指标,结果显示白藜芦醇的口服吸收对大鼠体重及红细胞、白细胞、血小板、血红蛋白、谷丙转氨酶、谷草转氨酶、高密度脂蛋白、低密度脂蛋白等血液学指标未造成明显变化。
     因迟发型免疫应答(DTH)会随着年龄的增加而减弱,弱DTH反应或没有DTH反应常常与疾病的发病率和死亡率的升高相关联,我们采用免疫注射的方法,探讨白藜芦醇对不同年龄段大鼠的DTH应答的影响,结果显示白藜芦醇能够显著增强老龄大鼠的DTH反应。
     老龄个体体液免疫应答下降的主要表现是针对许多疫苗的免疫应答、抗体滴度的产生以及抗原抗体亲和力的持续下降,为探讨白藜芦醇对抗体产生的影响,我们采用免疫注射KLH后ELISA法检测大鼠血清不同时间点抗KLH特异性IgG、IgG1和IgG2抗体的变化,探讨其对体液免疫应答的影响,结果显示白藜芦醇显著增强老龄大鼠的抗KLH特异性IgG、IgG1和IgG2抗体的产生,明显提高了老龄大鼠对抗原的反应性,增强了体液免疫应答反应。
     在衰老过程中,T淋巴细胞的总数量和各亚群所占的比例发生显著的变化,通过对大鼠脾脏中T细胞和B细胞组成进行分析,探讨白藜芦醇可能对细胞免疫功能产生的影响;检测口服白藜芦醇后大鼠脾细胞对T细胞有丝分裂原ConA、B细胞有丝分裂原LPS和特异性抗原KLH刺激后的增殖情况,探讨其对细胞增殖可能的影响;结果显示白藜芦醇比较明显的提高老龄大鼠CD4+T细胞的数量,提示白藜芦醇对老龄大鼠的细胞免疫应答可能起到调节的作用。
     谷胱甘肽(GSH)在保持细胞的氧化还原状态中发挥十分重要的作用,GSH的水平随着衰老发生的变化是衰老研究中的热点问题,谷氨酰-L-半胱氨酸连接酶(glutamyl-L-cysteineligase,GCL),以前被称为γ谷氨酰半胱氨酸合成酶(γ-glutamylcysteine synthetase,γ-GCS),是GSH从头合成过程中催化酶促反应第一步反应的催化酶,也是谷胱甘肽从头合成过程中的限速酶,我们通过荧光定量PCR、Western Blot和酶活分析等方法研究大鼠心脏、脑和肝脏中GSH代谢过程中的关键酶谷氨酰半胱氨酸连接酶(GCL)催化亚基(GCLC)和调节亚基(GCLM)在不同年龄段中的变化及白藜芦醇对老龄大鼠各组织中GCL基因表达、蛋白含量和酶活性的的影响,结果显示在肝脏、心脏和脑组织中谷氨酰半胱氨酸连接酶催化亚基和调节亚基的基因表达和蛋白含量随着年龄增长,在中年组达到较高的水平,至老年组出现明显的下降,白藜芦醇能够显著提高老龄大鼠肝脏、心脏、脑中谷氨酰半胱氨酸连接酶催化亚基和调节亚基的基因表达、蛋白含量和酶活性水平。
     综合以上实验结果,我们认为适量的白藜芦醇口服吸收在不影响血液学指标和体重的情况下,在老龄Wistar大鼠中通过增强体液免疫应答和细胞免疫应答能够起到的免疫调节和保护作用;通过调节老龄大鼠中谷氨酰半胱氨酸连接酶的含量和酶活性提示白藜芦醇可能通过调节谷氨酰半胱氨酸连接酶进而调节GSH的含量而发挥抗衰老的效应。
     本实验首次采用多种技术手段和方法从多个角度研究白藜芦醇对老龄个体适应性免疫应答和衰老过程中的重要标记物GSH代谢关键酶谷氨酰半胱氨酸连接酶的影响,在一定程度上揭示了白藜芦醇的免疫调节和保护作用,为白藜芦醇在免疫功能调节和抗衰老研究中提供数据基础。
Aging affects the immune system, leading to diminished overall functions. Thisphenomenon has been termed immunosenescence, which is clearly manifested byage-dependent defects in both humoral and cell-mediated immune responses.Resveratrol (3,5,40-trihydroxystilbene; RSV), a polyphenol, is a bioactive substancewith multiple functions, and occurs naturally in several plant species includinggrapevines and berries. Accumulating data have suggested that RSV hasanti-carcinogenic, anti-inflammatory, anti-microbial, anti-viral and anti-oxidantproperties that might be relevant to chronic diseases and/or longevity in humans.
     However, the mechanism underlying these observed anti-aging andimmunoregulation effects is poorly understood. The present study was undertaken toaddress the effect of dietary intake of resveratrol on the adaptive immunity andexpression of the glutamate cysteine ligase in aged rats.
     The hematologic indexes of the blood and the biochemical parameters of theserum were analyzed using flow cytometry and enzymatic analysis. Body weightswere not significantly affected by dietary RSV supplementation.The results revealedthat haemotological indice and biochemical parameters including ALT/AST activitiesand TG, TC, HDL and LDL levels of young, middle-aged and aged rats all remainedsimilar among the diet groups, suggesting that general physiology of rats was notaffected by dietary RSV supplementation.
     Among in vivo parameters of T cell-mediated immune response, thedelayed-type hypersensitivity (DTH) reaction is depressed with aging. Particularly,low or no DTH responses are often predictive of morbidity and mortality. The Tcell-dependent humoral response (antigen-specific antibody production) wasmeasured after immunization of rats with KLH. The response was calculated as thedifference in ear thickness of the rats before and after challenge with a recall antigen.Dietary RSV supplementation significantly affected the DTH response in aged rats.
