用户名: 密码: 验证码:
部分有机污染物雌激素效应和甲状腺激素效应的计算模拟与验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多化学品具有潜在的内分泌干扰效应,会对人类健康和生态系统造成危害。仅仅通过实验方法筛选内分泌干扰物,成本昂贵、费时费力,且部分化合物尚缺乏标准样品,因此,有必要建立有机污染物内分泌干扰效应的高通量(虚拟)筛选模型和定量结构-活性相关(QSAR)模型。本研究结合分子对接和实验检测方法,建立了有机污染物内分泌干扰效应的QSAR模型;研究了蒽醌类(AQs)化合物和羟基多溴联苯醚(HO-PBDEs)与激素受体间的相互作用,揭示了上述化合物的拟激素效应与其分子结构间的内在联系。
     基于7类化合物的雌激素效应相对效应势(logRP)和DRAGON次件计算得到的分子结构参数,采用偏最小二乘(PLS)回归,建立了化合物logRP值的QSAR模型。利用重组基因酵母法测定了外部独立验证集的logRP值,对建立的QSAR模型进行了性能评价。研究结果表明:建立的QSAR模型具有较好的拟合优度、稳健性和预测能力,相关系数(R2)、交叉验证系数(Q2LOO)、外部可解释方差(Q2EXT)分别为0.89、0.90、0.78。化合物的雌激素效应不仅与分子的大小、形状和极化率有关,还与分子的立体结构特征及分子间的相互作用有关。
     通过分子对接剖析了AQs分子与雌激素受体(ERα)间的相互作用,采用重组基因酵母法检测了AQs化合物的雌激素效应,并建立了AQs化合物雌激素效应的QSAR模型。研究结果表明:AQs分子与ERα间存在氢键、疏水和静电相互作用。AQs化合物的雌激素效应主要与其分子的分配能力和静电相互作用有关。极化率项(π1)、结合能(Ebinding)、平均分子极化率(α)、分子中原子的最负电荷(q-)和分子表面负静电势的平均值(Vs-)是影响AQs化合物雌激素效应的重要因素。AQs分子的a越大,雌激素效应越强。Vs-较负的AQs分子更易于与受体ERα结合,显示较强的雌激素效应;建立的QSAR模型稳健性和预测能力较高,具有较强的机理可解释性,能够用于预测其他AQs化合物的雌激素效应。
     通过分子对接研究了HO-PBDEs与甲状腺激素受体(TRβ)间的相互作用,采用双杂交酵母检测了HO-PBDEs的甲状腺激素效应,建立了HO-PBDEs甲状腺激素效应的QSAR模型。研究结果表明:与TRβ结合是HO-PBDEs发挥甲状腺激素效应的关键步骤,HO-PBDEs分子与TRβ间存在氢键、疏水和π-π相互作用。与PBDEs相比,HO-PBDEs具有较强的甲状腺激素效应(p<0.05)。溴原子数目(nBr)、正辛醇-水分配系数(logΚow)、芳香性指数(IA)、分子最低未占据轨道能(ELUMO)、亲电性指数(ω)和偶极矩(μ)与HO-PBDEs的甲状腺激素效应密切相关。HO-PBDEs分子在水相和生物相间的分配能力是控制其甲状腺激素效应的重要因素。HO-PBDEs的非平面性和得电子能力也会影响其甲状腺激素效应的大小。得电子能力较高的HO-PBDEs分子与受体间呈现较弱的氢键作用,相应的显示较弱的甲状腺激素效应。建立的QSAR模型具有较好的稳健性、预测能力和机理可解释性,能够用于预测其他HO-PBDEs化合物的甲状腺激素效应。
The studies on the eco-toxicological effects of the environmental organic pollutants are of great importance to their ecological risk assessment. A number of organic compounds are released into the environment, most of which are suspicious endocrine disrupting chemicals (EDCs). Experimental determination of EDCs is costly, time-consuming, and restricted by lack of sufficiently pure chemicals, thus there is a need to develop high throughput screening method to screen suspicious EDCs. The purpose of the present study was to develop quantitative structure-activity relationship (QSAR) models for endocrine disrupting effects, to clarify the mechanism of the endocrine disrupting of exogenous compounds and to establish the relationships between the hormone-like effect and the molecular structure parameters by an integrated in silico and in vitro approach.
