用户名: 密码: 验证码:
原位构建纳米分散相制备高性能弹性体复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何获得填料均一分散的聚合物纳米复合材料一直是学术界和工业界的重要难题。近些年来,原位分散技术逐渐发展成为制备高分散聚合物纳米复合材料的重要手段,继而成为了聚合物纳米复合材料领域的研究热点之一。本论文基于原位法制备聚合物纳米复合材料这一技术手段,对甲基丙烯酸锌(ZDMA)在橡胶基体的过氧化物硫化过程中的原位聚合反应行为进行了详细的跟踪研究,并对所制备的ZDMA增强橡胶纳米复合材料的结构和性能进行了系统的讨论。此外,本论文首次提出并探索研究了一种新型原位反应,即利用对乙烯基苯磺酸钠(NaSS)的原位聚合/接枝反应制备质子交换膜材料的工艺方法。
     本论文第三章对ZDMA在HNBR基体过氧化物硫化过程中的原位聚合反应行为进行了详细的跟踪研究。研究结果表明,ZDMA的初始分散粒径对其原位聚合行为有着重要影响,硫化胶中存在的大量微米分散相为发生原位反应的ZDMA;另外,本研究首次发现并证明了ZDMA在原位反应过程中除发生“溶解-扩散-原位聚合”而生成纳米离子簇相分离结构之外,还存在有另一种新的反应行为,即扩散受限的ZDMA颗粒能够在过氧化物自由基的引发下发生固相本体聚合反应而直接从结晶态转变为无定形态,在硫化胶基体中产生大量不同于离子簇结构的特殊微米(甚至纳米)分散相;上述大量微米分散相的存在将导致HNRB/ZDMA硫化胶的离子键交联密度显著减小,力学强度下降。
     论文第四章研究了硫化温度对HNBR/ZDMA复合材料结构与性能的影响。研究结果表明,随硫化温度升高,ZDMA的原位聚合接枝率降低,ZDMA固相本体聚合所产生的特殊分散相的尺寸和数量逐渐增加,离子键交联密度减小,最终导致HNBR/ZDMA复合材料的物理机械性能均有不同程度的降低。此外,本工作还从“溶解-扩散”的角度提出了硫化温度对ZDMA原位聚合反应可能存在的影响机理。
     在论文第五章中,我们利用氧化锌与甲基丙烯酸在胶料混炼过程中原位中和反应的方法制备了HNBR/N115/ZDMA纳米复合材料,重点研究了ZDMA的原位生成量以及过氧化物DCP的用量对上述纳米复合材料基本力学性能、磨耗性能、动态切割性能和动态压缩疲劳性能的影响,并对其相关机理进行了讨论。研究结果发现,复合材料的阿克隆磨耗性能随ZDMA原位生成量的增加逐渐提高,而DIN磨耗性能反而逐渐降低,由磨耗面形貌所反映出的磨耗机理与复合材料磨耗性能的变化有着较好的相关性;随ZDMA原位生成量的增加,复合材料的动态切割性能先逐渐提高后保持基本稳定,动态压缩疲劳温升逐渐增大,动态压缩永久变形逐渐减小;当ZDMA用量为30phr时,复合材料的动态切割性能、动态压缩疲劳温升和动态压缩永久变形均随DCP用量的增加而逐渐降低。
     在本论文第六章中,我们通过并用HNBR与ZSC的方法制备了HNBR/ZSC/CB复合材料,详细考察了HNBR与ZSC的共混比、DCP用量、芳纶短纤维以及炭黑种类对上述复合材料性能的影响。研究结果发现,随ZSC共混比例的增加,HNBR/ZSC/N220复合材料的力学强度逐渐提高,滚动压缩量和生热量逐渐减小;ZSC的用量对复合材料的裤型撕裂行为有着重要影响,且当HNBR/ZSC共混比为70/30时复合材料有着最好的动态切割性能。此外,通过对比发现,与增加DCP用量相比,在HNBR/ZSC/N220体系中加入芳纶短纤维能够在更好的降低其滚动压缩生热的同时,保持较高的裤型撕裂强度。对于含有芳纶短纤维的复合材料体系,填充大粒径、低结构的炭黑能够达到进一步降低其滚动压缩生热的目的,但此时复合材料的裤型撕裂强度和动态切割性能将有所下降。
     本论文第七章对利用NaSS在HNBR基体过氧化物硫化过程中的原位聚合/接枝反应制备质子交换膜材料这一方法进行了探索研究,并且详细讨论了HNBR基体的饱和度以及NaSS和过氧化物D25用量对所制备的质子交换膜材料的结构和性能的影响。研究结果表明,NaSS能够在HNBR基体的过氧化物硫化过程中发生原位聚合反应并接枝于HNBR分子链上,NaSS的原位聚合/接枝反应与HNBR的过氧化物硫化过程基本同步发生;硫化后的HNBR基体中存在有大量纳米尺寸的poly-NaSS离子簇相分离结构;接枝的-S03H在最终得到的质子交换膜中有着非常均匀的分布。当NaSS用量高于70phr时,所得质子交换膜的质子电导率能够达到0.01S-cm-1的数量级,并且其甲醇渗透率远低于Nafion212。所制备的以HNBR2010L为基体的质子交换膜材料的IEC、吸水率、质子电导率和甲醇渗透率随D25用量的增加而逐渐减小。几乎所有以HNBR2020L为基体的质子交换膜有着比Nafion212更高的选择性,并且其在直接甲醇燃料电池的使用温度下具有较好的热稳定性。
To achieve homogenous dispersion of a nanophase in polymeric matrix is both scientifically challenging and industrially important for fabricating polymeric nanocomposites. In recent years, the use of in situ techniques to obtain an ultrafine dispersed nanophase in a polymeric matrix has emerged as one of the most attractive fields in polymer science in creating high-performance polymeric nanocomposites. In this paper, based on the in situ technique, we detailed investigated the in situ reaction behavior of ZDMA in HNBR matrix as well as the structure and properties of the prepared ZDMA reinforced HNBR nanocomposites. Moreover, this work firstly put forward a novel environment-friendly route to prepare proton exchange membranes (PEM) for direct methanol fuel cell (DMFC) via the in situ reaction and grafting of sodium4-styrene sulfonate (NaSS) to HNBR during peroxide curing.