     Although the B cell compartment of the immune system is only influenced to a minor extent by immuno-senescence, antigen-specific responses to vaccination arealtered with aging. The levels of KLH-specific IgG, IgG1and IgG2in the bloodwere measured by an enzyme-linked immunosorbent assay (ELISA). Levels ofanti-KLH IgG, anti-KLH IgG1and anti-KLH IgG2were both significantlyincreased in aged rats fed RSV-supplemented diet.
     One of the best characterized changes commonly observed in elderly subjectsand old mice is the deficiencies in T cell functions that are exemplified by decreasedT cell memory and exhaustion of the na ve T cell population with involution of thethymus. The percentages of major T and B cell subsets in spleen were assayed usingfluorescence-activated cell sorting (FACS) analysis. Proliferation of splenocytes werestimulated by ConA, LPS and KLH. RSV supplementation caused a significantincrease in the percentage of T helper cells (CD4+) in spleen from aged rats.
     GSH plays multiple physiological functions, including maintenance of cellularreduction-oxidation (redox) state, lipid peroxides and non-enzymatic scavenging offree radicals. GSH is synthesized de novo in a two-step process catalyzed by glutamate cysteineligase (GCL, EC6.3.2.2), formerly known as gamma-glutamylcysteine synthase (GCS), and GSHsynthase (GS, EC6.3.2.3). GCL catalyzes the first and rate-limiting step, in which glutamate isligated with cysteine to form-glutaamylcystein (-GC), which is rapidly linked to glycine to formGSH via action of GS. Semi-quantative real time-PCR (qRT-PCR) was used to assay themRNA expression of GCLc and GCLm subunit. GCL activity was determined by afluorescence assay. Protein contents were determined by Western blotting. Theseresults indicated that the decrease in GCL activity in aged rats could be reversed byRSV. Oral administration of RSV induced a remarkable increase in mRNA levels andprotein contents in livers, hearts and brains.
     In summary, this study highlights the anti-aging and immunostimulatoryproperties of RSV via enhancing in vivo humoral and cell-mediated immuneresponses in aged rats. It also suggests that the anti-oxidant properties of RSV viaenhancing GCL activity in vivo in aged rats. It also boosts the notion that late onset nutritional interventions with RSV may help aged organisms to generate an anti-agingeffect and improved redox state.
引文
1. Ferrero ME, Bertelli AA, Pellegatta F, Fulgenzi A, Corsi MM, Bertelli A: Phytoalexinresveratrol (3-4'-5-trihydroxystilbene) modulates granulocyte and monocyte endothelialadhesion. Transplant Proc1998,30(8):4191-4193.
    2.张兰胜,刘光明:白藜芦醇的研究概述.大理学院学报:综合版2007,6(4):72-74.
    3.陈尚武,马会勤:葡萄酒中的白藜芦醇及其衍生物.食品与发酵工业1999,25(4):53-55.
    4.周美娟,朱春燕:白藜芦醇生物学活性研究进展.现代生物医学进展2009,8(11):2140-2142.
    5. Mark L, Nikfardjam MS, Avar P, Ohmacht R: A validated HPLC method for the quantitativeanalysis of trans-resveratrol and trans-piceid in Hungarian wines. J Chromatogr Sci2005,43(9):445-449.
    6. Du B, Ohmichi M, Takahashi K, Kawagoe J, Ohshima C, Igarashi H, Mori-Abe A, Saitoh M,Ohta T, Ohishi A et al: Both estrogen and raloxifene protect against beta-amyloid-inducedneurotoxicity in estrogen receptor alpha-transfected PC12cells by activation of telomeraseactivity via Akt cascade. J Endocrinol2004,183(3):605-615.
    7. Austin MB, Bowman ME, Ferrer JL, Schroder J, Noel JP: An aldol switch discovered instilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol2004,11(9):1179-1194.
    8. Ferrer JL, Austin MB, Stewart C, Jr., Noel JP: Structure and function of enzymes involved inthe biosynthesis of phenylpropanoids. Plant Physiol Biochem2008,46(3):356-370.
    9. Delaval B, Birnbaum D: A cell cycle hypothesis of cooperative oncogenesis (Review). Int JOncol2007,30(5):1051-1058.
    10. Jeong WS, Kim IW, Hu R, Kong AN: Modulatory properties of various naturalchemopreventive agents on the activation of NF-kappaB signaling pathway. Pharm Res2004,21(4):661-670.
    11.郑松柏,朱汉民(Ed.):老年医学概论:上海:复旦大学出版社;2010.
    12. Pervaiz S, Holme AL: Resveratrol: its biologic targets and functional activity. Antioxid RedoxSignal2009,11(11):2851-2897.
    13. Wong YT, Gruber J, Jenner AM, Tay FE, Ruan R: Chronic resveratrol intake reversespro-inflammatory cytokine profile and oxidative DNA damage in ageing hybrid mice. Age(Dordr)2011,33(3):229-246.
    14. Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A: Resveratrolprolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. CurrBiol2006,16(3):296-300.
    15. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D: Sirtuin activatorsmimic caloric restriction and delay ageing in metazoans. Nature2004,430(7000):686-689.
    16. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L: Effects of resveratrol on lifespanin Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev2007,128(10):546-552.
    17. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS,Lopez-Lluch G, Lewis K et al: Resveratrol improves health and survival of mice on ahigh-calorie diet. Nature2006,444(7117):337-342.
    18. Sohal RS, Mockett RJ, Orr WC: Mechanisms of aging: an appraisal of the oxidative stresshypothesis. Free Radic Biol Med2002,33(5):575-586.
    19. Wong YT, Gruber J, Jenner AM, Ng MP, Ruan R, Tay FE: Elevation of oxidative-damagebiomarkers during aging in F2hybrid mice: protection by chronic oral intake of resveratrol.Free Radic Biol Med2009,46(6):799-809.
    20. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P,Kisielewski A, Zhang LL et al: Small molecule activators of sirtuins extend Saccharomycescerevisiae lifespan. Nature2003,425(6954):191-196.
    21. Davis JM, Murphy EA, Carmichael MD, Davis B: Quercetin increases brain and musclemitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol2009,296(4):R1071-1077.