     A QSAR model for a series of xenoestrogens was developed based on the determined estrogenic activities (expressed by logRP) by partial least squares (PLS) regression. An independent external validation set was employed to evaluate the performance of the developed QSAR model. The estabilshed QSAR model had goodness-of-fit, robustness and predictivity. The leave-one-out cross-validation squared correlation coefficient (Q2L∞) was 0.90. The predicted logRP values were consistent with the observed values, with a root mean square error (RMSE) of 0.74 log units and the squared correlation coefficient (Q2EXT) was 0.78. The current QSAR model could be used to high-throughput screen xenoestrogens. The logRP value was related to polarizability, molecular size, shape profiles and intermolecular interactions.
     To further understand the mechanism of action, we explored the estrogenic activities of 20 anthraquinone derivatives (AQs). Molecular docking analysis showed that hydrogen bonding, hydrophobic and electrostatic interactions between the AQs molecules and estrogen receptor alpha (ERa) governed the estrogenic activities of the AQs. The recombinant yeast-based assay was employed to determine the estrogenic activities of the 20 AQs. Based on the observed interactions between the AQs and ERa, the polarizability term (πl), the binding energy (Ebinding), the average molecular polarizability (a), the most negative formal charge in the molecule (q) and the average of the negative potentials on the molecular surface (Vs-) were adopted to develop a QSAR model, which had good robustness, predictive ability and mechanism interpretability. The average molecular polarizability (a) is the main molecular structural factor. The AQs molecule with greaterαvalue exerted higher estrogenic activity. Moreover, q and Vs-also affect the estrogenic activity. The results indicated that the estrogenic activity of the AQs depended on the partition ability of compounds into the bio-phase and the electrostatic interaction with the receptor.
     Molecular docking was adopted to simulate the interactions between 18 hydroxylated polybrominated diphenyl ethers (HO-PBDEs) and thyroid hormone receptors beta (TRβ). The results showed that the bindings to TRβare the key steps for the HO-PBDEs to exert their thyroid hormone activity, and hydrogen bonding, hydrophobic andπ-πinteractions were also found between the HO-PBDEs and TRβ. The thyroid hormone activities of the 18 HO-PBDEs were determined by the yeast two-hybrid assay. The 18 tested HO-PBDEs exhibit significant higher thyroid hormone activities than PBDEs (p< 0.05). Based on the observed mechanism of interactions, appropriate molecular structural parameters were adopted to develop a QSAR model. The number of bromine atoms (nBr) octanol/water partition coefficient (logΚow), aromaticity index (IA), energy of the highest occupied molecular orbital (EHomo), electrophilicity index (ω) and dipole moment (μ) were significant parameters explaining the thyroid hormone activity. The developed QSAR model had good robustness, predictive ability and mechanism interpretability. The partition ability of the HO-PBDEs into the bio-phase was an important factor governing their thyroid hormone activities. Non-planarity of HO-PBDEs facilitates the binding with TRβ. The HO-PBDEs with higher ability to accept proton (as indicated by ELUMO andω) tend to have weak H-bonding with the receptor, and lower thyroid hormone activities.
引文
[1]The latest CAS registry Number and substance count www.cas.org/cgi-bin/cas/regreport.pl.2010.
    [2]Enterprise & Industry Directorate General and Environment Directorate General.European Commission, REACH in brief. Available online at:http://ecb.jrc.it/REACH/.2002.
    [3]Verhaar H J M, Solbe J, Speksnijder J, van Leeuwen C J, Hermens JLM. Classifying environmental pollutants:Part 3. External validation of the classification system. Chemosphere,2000,40(8): 875-883.
    [4]Russell W M S, Burch R L. The Principles of Humane Experimental Technique. Methuen, London. Available online at:http://altweb.jhsph.edu/publications/humane_exp/het-toc.htm,1959.
    [5]http://www.forschung3r.ch/en/links/index.html.2010
    [6]http://www.epa.gov/comptox/.2010.