     The third chapter studied the in situ polymerization behavior of ZDMA during the peroxide curing of HNBR matrix. The results showed that the diameter of the original dispersed ZDMA in HNBR matrix has a significant effect on its in situ polymerization behavior, and the large amount of micron-sized dispersions in the vulcanizate was verified to be the reacted ZDMA. Furthermore, the microstructure of the remaining micron-sized (even nano-sized) dispersions in the cured HNBR/ZDMA was verified for the first time, and a new mechanism for in situ polymerization of ZDMA, i.e., the solid bulk polymerization initialized onto the surface of "dissolve-diffusion" limited ZDMA particles, was put forward. The mciron-sized dispersions generated by the solid bulk polymerization of undiffused ZDMA particles resulted in the decrease of the ionic cross-linking density and mechanical strength of the HNRB/ZDMA vulcanizate.
     The fourth chapter studied the influence of curing temperature on the structure and properties of HNBR reinforced by in situ polymerization of ZDMA. The results showed that, with the increase of curing temperature, the in situ grafting ratio of ZDMA and the ionic cross-linking density decreased, and both the number and diameter of the micron-sized dispersions generated by the solid bulk polymerization of ZDMA obviously increased, finally resulting in the dramatic decrease of the mechanical properties of the HNBR/ZDMA nanocomposite. Moreover, a possible mechanism for the influence of curing temperature on "dissolve-diffusion" of ZDMA particles was put forward, which can well explain the phenomenon in this work.
     In the fifth chapter, we prepared ZDMA reinforced HNBR/N115composites through the neutralization of ZnO and MAA during mixing process and studied the effect of ZDMA and DCP content on the wear (Akron and DIN), cutting and chipping and dynamic compression fatigue behaviors of the prepared composites. The results showed that, with increasing the content of ZDMA, the Akron abrasion resistance of HNBR/N115/ZDMA composite increased while the DIN abrasion resistance decreased, and there was good correlation between the wear properties of the composites and the morphology of their abraded surfaces. Besides, with the increase of ZDMA content, the cutting and chipping properties of the composites firstly enhanced and then remained almost constant, the dynamic compression heat buildup increased and the compression permanent set gradually decreased. When the content of ZDMA is30phr, the cutting and chipping loss, dynamic compression heat buildup and permanent set decreased with increasing the content of DCP.
     In the sixth chapter, we prepared ZDMA reinforced HNBR/CB composites by blending the HNBR and ZSC, and studied the effect of HNBR/ZSC blend ratio, DCP content, aramid short fiber and the types of carbon black on the properties of the prepared composites. The results showed that, with increasing the blend ratio of ZSC, the mechanical strength of the HNBR/ZSC/N220composites increased remarkably, and the rolling compression heat buildup gradually decreased. The blend ratio of HNBR/ZSC had a significant effect on the tear behavior of the composites. The best cutting and chipping resistance of the composite was achieved when the blend ratio of HNBR/ZSC was70/30. Besides, compared with increasing the content of DCP, compounding the aramid short fiber into the HNBR/ZSC/N220system was a better choice to decrease the rolling compression, heat buildup and keep relative high tear strength. The rolling compression heat buildup of the composites can be further decreased through mixing the carbon black with higher diameter and lower structural; however, it caused the decrease of the tear strength and cutting and chipping properties.
     The seventh chapter explored a novel route to prepare PEM for DMFC application via in situ reaction and grafting of NaSS in HNBR matrix during peroxide curing, and detailed studied the effect of the saturation of HNBR and the content of NaSS and peroxide D25on structure and properties of the prepared PEM. The results showed that NaSS can take place in situ reaction during the peroxide curing of HNBR matrix and graft into the HNBR molecular chains. The in situ reaction and grafting of NaSS was proved to occur along with the peroxide curing of HNBR matrix. A large amount of nano-sized ionic clusters can be observed in the HNBR/NaSS vulcanizates, and the distribution of sulfonic acid groups in the prepared PEM was verified to be quite uniform. The proton conductivity of the prepared PEM can reach the order of0.01S·cm-1with much lower methanol permeability than Nafion212. The IEC, water uptake, proton conductivity and methanol permeability of HNBR2010L based PEM decreased with the content of peroxide D25. Almost all HNBR2020L based membranes had higher selectivity compared to commercial Nafion212, and they can also be thermally stable for DMFC application.