    22. Kennedy BK, Austriaco NR, Jr., Zhang J, Guarente L: Mutation in the silencing gene SIR4can delay aging in S. cerevisiae. Cell1995,80(3):485-496.
    23. Kaeberlein M, McVey M, Guarente L: The SIR2/3/4complex and SIR2alone promotelongevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev1999,13(19):2570-2580.
    24. Lin SJ, Defossez PA, Guarente L: Requirement of NAD and SIR2for life-span extension bycalorie restriction in Saccharomyces cerevisiae. Science2000,289(5487):2126-2128.
    25. Tissenbaum HA, Guarente L: Increased dosage of a sir-2gene extends lifespan inCaenorhabditis elegans. Nature2001,410(6825):227-230.
    26. Borra MT, Smith BC, Denu JM: Mechanism of human SIRT1activation by resveratrol. J BiolChem2005,280(17):17187-17195.
    27. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N,Milne J, Lambert P, Elliott P et al: Resveratrol improves mitochondrial function and protectsagainst metabolic disease by activating SIRT1and PGC-1alpha. Cell2006,127(6):1109-1122.
    28.夏立志,胡秋玲:白藜芦醇对老年大鼠心肌细胞线粒体细胞色素C氧化酶表达的影响.中国老年学杂志2012,32(013):2771-2772.
    29. Mouchiroud L, Molin L, Dalliere N, Solari F: Life span extension by resveratrol, rapamycin,and metformin: The promise of dietary restriction mimetics for an healthy aging. Biofactors2010,36(5):377-382.
    30.姚煜,田涛,南克俊:白藜芦醇抗衰老免疫机制的研究.中药材2006,29(5):464-467.
    31. Golkar L, Ding XZ, Ujiki MB, Salabat MR, Kelly DL, Scholtens D, Fought AJ, Bentrem DJ,Talamonti MS, Bell RH et al: Resveratrol inhibits pancreatic cancer cell proliferation throughtranscriptional induction of macrophage inhibitory cytokine-1. J Surg Res2007,138(2):163-169.
    32. Venkatachalam K, Mummidi S, Cortez DM, Prabhu SD, Valente AJ, Chandrasekar B:Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17expression in primary mouse cardiac fibroblasts. Am J Physiol Heart Circ Physiol2008,294(5):H2078-2087.
    33. Upadhyay G, Singh AK, Kumar A, Prakash O, Singh MP: Resveratrol modulatespyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes andoxidative stress. Eur J Pharmacol2008,596(1-3):146-152.
    34. Imler TJ, Jr., Petro TM: Decreased severity of experimental autoimmune encephalomyelitisduring resveratrol administration is associated with increased IL-17+IL-10+T cells, CD4(-)IFN-gamma+cells, and decreased macrophage IL-6expression. Int Immunopharmacol2009,9(1):134-143.
    35. Moon SO, Kim W, Sung MJ, Lee S, Kang KP, Kim DH, Lee SY, So JN, Park SK: Resveratrolsuppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells.Mol Pharmacol2006,70(1):112-119.
    36. Birrell MA, McCluskie K, Wong S, Donnelly LE, Barnes PJ, Belvisi MG: Resveratrol, anextract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatorymediators through an NF-kappaB-independent mechanism. FASEB J2005,19(7):840-841.
    37. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O,Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E et al: Regulation of Treg functionality byacetylation-mediated Foxp3protein stabilization. Blood2010,115(5):965-974.
    38. Docherty JJ, Sweet TJ, Bailey E, Faith SA, Booth T: Resveratrol inhibition of varicella-zostervirus replication in vitro. Antiviral Res2006,72(3):171-177.
    39. Li DP, Chen Q, Yi L:[Effects of yiqi huoxue method on cardiac function in patients withcongestive heart failure]. Zhongguo Zhong Xi Yi Jie He Za Zhi2006,26(6):552-554.
    40. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD: Overexpression of humanpapillomavirus type16oncoproteins enhances hypoxia-inducible factor1alpha proteinaccumulation and vascular endothelial growth factor expression in human cervical carcinomacells. Clin Cancer Res2007,13(9):2568-2576.
    41. Heredia A, Davis C, Redfield R: Synergistic inhibition of HIV-1in activated and restingperipheral blood mononuclear cells, monocyte-derived macrophages, and selecteddrug-resistant isolates with nucleoside analogues combined with a natural product, resveratrol.J Acquir Immune Defic Syndr2000,25(3):246-255.
    42. James JS: Resveratrol: why it matters in HIV. AIDS Treat News2006(420):3-5.
    43. Krishnan V, Zeichner SL: Host cell gene expression during human immunodeficiency virustype1latency and reactivation and effects of targeting genes that are differentially expressedin viral latency. J Virol2004,78(17):9458-9473.
    44.陈明亮,易龙,金鑫,谢琦,周曦,陈春烨,张婷,王丽,糜漫天:白藜芦醇对TNF-α诱导的血管内皮细胞炎性反应的影响.第三军医大学学报2012,13:000.
    45.蔡德,李雄,谢华金:白藜芦醇对骨髓损伤的修复作用.广东医学院学报2012,4:005.
    46.胡亮杉,孙茂本,曾雅丽,李玉华,邓兰,郭坤元:白藜芦醇增强TRAIL对人髓系白血病KG-1a细胞的细胞毒作用.中国免疫学杂志2011,27(3):217-219.
    47.张敏,金呈强,王文涓,刘仿:白藜芦醇对JurcatT细胞分化为Th1/Th2细胞作用的影响及机制.山东医药2011,51(7):32-34.
    48. Wu SL, Sun ZJ, Yu L, Meng KW, Qin XL, Pan CE: Effect of resveratrol and in combinationwith5-FU on murine liver cancer. World J Gastroenterol2004,10(20):3048-3052.