    [7]Chen J W, Harner T, Ding G H, Quan X, Schramm K W, Kettrup A. Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants. Environmental Toxicology and Chemistry,2004,23(10):2309-2317.
    [8]Wang Y, Chen J W, Li F, Qin H, Qiao X L, Hao C. Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere,2009,76(7):999-1005.
    [9]Li X H, Chen J W, Zhang L, Qiao X L, Huang L P. The fragment constant method for predicting octanol-air partition coefficients of persistent organic pollutants at different temperatures. Journal of Physical and Chemical Reference Data,2006,35(3):1365-1384.
    [10]Amadasi A, Mozzarelli A, Meda C, Maggi A, Cozzini P. Identification of Xenoestrogens in Food Additives by an Integrated in Silico and in Vitro Approach. Chemical Research in Toxicology,2009, 22(1):52-63.
    [11]葛林科,张思玉,谢晴,陈景文.抗生素在水环境中的光化学行为.中国科学:化学,2010,40(2):124-135.
    [12]陈景文,全燮.环境化学.大连:大连理工大学出版社,2009.
    [13]Vedani A, Dobler M, Lill M A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry,2005,48(11): 3700-3703.
    [14]Cronin M T D, Jaworska J S, Walker J D, Comber M H I, Watts C D, Worth A P. Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environmental Health Perspectives,2003,111(10):1391-1401.
    [15]Fujita T, Hansch C, Iwasa J. New Substituent Constant Pi Derived from Partition Coefficients. Journal of the American Chemical Society,1964,86(23):5175-5180.
    [16]Cronin M T D, Walker J D, Jaworska J S, Comber M H I, Watts C D, Worth A P. Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environmental Health Perspectives,2003,111(10):1376-1390.
    [17]http://ecb.jrc.ec.europa.eu/qsar/.2010.
    [18]OECD. Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SARs] models. Available online at:http://applil.oecd.org/olis/2007doc.nsf/2007.
    [19]OECD. Guidance document on the validation of (Quantitative) Structure-Activity Relationships [(Q)SARs] models. Available online at:http://www.oecd.org/dataoecd/55/22/38131728.pdf.2007.
    [20]USEPA. EPI suit 4.0. http://www.epa.gov/oppt/exposure.2010
    [21]. US EPA. A framework for a computational toxicology research program. Washington, D. C. EPA600/R-03/65.2003.
    [22]http://comptox.unc.edu/projectl_description.html.2010.
    [23]UN. Globally harmonized system of classification and labelling of chemicals (GHS). http://www.unece.org/trans/danger/publi/ghs/ghs_rev01/English/04e_part4.pdf.2005.
    [24]陈景文,王壮,王亚南.有机污染物QSAR模型的机理建模与解释.10000个科学难题(化学卷),2009:554-557.
    [25]Tong W, Lowis D R, Perkins R, Chen Y, Welsh W J, Goddette D W, Heritage T W, Sheehan D M. Evaluation of quantitative structure-activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. Journal of Chemical Information and Computer Sciences, 1998,38(4):669-677.
    [26]Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O. A stepwise approach for defining the applicability domain of SAR and QSAR models. Journal of Chemical Information and Modeling,2005,45(4):839-849.
    [27]Commission E. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of bio-cidal products on the market, Parts 3. 2003.
    [28]Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set in descriptor space:A review. Atla-Alternatives to Laboratory Animals, 2005,33(5):445-459.
    [29]Schuurmann G, Ebert R U, Chen J W, Wang B, Kuhne R. External Validation and Prediction Employing the Predictive Squared Correlation Coefficient-Test Set Activity Mean vs Training Set Activity Mean. Journal of Chemical Information and Modeling,2008,48(11):2140-2145.
    [30]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.大连:大连理工大学出版社,1999.
    [31]Karelson M, Lobanov V S, Katritzky A R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chemical Review,1996,96(3):1027-1044.
    [32]Murray J S, Brinck T, Politzer P. Relationships of molecular surface electrostatic potentials to some macroscopic properties. Chemical Physics,1996,204(2-3):289-299.
    [33]Murray J S, Abu-Awwad F, Politzer P. Prediction of aqueous solvation free energies from properties of solute molecular surface electrostatic potentials. Journal of Physical Chemistry A,1999,103(12): 1853-1856.