引文
[1]Hoffman D W, Roy R, Komarner S, Diphasic X. A new class of materials:Phase in the system Al2O3-SiO2[J]. Jouranl of the American Ceramic Society,1984,67(7):468-471.
    [2]Hame G R. Rubber reinforcement and its classification[J]. Rubber Chemistry and Technology, 2007,80:533-543.
    [3]Hamed G R. Reinforcement of rubber[J]. Rubber Chemistry and Technology,2000,73: 524-533.
    [4]张立群,吴友平,王益庆,等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,23(2):71-77.
    [5]Moshev V V, Evlampieva S E. Filler-reinforcement of elastomers viewed as a triboelastic phenomenon[J]. International Journal of Solids and Structures,2003,40(17):4549-4562.
    [6]Whelan A, Lee K S. Developments in Rubber Technology.1. Improving product performance. Developments series[M]. Applied Science Publishers:London,1979.
    [7]Evans C W. Practical Rubber Compounding and Processing[M]. Applied Science, xiii:London, 1981.
    [8]Zeng C C, Lee L J. Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization[J]. Macromolecules,2001,34:4098-4103.
    [9]Mustafa M D, Patrice C, Umit A, et al. In-situ bulk polymerization of dilute particle/MMA dispersions[J]. Macromolecules,2007,40:4190-4198.
    [10]Mehmet A T, Wim V C, Eric G, et al. Polytetrahydrofuran/clay nanocomposites by in situ polymerization and "Click" chemistry processes[J]. Macromolecules,2008,41:6035-6040.
    [11]Jenny F, Catherine G, Laurent C, et al. Properties of polymer/clay interphase in nanoparticles synthesized through in-situ polymerization processes[J]. Polymer,2010,51:4462-4471.
    [12]Cassagnau P, Nietsch T, Bert M, et al. Reactive blending by in situ polymerization of the dispersed phase[J]. Polymer,1998,40:131-138.
    [13]Walid B, Ve'B L, Francoise F, et al. EVA/PBT nanostructured blends synthesized by in situ polymerization of cyclic cBT (cyclic butylene terephthalate) in molten EVA[J]. Polymer,2009, 50:2527-2534.
    [14]Liliane B, Jean P C, Reinforcement of natural rubber:use of in situ generated silicas and nanofibres of sepiolite[J]. Polymer,2005,46:4144-4151.
    [15]Ludivine D, Bruno B, Liliane B. Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles[J]. Polymer,2005, 46:4135-4143.
    [16]Zhang H, Tang L C, Zhang Z, et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer,2008,49:3816-3825.
    [17]Ikeda Y, Tanaka A, Kohjiya S. Reinforcement of styrene-butadiene rubber vulcanizate by in situ silica prepared by the sol-gel reaction of tetraethoxysilane[J]. Journal of Materials Chemistry,1997,7(8):1497-1503.
    [18]Sugiya M, Terakawa K, Miyamoto Y. Dynamic mechanical properties and morphology of silica-reinforced butadiene rubber by the sol-gel process[J]. Kautschuk Gummi Kunststoffe, 1997,50(7):538-543.
    [19]Tanahashi H, Osanai S, Shigekuni M. Reinforcement of acrylonitrile-butadiene rubber by silica generated in situ[J]. Rubber Chemistry and Technology,1998,71(1):38-52.
    [20]Dontsov A. Salts of unsaturated acids as crosslink agents for elastomers[J]. Polymer compound,1967,9(12):2543-2548.
    [21]Dontsov A, Rossi E F, Martelli A F. The vulcanization of rubber with unsaturated salts:A preliminary samll angle X-ray scattering investigation[J]. European Polymer Journal,1972,8: 351-360.
    [22]Martin F S, Melvin T, Pierond J K. Solid golf ball[P]. US Patent, US 4266772.1981.
    [23]Molitor R P. High coefficient golf ball core[P]. US Patent, US 4726590.1988.
    [24]Klingender RC, Oyama M, Satio Y. Metallic high-strength compound of highly saturated nitrile and its applications[J]. Rubber World,1990,202:26-31.
    [25]Medalia A I, Alesi A L, Mead J L. Pattern abrasion and other mechanisms of wear of tank track pads[J]. Rubber Chemistry and Technology,1992,65:154-160.
    [26]Nomura A, Takano J, Toyoda A, et al. Structural analysis of high strength HNBR/ZDMA composites[J]. Jouranl of Japan Rubber Society,1993,66:830-838.
    [27]Saito Y, Nishimura K, Asada M, et al. Polymerization behavior of zinc methacrylate study of zinc methacrylate/rubber/peroxide compounds; part 2[J]. Jouranl of Japan Rubber Society, 1994,67:867-872.
    [28]Inoue T. Reaction-induced phase decomposition in polymer blends[J]. Progress in Polymer Science,1995,20:119-153.
    [29]Ikeda T, Yamada B. Simulation of the in situ copolymerization of zinc methacrylate and 2-(N-ethylperfluorooctanesulphonamido) ethyl acrylate in hydrogenated nitrile-butadiene rubber[J]. Polymer International,1999,48:367-372.