    49. Puissant A, Grosso S, Jacquel A, Belhacene N, Colosetti P, Cassuto JP, Auberger P: Imatinibmesylate-resistant human chronic myelogenous leukemia cell lines exhibit high sensitivity tothe phytoalexin resveratrol. FASEB J2008,22(6):1894-1904.
    50. Gui J, Mustachio LM, Su DM, Craig RW: Thymus Size and Age-related Thymic Involution:Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis2012,3(3):280-290.
    51. Chinn IK, Blackburn CC, Manley NR, Sempowski GD: Changes in primary lymphoid organswith aging. Semin Immunol2012,24(5):309-320.
    52.孙晓生,杨柳:抗衰老机制与药物的研究进展.广州中医药大学学报2009,26(6):593-597.
    53.毕明刚:胸腺淋巴细胞分化与Notch信号转导通路的关系及六味地黄汤的作用研究.中国人民解放军军事医学科学院2004.
    54. Walford RL: Auto-immunity and aging. J Gerontol1962,17:281-285.
    55. Walford RL: Immunologic theory of aging: current status. Fed Proc1974,33(9):2020-2027.
    56. Bruunsgaard H, Andersen-Ranberg K, Hjelmborg J, Pedersen BK, Jeune B: Elevated levels oftumor necrosis factor alpha and mortality in centenarians. Am J Med2003,115(4):278-283.
    57. Henriksen FW, Hancke S: Percutaneous cystogastrostomy for chronic pancreatic pseudocyst.Br J Surg1994,81(10):1525-1528.
    58. Holmes GE, Bernstein C, Bernstein H: Oxidative and other DNA damages as the basis ofaging: a review. Mutat Res1992,275(3-6):305-315.
    59. Meydani SN, Wu D, Santos MS, Hayek MG: Antioxidants and immune response in agedpersons: overview of present evidence. Am J Clin Nutr1995,62(6Suppl):1462S-1476S.
    60. Lesourd BM, Meaume S: Cell mediated immunity changes in ageing, relative importance ofcell subpopulation switches and of nutritional factors. Immunol Lett1994,40(3):235-242.
    61. Negoro S, Hara H, Miyata S, Saiki O, Tanaka T, Yoshizaki K, Igarashi T, Kishimoto S:Mechanisms of age-related decline in antigen-specific T cell proliferative response: IL-2receptor expression and recombinant IL-2induced proliferative response of purifiedTac-positive T cells. Mech Ageing Dev1986,36(3):223-241.
    62. Ginaldi L, De Martinis M, D'Ostilio A, Marini L, Loreto MF, Quaglino D: The immunesystem in the elderly: III. Innate immunity. Immunol Res1999,20(2):117-126.
    63. Linton PJ, Dorshkind K: Age-related changes in lymphocyte development and function. NatImmunol2004,5(2):133-139.
    64. Wils EJ, Cornelissen JJ: Thymopoiesis following allogeneic stem cell transplantation: newpossibilities for improvement. Blood Rev2005,19(2):89-98.
    65. Zhao BL, Duan SJ, Xin WJ: Lymphocytes can produce respiratory burst and oxygen radicalsas polymorphonuclear leukocytes. Cell Biophys1990,17(3):205-211.
    66. Grever MR, Thompson VN, Balcerzak SP, Sagone AL, Jr.: The effect of oxidant stress onhuman lymphocyte cytotoxicity. Blood1980,56(2):284-288.
    67.徐济民:老年人T细胞及亚群变化的初步探讨.中华老年医学杂志1982,1:9-12.
    68.单颖,姜东,李淑云,王维忠:老年人T细胞亚群的Meta分析.中国老年学杂志2007,19(10):1905-1907.
    69. Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J: Age-relatedCD8T cell clonal expansions constrict CD8T cell repertoire and have the potential to impairimmune defense. J Exp Med2004,200(10):1347-1358.
    70.刘学员,卢水焕,唐慧明:老年患者淋巴细胞亚群及其相关因素分析[J].中国实用内科杂志2008,28(1):100-102.
    71. Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, Marcato A, Passeri G,Ortolani C, Forti E et al: Lymphocyte subsets and natural killer cell activity in healthy oldpeople and centenarians. Blood1993,82(9):2767-2773.
    72.吴迎星,谭家余,吴赛珠:老年人T淋巴细胞亚群的变化规律.中华实用医学2002,22(4):9-9.
    73.马聪,向丹:老年及老年前期正常人外周血T淋巴细胞亚群变化的研究.中国老年学杂志1995,15(1):30-32.
    74. Tomoiu A, Larbi A, Fortin C, Dupuis G, Fulop T, Jr.: Do membrane rafts contribute to humanimmunosenescence? Ann N Y Acad Sci2007,1100:98-110.
    75.杜星琼,黄翠,边艳青:衰老与适应性免疫.医学信息:上旬刊2011,24(11):3487-3488.
    76. Miller JP, Allman D: The decline in B lymphopoiesis in aged mice reflects loss of very earlyB-lineage precursors. J Immunol2003,171(5):2326-2330.
    77. Lu L, Chaudhury P, Osmond DG: Regulation of cell survival during B lymphopoiesis:apoptosis and Bcl-2/Bax content of precursor B cells in bone marrow of mice with alteredexpression of IL-7and recombinase-activating gene-2. J Immunol1999,162(4):1931-1940.
    78. Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-LoebensteinB: Biology of immune responses to vaccines in elderly persons. Clin Infect Dis2008,46(7):1078-1084.
    79. Levin MJ: Immune senescence and vaccines to prevent herpes zoster in older persons. CurrOpin Immunol2012,24(4):494-500.
    80. Brubaker AL, Palmer JL, Kovacs EJ: Age-related Dysregulation of Inflammation and InnateImmunity: Lessons Learned from Rodent Models. Aging Dis2011,2(5):346-360.
    81.张李峰:红芪和黄芪的免疫调节作用及抗免疫老化机制比较研究.兰州大学;2012.
    82. Wang J, Geiger H, Rudolph KL: Immunoaging induced by hematopoietic stem cell aging.Curr Opin Immunol2011,23(4):532-536.