    [34]Politzer P, Abrahmesen L, Sjoberg P. Effects of amino and nitro substituents upon the electrostatic potential of an aromatic ring. Journal of the American Chemical Society,1984,106:855-860.
    [35]Politzer P, Murray J S, Flodmark P. Relationship between measured diffusion coefficients and calculated molecular surface properties. Journal of Physical Chemistry,1996,100(13):5538-5540.
    [36]Murray J S, Lane P, Politzer P. Relationships between Impact Sensitivities and Molecular-Surface Electrostatic Potentials of Nitroaromatic and Nitroheterocyclic Molecules. Molecular Physics,1995, 85(1):1-8.
    [37]Zou J W, Zhao W N, Shang Z C, Huang M L, Guo M, Yu Q S. A quantitative structure-property relationship analysis of logP for disubstituted benzenes. Journal of Physical Chemistry A,2002, 106(47):11550-11557.
    [38]邹建卫,张兵,胡桂香.基于分子表面静电势参数研究多环芳烃化合物的定量结构-性质关系.化学学报,2004,62(3):241-246.
    [39]蒋华良,胡增建,陈建忠,顾健德,朱维良,陈凯先,嵇汝运.配体-受体相互作用的计算机模拟及其在药物设计中的应用.化学进展,1998,10(4):427-441.
    [40]McConkey B J, Sobolev V, Edelman M. The performance of current methods in ligand-protein docking. Current Science,2002,83(7):845-856.
    [41]Moult J, James M N G. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins,1986,1:146-163.
    [42]Lipton M, Still W C. The multiple minimum problem in molecular modeling:Tree searching internal coordinate conformtional space. Journal of Computational Chemistry,1988,9:343-348.
    [43]Gray J J, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl C A, Baker D. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology,2003,331(1):281-299.
    [44]Wang C, Schueler-Furman O, Baker D. Improved side-chain modeling for protein-protein docking. Protein Science,2005,14(5):1328-1339.
    [45]Rohl C A, Strauss C E M, Misura K M S, Baker D. Protein structure prediction using rosetta. Methods in Enzymology,2004,383:66-93.
    [46]Morris G M, Goodsell D S, Halliday R S, Huey R, Hart W E, Belew R K, Olson A J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry,1998,19(14):1639-1662.
    [47]Luty B A, Wasserman Z R, Stouten P F W, Hodge C N, Zacharias M, Mccammon J A. A Molecular Mechanics Grid Method for Evaluation of Ligand-Receptor Interactions. Journal of Computational Chemistry,1995,16(4):454-464.
    [48]Venkatachalam C M, Jiang X, Oldfield T, Waldman M. LigandFit:a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of Molecular Graphics & Modelling,2003,21(4):289-307.
    [49]陈凯先,蒋华良,稽汝运.计算机辅助药物设计-原理,方法及应用.上海:上海科学技术出版社,2001.
    [50]Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology,1996,261(3):470-489.
    [51]Friesner R A, Banks J L, Murphy R B, Halgren T A, Klicic J J, Mainz D T, Repasky M P, Knoll E H, Shelley M, Perry J K, Shaw D E, Francis P, Shenkin P S. Glide:A new approach for rapid, accurate docking and scoring.1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 2004,47(7):1739-1749.
    [52]Halgren T A, Murphy R B, Friesner R A, Beard H S, Frye L L, Pollard W T, Banks J L. Glide:A new approach for rapid, accurate docking and scoring.2. Enrichment factors in database screening. Journal of Medicinal Chemistry,2004,47(7):1750-1759.
    [53]Jones G, Willett P, Glen R C, Leach A R, Taylor R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology,1997,267(3):727-748.
    [54]Zsoldos Z, Reid D, Simon A, Sadjad B S, Johnson A P. eHITS:An innovative approach to the docking and scoring function problems. Current Protein and Peptide Science,2006,7(5):421-435.
    [55]Kuntz I D, Blaney J M, Oatley S J, Langridge R, Femin T E. A geometric approach to macromolecule ligand interactions. Journal of Molecular Biology,1982,161:269-288.