    [30]Yuan X H, Peng Z L, Zhang Y, et al. In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR[J]. Journal of Applied Polymer Science,2000,77:2740-2748.
    [31]Du A H, Peng Z L, Zhang Y, et al. Effect of magnesium methacrylate on the mechanical properties of EVM vulcanizate[J]. Polymer Testing,2002,21:889-895.
    [32]Yuan X H, Zhang Y, Peng Z L, et al. In situ preparation of magnesium methacrylate to reinforce NBR[J]. Journal of Applied Polymer Science,2002,84:1403-1408.
    [33]Yin D H, Zhang Y, Peng Z L, et al. A comparison between the SBR vulcanizates reinforced by magnesium methacrylate added directly or prepared in situ[J]. European Polymer Journal, 2003,39:99-105.
    [34]Lu Y L, Liu L, Tian M, et al. Study on mechanical properties of elastomers reinforced by zinc dimethacrylate[J]. European Polymer Journal,2005,41:589-598.
    [35]Lu Y L, Liu L, Yang C, et al. The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM[J]. European Polymer Journal,2005,41:577-588.
    [36]Peng Z L, Liang X, Zhang Y X, et al. Reinforcement of EPDM by in situ prepared zinc dimethacrylate[J]. Journal of Applied Polymer Science,2002,84:1339-1345.
    [37]张博,刘亚青,张志毅.甲基丙烯酸锌与炭黑共同补强天然橡胶的研究[J].弹性体,2010,20(2):48-50.
    [38]翟俊学,李军鸽,张萍,等.溶胀法制备甲基丙烯酸锌增强天然橡胶[J].合成橡胶工业,2007,30(5):378-381.
    [39]Lu Y L, Wu Y P, Zhang L Q. Advances in Polymer Processing:From Macro- to Nano-scales [M]. Woodhead Publishing Limited:Cambridge,2009.
    [40]赵阳,卢咏来,刘力,等.甲基丙烯酸锌/丁腈橡胶纳米-微米混杂复合材料Ⅰ:微观结构与力学性能[J].合成橡胶工业,2001,24:350-353.
    [41]曾宗强,余和平,钱红莲,等.甲基丙烯酸镁补强天然橡胶的研究[J].特种橡胶制品,2005,26(1):9-11.
    [42]黄安民,王小萍,贾德民.甲基丙烯酸镁增强氢化丁腈橡胶的结构与形态和性能[J].高分子学报,2007,12:1154-1160.
    [43]尹德荟,张勇,范汝良,等.甲基丙烯酸对氢氧化铝填充丁苯橡胶性能的影响[J].合成橡胶工业,2002,25(3):161-163.
    [44]Lu Y L, Liu L, Shen D Y, et al. Infrared study on in situ polymerization of zinc dimethacrylate in poly(a-octylene-co-ethylene) elastomer[J]. Polymer International,2004,53:802-808.
    [45]王聿衡,彭宗林,张勇,等.原位合成甲基丙烯酸锌增强氢化丁腈橡胶[J].合成橡胶工业,2005,28(3):205-210.
    [46]曾宗强,余和平,钱红莲.ZDMA/NR复合材料的性能研究[J].橡胶工业,2006,53:267-270.
    [47]Nie Y J, Huang G S, Liu Z Y, et al. Improved mechanical properties and special reinforcement mechanism of natural rubber reinforced by in situ polymerization of zinc dimethacrylate[J]. Journal of Applied Polymer Science,2010,116:920-928.
    [48]虞宇力,彭宗林,张隐西,等.甲基丙烯酸锌对EPDM的补强作用[J].橡胶工业,2001,48(9):522-525.
    [49]赵阳,冯予星.刘力,等ZDMA/NBR纳米复合材料的性能研究[J].橡胶工业,2002,49(1):9-14.
    [50]Xu C H, Chen Y K, Huang J, et al. Thermal aging on mechanical properties and crosslinked network of natural rubber/zinc dimethacrylate composites[J]. Journal of Applied Polymer Science,2012,124(3):2240-2249.
    [51]刘莉,刘晓,陈冬梅,等.甲基丙烯酸镁助交联氯化聚乙烯橡胶耐老化性能的研究[J].橡胶工业,2011,58(3):160-162.
    [52]王勇,周琦,刘涛,等.Mg(MAA)2对NBR与金属粘合和硫化性能的影响[J].弹性体,2007,17(6):50-52.
    [53]Gao G X, Zhang Z C, Zheng Y S, et al. Effect of magnesium methacrylate and zinc methacrylate on bond properties of thermal insulation material based on NBR/EPDM blends[J]. Journal of Applied Polymer Science,2009,113:3901-3909.
    [54]Thavamani P, Bhowmick A K. Influence of compositional variables and testing temperature on the wear of hydrogenated nitrile rubber[J]. Journal of Materials Science,1993,28: 1351-1359.
    [55]张立群,耿海平,陈松,等.坦克装甲车辆用橡胶履带板的研究开发[J].合成橡胶工业,1996,19(6):325-330.
    [56]Kim W, Kim M Y, Chang Y W, et al. Fatigue crack growth behavior of NR and HNBR based vulcanizates with potential application to track pad for heavy weight vehicles[J]. Macromolecular Research,2003,11(2):73-79.