    83. Min H, Montecino-Rodriguez E, Dorshkind K: Effects of aging on the common lymphoidprogenitor to pro-B cell transition. J Immunol2006,176(2):1007-1012.
    84. Montecino-Rodriguez E, Dorshkind K: To T or not to T: reassessing the common lymphoidprogenitor. Nat Immunol2003,4(2):100-101.
    85. Van der Put E, Sherwood EM, Blomberg BB, Riley RL: Aged mice exhibit distinct B cellprecursor phenotypes differing in activation, proliferation and apoptosis. Exp Gerontol2003,38(10):1137-1147.
    86. Johnson SA, Rozzo SJ, Cambier JC: Aging-dependent exclusion of antigen-inexperiencedcells from the peripheral B cell repertoire. J Immunol2002,168(10):5014-5023.
    87. Guerrettaz LM, Johnson SA, Cambier JC: Acquired hematopoietic stem cell defects determineB-cell repertoire changes associated with aging. Proc Natl Acad Sci U S A2008,105(33):11898-11902.
    88. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL, Bryder D, Rossi DJ:Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potentialduring aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A2010,107(12):5465-5470.
    89. de Haan G, Nijhof W, Van Zant G: Mouse strain-dependent changes in frequency andproliferation of hematopoietic stem cells during aging: correlation between lifespan andcycling activity. Blood1997,89(5):1543-1550.
    90. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL: Cell intrinsicalterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A2005,102(26):9194-9199.
    91. Hotta T, Hirabayashi N, Utsumi M, Murate T, Yamada H: Age-related changes in the functionof hemopoietic stroma in mice. Exp Hematol1980,8(7):933-936.
    92. Sudo K, Ema H, Morita Y, Nakauchi H: Age-associated characteristics of murinehematopoietic stem cells. J Exp Med2000,192(9):1273-1280.
    93. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA: Aginghematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol2007,5(8):e201.
    94. Muller-Sieburg CE, Riblet R: Genetic control of the frequency of hematopoietic stem cells inmice: mapping of a candidate locus to chromosome1. J Exp Med1996,183(3):1141-1150.
    95. Phillips RL, Reinhart AJ, Van Zant G: Genetic control of murine hematopoietic stem cell poolsizes and cycling kinetics. Proc Natl Acad Sci U S A1992,89(23):11607-11611.
    96. Kuranda K, Vargaftig J, de la Rochere P, Dosquet C, Charron D, Bardin F, Tonnelle C,Bonnet D, Goodhardt M: Age-related changes in human hematopoietic stem/progenitor cells.Aging Cell2011,10(3):542-546.
    97. Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, LaneJT, BJ OK, Sharp JG: Changes in human bone marrow fat content associated with changes inhematopoietic stem cell numbers and cytokine levels with aging. J Anat2011,219(5):574-581.
    98. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL: The aging ofhematopoietic stem cells. Nat Med1996,2(9):1011-1016.
    99. Chen J, Astle CM, Harrison DE: Genetic regulation of primitive hematopoietic stem cellsenescence. Exp Hematol2000,28(4):442-450.
    100. Harrison DE: Long-term erythropoietic repopulating ability of old, young, and fetal stem cells.J Exp Med1983,157(5):1496-1504.
    101. Johnson KM, Owen K, Witte PL: Aging and developmental transitions in the B cell lineage.Int Immunol2002,14(11):1313-1323.
    102. Labrie JE,3rd, Sah AP, Allman DM, Cancro MP, Gerstein RM: Bone marrowmicroenvironmental changes underlie reduced RAG-mediated recombination and B cellgeneration in aged mice. J Exp Med2004,200(4):411-423.
    103. Kline GH, Hayden TA, Klinman NR: B cell maintenance in aged mice reflects both increasedB cell longevity and decreased B cell generation. J Immunol1999,162(6):3342-3349.
    104. Alter-Wolf S, Blomberg BB, Riley RL: Old mice retain bone marrow B1progenitors, but loseB2precursors, and exhibit altered immature B cell phenotype and light chain usage. MechAgeing Dev2009,130(6):401-408.
    105. Barber CL, Montecino-Rodriguez E, Dorshkind K: Reduced production of B-1-specifiedcommon lymphoid progenitors results in diminished potential of adult marrow to generate B-1cells. Proc Natl Acad Sci U S A2011,108(33):13700-13704.
    106. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL: Deficiencies inDNA damage repair limit the function of haematopoietic stem cells with age. Nature2007,447(7145):725-729.
    107. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP,Lazo-Kallanian S, Williams IR, Sears C et al: FoxOs are critical mediators of hematopoieticstem cell resistance to physiologic oxidative stress. Cell2007,128(2):325-339.
    108. Shipounova IN, Svinareva DA, Petrova TV, Lyamzaev KG, Chernyak BV, Drize NI,Skulachev VP: Reactive oxygen species produced in mitochondria are involved inage-dependent changes of hematopoietic and mesenchymal progenitor cells in mice. A studywith the novel mitochondria-targeted antioxidant SkQ1. Mech Ageing Dev2010,131(6):415-421.
    109. Jang YY, Sharkis SJ: A low level of reactive oxygen species selects for primitivehematopoietic stem cells that may reside in the low-oxygenic niche. Blood2007,110(8):3056-3063.
    110. French RA, Broussard SR, Meier WA, Minshall C, Arkins S, Zachary JF, Dantzer R, KelleyKW: Age-associated loss of bone marrow hematopoietic cells is reversed by GH andaccompanies thymic reconstitution. Endocrinology2002,143(2):690-699.
    111. Kucia M, Shin DM, Liu R, Ratajczak J, Bryndza E, Masternak MM, Bartke A, Ratajczak MZ:Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicatesthat chronically elevated Igf1level accelerates age-dependent exhaustion of pluripotent stemcell pool: a novel view on aging. Leukemia2011,25(8):1370-1374.