    [56]Vakser I A. Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex. Proteins-Structure Function and Genetics,1997:226-230.
    [57]Fernandez-Recio J, Totrov M, Abagyan R. Identification of protein-protein interaction sites from docking energy landscapes. Journal of Molecular Biology,2004,335(3):843-865.
    [58]Aloy P, Querol E, Aviles F X, Sternberg M J E. Automated structure-based prediction of functional sites in proteins:Applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking. Journal of Molecular Biology,2001,311(2):395-408.
    [59]Chen R, Li L, Weng Z P. ZDOCK:An initial-stage protein-docking algorithm. Proteins-Structure Function and Genetics,2003,52(1):80-87.
    [60]Norel R, Sheinerman F, Petrey D, Honig B. Electrostatics contributions to protein-protein interactions: fast energentic filters for docking and their physical basis. Protein Science,2001,10(11):2147-2161.
    [61]Taylor J S, Burnett R M. DARWIN:A program for docking flexible molecules. Proteins-Structure Function and Genetics,2000,41(2):173-191.
    [62]Gardiner E J, Willett P, Artymiuk P J. Protein docking using a genetic algorithm. Proteins-Structure Function and Genetics,2001,44(1):44-56.
    [63]Palma P N, Krippahl L, Wampler J E, Moura J J B. BIGGER:a new soft docking algorithm for predicting protein interactions. Proteins,2000,39(4):372-384.
    [64]Mandell J G, Roberts V A, Pique M E, Kotlovyi V, Mitchell J C, Nelson E, Tsigelny I, Ten Eyck L F. Protein docking using continuum electrostatics and geometric fit. Protein Engineering,2001,14(2): 105-113.
    [65]Dominguez C, Boelens R, Bonvin A M J J. HADDOCK:A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society,2003,125(7): 1731-1737.
    [66]Toppari J, Larsen J C, Christiansen P, Giwercman A, Grandjean P, Guillette L J, Jegou B, Jensen T K, Jouannet P, Keiding N, Leffers H, McLachlan J A, Meyer O, Muller J, RajpertDeMeyts E, Scheike T, Sharpe R, Sumpter J, Skakkebaek N E. Male reproductive health and environmental xenoestrogens. Environmental Health Perspectives,1996,104:741-803.
    [67]邓茂先,陈祥贵.环境内分泌干扰物研究进展.国外医学卫生学分册,2000,27(2):65-68.
    [68]Zala S M, Penn D J. Abnormal behaviours induced by chemical pollution:a review of the evidence and new challenges. Animal Behaviour,2004,68:649-664.
    [69]Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution. Bioessays,2000, 22(8):717-727.
    [70]李剑,饶凯锋,马梅,王子健.核受体超家族及其酵母双杂交检测技术.生态毒理学报,2008,3(6):521-532.
    [71]徐仁宝.核受体家族研究的进展.第二军医大学学报,2001,22(11):1053-1054.
    [72]Janosek J, Hilscherova K, Blaha L, Holoubek I. Environmental xenobiotics and nuclear receptors Interactions, effects and in vitro assessment. Toxicology in Vitro,2006,20(1):18-37.
    [73]Lorenzen A, Moon T W, Kennedy S W, Fox G A. Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos. Environmental Health Perspectives, 1999,107(3):179-186.
    [74]Brar N K, Waggoner C, Reyes J A, Fairey R, Kelley K M. Evidence for thyroid endocrine disruption in wild fish in San Francisco Bay, California, USA. Relationships to contaminant exposures. Aquatic Toxicology,2010,96(3):203-215.
    [75]Our Stolen Future, http://www.ourstolenfuture.org/basics/chemlist.htm.2009.
    [76]Akhtar N, Kayani S A, Ahmad M M, Shahab M. Insecticide-induced changes in secretory activity of the thyroid gland in rats. Journal of Applied Toxicology,1996,16(5):397-400.
    [77]Brittebo E, Kowalski B, Brand I. Binding of the aliphatic halides 1,2-dibromoethane and chloroform in the rodent vaginal epithelium. Toxicology and Applied Pharmacology,1987,60(4):294-298.