    [57]周扬波,贾志欣,贾德民,等.丁苯胶/甲基丙烯酸锌/气相法白炭黑纳米复合材料[J].功能材料,2005,11(36):1806-1810.
    [58]李颀,赵素合,朱伶俐,等ZDMA/白炭黑填充HNBR的结构与性能[J].橡胶工业,2010,57:69-75.
    [59]曹杨,张景林,顾宁,等.甲基丙烯酸锌与蒙脱土补强天然橡胶的研究[J].中北大学学报,2011,32(3):314-317.
    [60]刘岚,罗远芳,贾德民,等.NBR/Zn(MAA)2/蒙脱土纳米复合材料的研究[J].橡胶工业,2005,52:133-136.
    [61]杨树颜,贾志欣,罗远芳,等.埃洛石纳米管/甲基丙烯酸锌并用补强SBR的研究[J].橡胶工业,2009,56(8):453-458.
    [62]方勇,苗睿瑛,王同涛,等.直接甲醇燃料电池用聚合物质子交换膜的研究进展[J].高分子学报,2009,10:992-1006.
    [63]Viral M, Joyce S C. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources,2003,114:32-53.
    [64]Wang J T, Wasmus S, Savinell R F. Real-time mass spectrometic study of the methanol crossover in a direct methanol fuel cell[J]. Journal of Electrochemical Society,1996,143(4): 1233-1239.
    [65]Neburchilov V, Martin J, Wang H J, et al. A review of polymer electrolyte membranes for direct methanol fuel cells[J]. Journal of Power Sources,2007,169:221-238.
    [66]Renaud S, Ameduri B. Functional fluoropolymers for fuel cell membranes[J]. Progress in Polymer Science,2005,30:644-687.
    [67]Peighambardoust S J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy,2010,35: 9349-9384.
    [68]Kreuer K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells[J]. Journal of Membrane Science,2001,185:29-39.
    [69]Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers[J]. Progress in Polymer Science,2000,25:1463-1502.
    [70]Smitha B, Sridhar S, Khan A A. Solid polymer electrolyte membranes for fuel cell applications-a review[J]. Journal of Membrane Science,2005,259:10-26.
    [71]Tomoya H, Kazuya M, Mitsuru U. Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells[J]. Polymer,2009,50:5341-5357.
    [72]Lee J K, Li W. Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells[J]. Journal of Membrane Science,2009,330: 73-79.
    [73]Young T H, Chang H L, Hyung S P, et al. Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole)[J]. Journal of Power Sources,2008,175:724-731.
    [74]Sheng W, Chunli G, Wen-Chin T, et al. Sulfonated poly(ether sulfone) (sPES)/boron phosphate (BPO4) composite membranes for high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy,2009,34:8982-8991.
    [75]Deluca N W, Elabd Y A. Polymerelectrolyte membranes for the direct methanol fuel cell:a review[J]. Journal of Polymer Science:Part B:Polymer Physics,2006,44:2201-2213.
    [76]Kreuer K D, Rabenau A, Weppner W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors[J]. Angew Chem Int Ed,1982,21:208-209.
    [77]Gao Y, Robertson G P, Guiver M D, et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials[J]. Journal of Membrane Science,2003,227:39-50.
    [78]Won J, Park H H, Kim Y J, et al. Fixation of Nanosized Proton Transport Channels in Membranes[J]. Macromolecules,2003,36(9):3228-3234.
    [79]Choi E Y, Strathmann H, Park J M, et al. Characterization of non-uniformly charged ion-exchange membranes prepared by plasma-induced graft polymerization[J]. Journal of Membrane Science,2006,268:165-174.
    [80]Nasef M M, Hegazy E A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films[J]. Progress in Polymer Science,2004,29:499-561.
    [81]Chen J H, Asano M, Yamaki T, et al. Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films[J]. Journal of Membrane Science,2006,269:194-204.
    [82]Tricoli V, Carretta N, Bartolozzi M. A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes[J]. Journal of Electrochemical Society,2000, 147:1286-1290.
    [83]Krumova M, Lopez D, Benavente R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol)[J]. Polymer,2000,41:9265-9272.
    [84]Parka C H, Lee C H, Guivera M D, et al. Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. Progress in Polymer Science,2011,36:1443-1498.
    [85]Woo Y T, Oh S Y, Kang Y S, et al. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell[J]. Journal of Membrane Science,2003,220:31-45.
    [86]Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of poly(aryl ether ketone) copolymers containing (hexafluoroisopropylidene)-diphenol moiety as proton exchange membrane materials[J]. Polymer,2005,46:3257-3263.
    [87]Zhao C J, Li X F, Wang Z, et al. Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane[J]. Journal of Membrane Science,2006, 280:643-650.
    [88]Shen M, Roy S, Kuhlmann J W, et al. Grafted polymer electrolyte membrane for direct methanol fuel cells[J]. Journal of Membrane Science,2005,251:121-130.
    [89]Li N W, Hwang D S, Lee S Y, et al. Densely sulfophenylated segmented copoly(arylene ether sulfone) proton exchange membranes[J]. Macromolecules,2011,44:4901-4910.