    112. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF:Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression inhuman thymus increases with age and is associated with thymic atrophy. J Immunol2000,164(4):2180-2187.
    113. Rosen P: Aging of the immune system. Med Hypotheses1985,18(2):157-161.
    114. Liu Y, Johnson SM, Fedoriw Y, Rogers AB, Yuan H, Krishnamurthy J, Sharpless NE:Expression of p16(INK4a) prevents cancer and promotes aging in lymphocytes. Blood2011,117(12):3257-3267.
    115. Eshraghi P, Rudolph KL: Lineage-specific pleiotropy in immune aging. Blood2011,117(12):3250-3251.
    116.陈海英,孔月红,蔡兆明:大鼠胸腺增龄变化的形态学研究.医学理论与实践2005,18(2).
    117.冯仁田,潘宏志: Balb/C小鼠免疫系统结构与功能的增龄性变化.中华老年医学杂志2000,19(003):174-178.
    118.毛海兵:胸腺的结构及生理作用.生物学通报1994,29(4):16-17.
    119. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, HaaseAT, Feinberg MB, Sullivan JL et al: Changes in thymic function with age and during thetreatment of HIV infection. Nature1998,396(6712):690-695.
    120. Mitchell WA, Lang PO, Aspinall R: Tracing thymic output in older individuals. Clin ExpImmunol2010,161(3):497-503.
    121. Taub DD, Longo DL: Insights into thymic aging and regeneration. Immunol Rev2005,205:72-93.
    122. Zhu M, Fu YX: Coordinating development of medullary thymic epithelial cells. Immunity2008,29(3):386-388.
    123. Min H, Montecino-Rodriguez E, Dorshkind K: Reassessing the role of growth hormone andsex steroids in thymic involution. Clin Immunol2006,118(1):117-123.
    124. Montecino-Rodriquez E, Min H, Dorshkind K: Reevaluating current models of thymicinvolution. Semin Immunol2005,17(5):356-361.
    125. Mackall CL, Punt JA, Morgan P, Farr AG, Gress RE: Thymic function in young/old chimeras:substantial thymic T cell regenerative capacity despite irreversible age-associated thymicinvolution. Eur J Immunol1998,28(6):1886-1893.
    126. Zhu X, Gui J, Dohkan J, Cheng L, Barnes PF, Su DM: Lymphohematopoietic progenitors donot have a synchronized defect with age-related thymic involution. Aging Cell2007,6(5):663-672.
    127. Klug DB, Crouch E, Carter C, Coghlan L, Conti CJ, Richie ER: Transgenic expression ofcyclin D1in thymic epithelial precursors promotes epithelial and T cell development. JImmunol2000,164(4):1881-1888.
    128. Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, Vaidya H, Sheridan JM, StenhouseFH, Heussen R, Smith AJ et al: Foxn1regulates lineage progression in cortical and medullarythymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet2011,7(11):e1002348.
    129. Sempowski GD, Rhein ME, Scearce RM, Haynes BF: Leukemia inhibitory factor is amediator of Escherichia coli lipopolysaccharide-induced acute thymic atrophy. Eur J Immunol2002,32(11):3066-3070.
    130. Billard MJ, Gruver AL, Sempowski GD: Acute endotoxin-induced thymic atrophy ischaracterized by intrathymic inflammatory and wound healing responses. PLoS One2011,6(3):e17940.
    131. Kaestner KH, Knochel W, Martinez DE: Unified nomenclature for the winged helix/forkheadtranscription factors. Genes Dev2000,14(2):142-146.
    132. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T: New member of the winged-helixprotein family disrupted in mouse and rat nude mutations. Nature1994,372(6501):103-107.
    133. Chen L, Xiao S, Manley NR: Foxn1is required to maintain the postnatal thymicmicroenvironment in a dosage-sensitive manner. Blood2009,113(3):567-574.
    134. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T: Twogenetically separable steps in the differentiation of thymic epithelium. Science1996,272(5263):886-889.
    135. Itoi M, Tsukamoto N, Amagai T: Expression of Dll4and CCL25in Foxn1-negative epithelialcells in the post-natal thymus. Int Immunol2007,19(2):127-132.
    136. Ortman CL, Dittmar KA, Witte PL, Le PT: Molecular characterization of the mouse involutedthymus: aberrations in expression of transcription regulators in thymocyte and epithelialcompartments. Int Immunol2002,14(7):813-822.
    137. Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB, Witte PL, Le PT:Overexpression of Foxn1attenuates age-associated thymic involution and prevents theexpansion of peripheral CD4memory T cells. Blood2011,118(22):5723-5731.
    138. Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C: Development of the thymus requiressignaling through the fibroblast growth factor receptor R2-IIIb. J Immunol2001,167(4):1954-1961.
    139. Suniara RK, Jenkinson EJ, Owen JJ: An essential role for thymic mesenchyme in early T celldevelopment. J Exp Med2000,191(6):1051-1056.
    140. Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J, Rubin JS, Rudensky A,Farr AG: Regulation of thymic epithelium by keratinocyte growth factor. Blood2002,100(9):3269-3278.
    141. Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y,Krenger W, Blazar BR et al: Keratinocyte growth factor (KGF) enhances postnatal T-celldevelopment via enhancements in proliferation and function of thymic epithelial cells. Blood2007,109(9):3803-3811.
    142. Rossi S, Blazar BR, Farrell CL, Danilenko DM, Lacey DL, Weinberg KI, Krenger W,Hollander GA: Keratinocyte growth factor preserves normal thymopoiesis and thymicmicroenvironment during experimental graft-versus-host disease. Blood2002,100(2):682-691.
    143. Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG: FGFR2IIIb signaling regulatesthymic epithelial differentiation. Dev Dyn2007,236(12):3459-3471.
    144. Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J,Kochman AA, Eng JM et al: Keratinocyte growth factor (KGF) is required for postnatalthymic regeneration. Blood2006,107(6):2453-2460.
    145. Min D, Panoskaltsis-Mortari A, Kuro OM, Hollander GA, Blazar BR, Weinberg KI: Sustainedthymopoiesis and improvement in functional immunity induced by exogenous KGFadministration in murine models of aging. Blood2007,109(6):2529-2537.
    146. Sarkar D, Fisher PB: Molecular mechanisms of aging-associated inflammation. Cancer Lett2006,236(1):13-23.
    147. Caruso C, Lio D, Cavallone L, Franceschi C: Aging, longevity, inflammation, and cancer. AnnN Y Acad Sci2004,1028:1-13.
    148. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP,Leeuwenburgh C: Molecular inflammation: underpinnings of aging and age-related diseases.Ageing Res Rev2009,8(1):18-30.
    149. Gordon S: The macrophage: past, present and future. Eur J Immunol2007,37Suppl1:S9-17.
    150. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system indiverse forms of macrophage activation and polarization. Trends Immunol2004,25(12):677-686.
    151. Adamson R: Role of macrophages in normal wound healing: an overview. J Wound Care2009,18(8):349-351.
    152. Gomez CR, Acuna-Castillo C, Nishimura S, Perez V, Escobar A, Salazar-Onfray F, Sabaj V,Torres C, Walter R, Sierra F: Serum from aged F344rats conditions the activation of youngmacrophages. Mech Ageing Dev2006,127(3):257-263.
    153. Wang CQ, Udupa KB, Xiao H, Lipschitz DA: Effect of age on marrow macrophage numberand function. Aging (Milano)1995,7(5):379-384.
    154. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E,Stephens JM, Dixit VD: The NLRP3inflammasome instigates obesity-induced inflammationand insulin resistance. Nat Med2011,17(2):179-188.
    155. Tasat DR, Mancuso R, O'Connor S, Molinari B: Age-dependent change in reactive oxygenspecies and nitric oxide generation by rat alveolar macrophages. Aging Cell2003,2(3):159-164.
    156. Shaik-Dasthagirisaheb YB, Kantarci A, Gibson FC,3rd: Immune response of macrophagesfrom young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis.Immun Ageing2010,7:15.
    157. Kovacs EJ, Plackett TP, Witte PL: Estrogen replacement, aging, and cell-mediated immunityafter injury. J Leukoc Biol2004,76(1):36-41.
    158. Murciano C, Villamon E, Yanez A, O'Connor JE, Gozalbo D, Gil ML: Impaired immuneresponse to Candida albicans in aged mice. J Med Microbiol2006,55(Pt12):1649-1656.
    159. Takeuchi O, Hoshino K, Akira S: Cutting edge: TLR2-deficient and MyD88-deficient miceare highly susceptible to Staphylococcus aureus infection. J Immunol2000,165(10):5392-5396.
    160. Kong KF, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR:Dysregulation of TLR3impairs the innate immune response to West Nile virus in the elderly.J Virol2008,82(15):7613-7623.
    161. Kawai T, Akira S: TLR signaling. Cell Death Differ2006,13(5):816-825.
    162. Gong J, Wei T, Stark RW, Jamitzky F, Heckl WM, Anders HJ, Lech M, Rossle SC: Inhibitionof Toll-like receptors TLR4and7signaling pathways by SIGIRR: a computational approach.J Struct Biol2010,169(3):323-330.
    163. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, Bondada S:Molecular basis of age-associated cytokine dysregulation in LPS-stimulated macrophages. JLeukoc Biol2006,79(6):1314-1327.
    164. Gerlis LM: Bizarre presentation and long survival after a gunshot wound involving the heart.Int J Cardiol2006,108(3):408-409.
    165. Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS: Senescence regulates macrophageactivation and angiogenic fate at sites of tissue injury in mice. J Clin Invest2007,117(11):3421-3426.
    166. Sebastian C, Herrero C, Serra M, Lloberas J, Blasco MA, Celada A: Telomere shortening andoxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol2009,183(4):2356-2364.
    167. Ding A, Hwang S, Schwab R: Effect of aging on murine macrophages. Diminished responseto IFN-gamma for enhanced oxidative metabolism. J Immunol1994,153(5):2146-2152.
    168. Yoon P, Keylock KT, Hartman ME, Freund GG, Woods JA: Macrophagehypo-responsiveness to interferon-gamma in aged mice is associated with impaired signalingthrough Jak-STAT. Mech Ageing Dev2004,125(2):137-143.
    169. Solana R, Mariani E: NK and NK/T cells in human senescence. Vaccine2000,18(16):1613-1620.
    170. Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, Griffin GE, Taylor GP,Tough DF, Beverley PC et al: In vivo kinetics of human natural killer cells: the effects ofageing and acute and chronic viral infection. Immunology2007,121(2):258-265.
    171. Mocchegiani E, Giacconi R, Cipriano C, Malavolta M: NK and NKT cells in aging andlongevity: role of zinc and metallothioneins. J Clin Immunol2009,29(4):416-425.
    172. Albright JW, Albright JF: Age-associated impairment of murine natural killer activity. ProcNatl Acad Sci U S A1983,80(20):6371-6375.
    173. Levy SM, Fernstrom J, Herberman RB, Whiteside T, Lee J, Ward M, Massoudi M:Persistently low natural killer cell activity and circulating levels of plasma beta endorphin:risk factors for infectious disease. Life Sci1991,48(2):107-116.
    174. Mariani E, Neri S, Cattini L, Mocchegiani E, Malavolta M, Dedoussis GV, Kanoni S, Rink L,Jajte J, Facchini A: Effect of zinc supplementation on plasma IL-6and MCP-1production andNK cell function in healthy elderly: interactive influence of+647MT1a and-174IL-6polymorphic alleles. Exp Gerontol2008,43(5):462-471.
    175. Rink L, Cakman I, Kirchner H: Altered cytokine production in the elderly. Mech Ageing Dev1998,102(2-3):199-209.
    176. Aspinall R, Del Giudice G, Effros RB, Grubeck-Loebenstein B, Sambhara S: Challenges forvaccination in the elderly. Immun Ageing2007,4:9.