    [90]Nacher A, Escribano P G, Rio C D, et al. Polymer proton-conduction systems based on commercial polymers. I. Synthesis and characterization of hydrogenated styrene-butadiene block copolymer and isoburylene isoprene rubber systems[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2003,41:2809-2815.
    [91]Escribano P G, Nacher A, C. Rio C D, et al. Polymeric proton conducting systems based on commercial elastomers. Ⅱ. Synthesis and microstructural characterization of films based on HSBR/EPDM/PP/PS/Silica[J]. Journal of Applied Polymer Science,2004,93:2394-2402.
    [92]Escribano P G, Nacher A, Rio C D, et al. Polymeric proton conducting systems based on commercial elastomers. Ⅲ. Microstructural and electrical characterization of films based on HSBS/EPDM/PP/PS/Silica[J]. Journal of Applied Polymer Science,2006,102:13-21.
    [93]Escribano P G, Canovas M J, Ojeda M C, et al. Preparation and characterization of hybrid membranes for fuel cell applications:EPDM filled with organophilized silicas[J]. Journal of Polymer Science:Part B:Polymer Physics,2009,47:1203-1210.
    [94]Escribano P G, Rio C D, Acosta J L. Preparation, characterization and single cell testing of new ionic conducting polymers for fuel cell applications[J]. Journal of Power Sources,2009,187: 98-102.
    [95]Linares A, Acosta J L. Preparation and Characterization of conducting systems based on EPDM/PE/PS-co-DVB/HSb[J]. Macromolecular Materials and Engineering,2005,290:53-59.
    [96]Idibie C A, Abdulkareem A S, Pienaar H C vZ, et al. Synthesis of low methanol permeation polymer electrolyte membrane from polystyrene-butadiene rubber[J]. Polymer-Plastics Technology and Engineering,2009,48:1121-1129.
    [97]Idibie C A, Abdulkareem A S, Pienaar H C vZ, et al. Thermodynamic study of the sulphonation of polystyrene-butadiene rubber with chlorosulphonic acid for proton exchange membrane fuel cell[J]. Journal of Applied Polymer Science,2010,117:1766-1771.
    [98]Idibie C A, Abdulkareem A S, Pienaar H C vZ, et al. Mechanism and kinetics of sulfonation of polystyrene-butadiene rubber with chlorosulfonic acid [J]. Ind. Eng. Chem. Res.,2010,49(4): 1600-1604.
    [99]Li Q, Zhao S H, Pan Y. Structure, morphology, and properties of HNBR filled with N550, SiO2, ZDMA, and two of three kinds of fillers[J]. Journal of Applied Polymer Science,2010, 117:421-427.
    [100]Zhao L, Hu X. Autocatalytic curing kinetics of thermosetting polymers:A new model based on temperature dependent reaction orders[J]. Polymer,2010,51:3814-3820.
    [101]Nie Y J, Huang G S, Qu L L, Zhang P, Weng G S, Wu J R. Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate[J]. Journal of Applied Polymer Science,2010,115:99-106.
    [102]赵兴波,张秋禹,尹德忠,等.原位聚合制备HNBR/PZDMA纳米复合材料的结构与性能[J].现代化工,2011,31:32-35.
    [103]Mathew T, Datta R N, Dierkes W K, et al. Plasma polymerization surface modification of carbon black and its effect in elastomers[J]. Macromolecular Materials and Engineering,2011, 296:42-52
    [104]王梦蛟.炭黑分散技术的新进展[J].炭黑工业,2006,6:14-23.
    [105]Peng C C, Gopfert A, Drechsler M, et al.'Smart'silica-rubber nanocomposites in virtue of hydrogen bonding interaction[J]. Polymers for advanced technologies,2005,16:770-782.
    [106]Chen Y K, Xu C H. Specific nonlinear viscoelasticity behaviors of natural rubber and zinc dimethacrylate composites due to multi-crossl inking bond interaction by using rubber process analyzer 2000[J]. Polymer Composites,2011,32:1593-1600.
    [107]Lu M, Wang Y Q, Wu Y P, et al, Guo B C. Preparing exfoliated MMT/polymer nanocomposites by combined latex compouding and spray-drying[J]. Macromolecular Materials and Engineering,2012,297:20-25.
    [108]Liliane B. The Reinforcement of Elastomeric Networks by Fillers[J]. Macromolecular Materials and Engineering,2004,289:607-621.
    [109]Khan A S, Baig M, Hamid S, et al. Thermo-mechanical large deformation responses of hydrogenated nitrile butadiene rubber (HNBR):experimental results[J]. International Journal of Solids and Structures,2010,47:2653-2659.
    [110]潘岩,赵素合,李颀.增强氢化丁腈橡胶的结构与性能[J].合成橡胶工业,2009,32(3):232-237.
    [111]郭湘瑶.氢化丁腈橡胶的新发展[J].橡胶参考资料,2008,38(3):4-5.
    [112]苏博.履带挂胶的抗压缩和抗剪切性能试验[J].现代橡胶技术,2006,32(1):27-31.
    [113]朱镇清,王凯歌.化纤加弹机金属铝衬圈胶辊的研制[J].世界橡胶工业,2010,37:14-20.
    [114]Grosch K A. The relation between the friction and visco-elastic properties of rubber[J]. Proceedings of the Royal Society of London Series A,1963,274:21-39.
    [115]Schallamach A. How does rubber slide?[J]. Wear,1971,17:301-312.
    [116]Veith A G. A review of important factors affecting treadwear[J]. Rubber Chemistry and Technology,1992,65:601-658.
    [117]Bhowmick A K. Ridge formation during the abrasion of elastomers[J]. Rubber Chemistry and Technology,1982,55:1055-1062.
    [118]Petitet G, Loubet J L, Zahouani H, et al. A contribution to the understanding of elementary wear mechanisms of rubber filled compounds[J]. Rubber Chemistry and Technology,2005,78: 312-320.
    [119]Medalia A I, Newtion M A. Effect of carbon black on abrasion and treadwear[J]. Kautschuk Gummi Kunststoffe,1994,47:364-368.
    [120]Beatty J R, Miksch B J. A laboratory cutting and chipping tester for evaluating off-the-road and heavy-duty tire treads[J]. Rubber Chemistry and Technology,1982,55:1531-1546.
    [121]Nah C W, Jo B W, Kaang S Y. Cut and chip resistance of NR-BR blend compounds[J]. Journal of Applied Polymer Science,1998,68:1537-1541.
    [122]Schwarz D L, Askea D W. Reviewing C&C testing of OTR tread compounds[J]. Rubber World,2003,215:28.
    [123]Manas D, Stanek M, Manas M, et al. Influence of mechanical properties on wear of heavily stressed rubber parts[J]. Kautschuk Gummi Kunststoffe,2009,62:240-245.
    [124]Scherbakov M, Gurvich M R. A method of wear characterization under cut, chip and chunk conditions[J]. Journal of Elastomers and Plastics,2003,35:73-84.
    [125]Ma J H, Wang Y X, Zhang L Q, et al. Improvement of cutting and chipping resistance of carbon black-filled styrene butadiene rubber by addtion of nanodispersed clay[J]. Journal of Applied Polymer Science,2012,125:3484-3489.
    [126]李明枝.工程轮胎胎面配方试验室耐切割性能试验[J].世界橡胶工业,2012,39:37-42.
    [127]Medalia A I. Heat generation in elastomer compounds:causes and effects[J]. Rubber Chemistry and Technology,1991,64:481.
    [128]Dong M P, Won H H, Sang G K, et al. Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures[J]. European Polymer Journal,2000,36: 2429-2436.
    [129]马浩,张明.SSBR2530在载重斜交胎胎体配方中的应用[J].轮胎工业,2008,28:607-609.
    ·[130] 翟俊学,陈锋,董凌波,等.导热填料对NR/BR硫化胶的生热和导热的影响[J].特种橡胶制品,2009,30:14-18.
    [131]杨青,王小菊.改性芳纶纤维Sulfron3001在轮胎胶料中的应用[J].橡胶工业,2010,57:300-302.
    [132]Panenka R降低轮胎生热-轮胎工业正在应对的一项挑战[J].轮胎工业,2003,23(3):141-146.
    [133]田原,吴金梅.阿克隆磨耗试验的简易制样方法[J].轮胎工业,2007,27:633-634.
    [134]孙举涛,曲丽,王威,等.热空气老化对二烯类橡胶磨耗性能的影响规律研究[J].弹性体,2011,21:1-4.
    [135]胡波,孙举涛,张萍,等.炭黑对丁苯橡胶磨耗性能的影响[J].特种橡胶制品,2009,30: 20-23.
    [136]Vince C, Christian M. Initiation and development of wear of an elastomeric surface by a blade abrader[J]. Wear,1999,233-235:702-711.
    [137]Fukahori Y, Liang H, Busfield J J C. Criteria for crack initiation during rubber abrasion[J]. Wear,2008,265:387-395.
    [138]黄安民,王小萍,贾德民.氢化丁腈橡胶耐热和耐介质性能[J].弹性体,2006,16(2):63-68.
    [139]Kim W H, Kim M Y, Chang Y W, et al. Fatigue Crack Growth Behavior of NR and HNBR Based Vulcanizates with Potential Application to Track Pad for Heavy Weight Vehicles[J]. Macromolecular Research,2003,11(2):73-79.
    [140]Sun J T, Wang W, Zhang P, et al. Effects of the synergy of hardness and resilience on the akron abrasion properties of SBR Vulcanizates[J]. Journal of Macromolecular Science Part B-Physics,2012,51:1658-1667.
    [141]Pal K, Pal S K, Das C K, et al. Effect of fillers on morphological and wear characteristics of NR/HSR blends with E-glass fiber[J]. Materials and Design,2012,35:863-872.
    [142]Tabsan N, Suchiva K, Wirasate S. Effect of montmorillonite on abrasion resistance of SiO2-filled polybutadiene[J]. Composite Interfaces,2012,19:1-13.
    [143]Pal K, Pal S K, Das C K, et al. Influence of fillers on NR/SBR/XNBR blends. Morphology and wear[J]. Tribology International,2010,43:1542-1550.
    [144]Pal K, Das T, Rajasekar R, et al. Wear characteristics of styrene butadiene rubber/natural rubber blends with varying carbon blacks by DIN abrader and mining rock surfaces[J]. Journal of Applied Polymer Science,2009,111:348-357.