    177.谢红林,方艳辉,陈志杰,薛景凤:衰老大鼠细胞免疫功能的变化及中药天年饮的延缓衰老作用.时珍国医国药2007,18(10):2393-2394.
    178. Solana R, Pawelec G, Tarazona R: Aging and innate immunity. Immunity2006,24(5):491-494.
    179. Maher P: The effects of stress and aging on glutathione metabolism. Ageing Res Rev2005,4(2):288-314.
    180. Schafer FQ, Buettner GR: Redox environment of the cell as viewed through the redox state ofthe glutathione disulfide/glutathione couple. Free Radic Biol Med2001,30(11):1191-1212.
    181. Meister A: Selective modification of glutathione metabolism. Science1983,220(4596):472-477.
    182. Klatt P, Lamas S: Regulation of protein function by S-glutathiolation in response to oxidativeand nitrosative stress. Eur J Biochem2000,267(16):4928-4944.
    183. Dickinson DA, Forman HJ: Glutathione in defense and signaling: lessons from a small thiol.Ann N Y Acad Sci2002,973:488-504.
    184. Sims NR, Nilsson M, Muyderman H: Mitochondrial glutathione: a modulator of brain celldeath. J Bioenerg Biomembr2004,36(4):329-333.
    185. Muyderman H, Nilsson M, Sims NR: Highly selective and prolonged depletion ofmitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite. JNeurosci2004,24(37):8019-8028.
    186. Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, Colell A: Mitochondrial glutathione:importance and transport. Semin Liver Dis1998,18(4):389-401.
    187. Wild AC, Mulcahy RT: Regulation of gamma-glutamylcysteine synthetase subunit geneexpression: insights into transcriptional control of antioxidant defenses. Free Radic Res2000,32(4):281-301.
    188. Rahman I, MacNee W: Regulation of redox glutathione levels and gene transcription in lunginflammation: therapeutic approaches. Free Radic Biol Med2000,28(9):1405-1420.
    189. Toroser D, Yarian CS, Orr WC, Sohal RS: Mechanisms of gamma-glutamylcysteine ligaseregulation. Biochim Biophys Acta2006,1760(2):233-244.
    190. Huang CS, Chang LS, Anderson ME, Meister A: Catalytic and regulatory properties of theheavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem1993,268(26):19675-19680.
    191. Dickinson DA, Forman HJ: Cellular glutathione and thiols metabolism. Biochem Pharmacol2002,64(5-6):1019-1026.
    192. Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG: Genetically altered mice toevaluate glutathione homeostasis in health and disease. Free Radic Biol Med2004,37(10):1511-1526.
    193. Rebrin I, Kamzalov S, Sohal RS: Effects of age and caloric restriction on glutathione redoxstate in mice. Free Radic Biol Med2003,35(6):626-635.
    194. Farooqui MY, Day WW, Zamorano DM: Glutathione and lipid peroxidation in the aging rat.Comp Biochem Physiol B1987,88(1):177-180.
    195. Richie JP, Jr., Lang CA, Chen TS: Acetaminophen-induced depletion of glutathione andcysteine in the aging mouse kidney. Biochem Pharmacol1992,44(1):129-135.
    196. Teramoto S, Fukuchi Y, Uejima Y, Teramoto K, Ito H, Orimo H: Age-related changes in theantioxidant screen of the distal lung in mice. Lung1994,172(4):223-230.
    197. Wu T, Ding S, Liu J, Jia J, Dai R, Liang B, Zhao J, Qi D: Ataxia: an early indicator in highaltitude cerebral edema. High Alt Med Biol2006,7(4):275-280.
    198. Sandhu SK, Kaur G: Alterations in oxidative stress scavenger system in aging rat brain andlymphocytes. Biogerontology2002,3(3):161-173.
    199. Liu R, Choi J: Age-associated decline in gamma-glutamylcysteine synthetase gene expressionin rats. Free Radic Biol Med2000,28(4):566-574.
    200. Wang H, Liu H, Liu RM: Gender difference in glutathione metabolism during aging in mice.Exp Gerontol2003,38(5):507-517.
    201. Dabrosin C, Ollinger K: Variability of glutathione during the menstrual cycle-due to estrogeneffects on hepatocytes? Free Radic Biol Med2004,36(2):145-151.
    202. Aw D, Silva AB, Palmer DB: Immunosenescence: emerging challenges for an ageingpopulation. Immunology2007,120(4):435-446.
    203. Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A: Humanimmunosenescence: is it infectious? Immunol Rev2005,205:257-268.
    204.任洪林,柳增善,王克坚:鲍免疫相关基因和蛋白的研究进展.遗传2009,31(4):348-358.
    205. Griffith OW, Mulcahy RT: The enzymes of glutathione synthesis: gamma-glutamylcysteinesynthetase. Adv Enzymol Relat Areas Mol Biol1999,73:209-267, xii.
    206. Griffith OW: Biologic and pharmacologic regulation of mammalian glutathione synthesis.Free Radic Biol Med1999,27(9-10):922-935.
    207. Shi MM, Iwamoto T, Forman HJ: gamma-Glutamylcysteine synthetase and GSH increase inquinone-induced oxidative stress in BPAEC. Am J Physiol1994,267(4Pt1):L414-421.
    208. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK: Glutathione, iron and Parkinson'sdisease. Biochem Pharmacol2002,64(5-6):1037-1048.
    209. Toroser D, Sohal RS: Kinetic characteristics of native gamma-glutamylcysteine ligase in theaging housefly, Musca domestica L. Biochem Biophys Res Commun2005,326(3):586-593.
    210. Orr WC, Radyuk SN, Prabhudesai L, Toroser D, Benes JJ, Luchak JM, Mockett RJ, Rebrin I,Hubbard JG, Sohal RS: Overexpression of glutamate-cysteine ligase extends life span inDrosophila melanogaster. J Biol Chem2005,280(45):37331-37338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700