    [145]张殿荣,辛振祥.现代橡胶配方设计(第二版)[M].化学工业出版社.2001.
    [146]朱伶俐,赵素合,姚楚,等.ZSC/氢化丁腈橡胶并用的性能研究[J].橡胶工业,2010,57(7):389-394.
    [147]刘爱堂编译.高强度氢化丁腈橡胶-Zeoforte ZSC[J]橡胶参考资料,1998,28(11):14-19.
    [148]Sakulkaew K, Thomas A G, Busfield J J C. The effect of the rate of strain on tearing in rubber[J]. Polymer Testing,2011,30:163-172.
    [149]吴晓辉,何少剑,冯一平,张立群.橡胶复合材料裂纹扩展的研究进展[J].特种橡胶制品,2009,30(5):50-55.
    [150]Wang Y Q, Fang Z H, Wu Y P, et al. Structure and properties of strain-induced crystallization rubber-clay nanocomposites by co-coagulating the rubber latex and clay aqueous suspension[J]. Journal of Applied Polymer Science,2005,96:318-323
    [151]Smitha B, Sridhar S, Khan A A. Synthesis and characterization of proton conducting polymer membranes for fuel cells[J]. Journal of Membrane Science 2003,225:63-76.
    [152]Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications:simulations, elementary reactions, and phenomenology [J]. Chemical Review, 2004,104:4637-4678.
    [153]Dai C A, Liu C P, Lee Y H, et al. Fabrication of novel proton exchange membranes for DMFC via UV curing[J]. Journal of Power Sources,2008,177:262-272.
    [154]Prakasha G K S, Smart M C, Wang Q J, et al. High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)-poly (vinyl idene fluoride) (PVDF) composite membranes[J]. Journal of Fluorine Chemistry,2004,125:1217-1230.
    [155]Su Y H, Liu Y L, Wang D M, et al. The effect of side chain architectures on the properties and proton conductivities of poly(styrene sulfonic acid) graft poly(vinylidene fluoride) copolymer membranes for direct methanol fuel cells[J]. Journal of Membrane Science,2010,349: 244-250.
    [156]Kim D S, Guiver M D, Nam S Y, et al. Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)[J]. Journal of Membrane Science,2006,281:156-162.
    [157]Yang C C, Chien W C, Li Y J. Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane[J]. Journal of Power Sources,2010,195:3407-3415.
    [158]Qiu W L, Hirotsu T. A new method to prepare maleic an hydride grafted poly(propylene)[J]. Macromolecular chemistry and physics,2005,206:2470-2482.
    [159]Picchioni F, Goossens J G P, Duin M V. Solid-state modification of polypropylene (PP): grafting of styrene on atactic PP[J]. Macromolecular Symposia,2001,176:245-263.
    [160]Liu C S, Wang Q. Solid-phase grafting of hydroxymethyl acrylamide onto polypropylene through pan milling[J]. Journal of Applied Polymer Science,2000,78:2191-2197.
    [161]Wen S P, Zhang X P, Hu S, et al. Influence of in-situ reaction on luminescent properties of samariumcomplex/hydrogenated acrylonitrile-butadiene composites[J]. Polymer,2009,50: 3269-3274.
    [162]Song S S, Qi H B, Wu Y P. Preparation and properties of water-absorbent composites of chloroprene rubber, starch, and sodium acrylate[J]. Polymer for Advanced Technology,2010, online.
    [163]Ding F C, Wang S J, Xiao M, et al. Cross-linked sulfonated poly(phathalazinone ether ketone)s for PEM fuel cell application as proton-exchange membrane[J]. Journal of Power Sources,2007,164:488-495.
    [164]Jeong.M H, Lee K S, Lee J S. Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crosslinking moiety[J]. Journal of Membrane Science,2009, 337:145-152.
    [165]Ko H N, Yu D M, Choi J H, et al. Synthesis and characterization of intermolecular ionic cross-linked sulfonated poly(arylene ether sulfone)s for direct methanol fuel cells[J]. Journal of Membrane Science,2012,390-391:226-234.
    [166]Yang J C, Jablonsky M J, Mays J W. NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers[J]. Polymer 2002,43:5125-5132.
    [167]Silverstein R M, Webster F X. Spectrometric identification of organic compounds 6th ed [M]. John Wily & Sons, Inc:New York.
    [168]Roh D K, Koh J K, Chi W S, et al. Proton conducting crosslinked polymer electrolyte membranes based on SBS block copolymer[J]. Journal of Applied Polymer Science,2011,121: 3283-3291.
    [169]Lin J, Wu P H, Wycisk R, et al. Properties of water in prestretched recast Nafion[J]. Macromolecules,2008,41(12):4284-4289.
    [170]Peckham T J, Schmeisser J, Rodgersa M, et al. Main-chain, statistically sulfonated proton exchange membranes:the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity[J]. Journal of Materal Chemisty,2007,17: 3255-3268.
    [171]Moukheiber E, Moor G D, Flandin L, et al. Investigation of ionomer structure through its dependence on ion exchange capacity (IEC)[J]. Journal of Membrane Science,2012,389: 294-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700