    [78]Krishnan V, Porter W, Santostefano M, Wang X H, Safe S. Molecular Mechanism of Inhibition of Estrogen-Induced Cathepsin-D Gene-Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD) in MCF-7 Cells. Molecular and Cellular Biology,1995,15(12):6710-6719.
    [79]Sandau C D, Meerts I A T M, Letcher R J, McAlees A J, Chittim B, Brouwer A, Norstrom R J. Identification of 4-hydroxyheptachlorostyrene in polar bear plasma and its binding affinity to transthyretin:A metabolite of octachlorostyrene? Environmental Science & Technology,2000,34(18): 3871-3877.
    [80]Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors? Environment International,2003,29(6):879-885.
    [81]Zoeller R T, Dowling A L S, Vas A A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology,2000,141(1):181-189.
    [82]Cheek A O, Kow K, Chen J, McLachlan J A. Potential mechanisms of thyroid disruption in humans: Interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environmental Health Perspectives,1999,107(4):273-278.
    [83]Meerts I A T M, van Zanden J J, Luijks E A C, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicological Sciences,2000,56(1):95-104.
    [84]Beard A P, Rawlings N C. Thyroid function and effects on reproduction in ewes exposed to the organochlorine pesticides Iindane or pentachlorophenol (PCP) from conception. Journal of Toxicology and Environmental Health-Part A,1999,58(8):509-530.
    [85]Gerhard I, Frick A, Monga B, Runnebaum B. Pentachlorophenol exposure in women with gynecological and endocrine dysfunction. Environmental Research,1999,80(4):383-388.
    [86]Jobling S, Reynolds T, White R, Parker M G, Sumpter J P. A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. Environmental Health Perspectives,1995,103(6):582-587.
    [87]Hurley P M, Hill R N, Whiting R J. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environmental Health Perspectives,1998,106(8):437-445.
    [88]Wilson AGE, Thake D C, Heydens W E, Brewster D W, Hotz K J. Mode of action of thyroid tumor formation in the male Long-Evans rat administered high doses of alachlor. Fundamental and Applied Toxicology,1996,33(1):16-23.
    [89]Jorgenson J L. Aldrin and Dieldrin:A review of research on their production, environmental deposition and fate, bioaccumulation, toxicology and epidemiology in the United States. Environmental Health Perspectives,2001,109:113-139.
    [90]Go V, Garey J, Wolff M S, Pogo B G T. Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environmental Health Perspectives,1999,107(3):173-177.
    [91]Danzo B J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environmental Health Perspectives,1997,105(3):294-301.
    [92]Klotz D M, Arnold S F, McLachlan J A. Inhibition of 17 beta-estradiol and progesterone activity in human breast and endometrial cancer cells by carbamate insecticides. Life Sciences,1997,60(17): 1467-1475.
    [93]Willingham E, Rhen T, Sakata J T, Crews D. Embryonic treatment with xenobiotics disrupts steroid hormone profiles in hatchling red-eared slider turtles (Trachemys scripta elegans). Environmental Health Perspectives,2000,108(4):329-332.
    [94]Moore A, Waring C P. The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquatic Toxicology,2001,52(1):1-12.
    [95]Lascombe I, Beffa D, Ruegg U, Tarradellas J, Wahli W. Estrogenic activity assessment of environmental chemicals using in vitro assays:Identification of two new estrogenic compounds. Environmental Health Perspectives,2000,108(7):621-629.
    [96]Kelce W R, Stone C R, Laws S C, Gray L E, Kemppainen J A, Wilson E M. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature,1995,375(6532):581-585.
    [97]Vinggaard A M, Breinholt V, Larsen J C. Screening of selected pesticides for oestrogen receptor activation in vitro. Food Additives and Contaminants,1999,16(12):533-542.
    [98]Soto A M, Sonnenschein C, Chung K L, Fernandez M F, Olea N, Serrano F O. The E-screen assay as a tool to identify estrogens-an update on estrogenic environmental-pollutants. Environmental Health Perspectives,1995,103:113-122.
    [99]Tamura H, Maness S C, Reischmann K, Dorman D C, Gray L E, Gaido K W. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicological Sciences,2001,60(1): 56-62.
    [100]Waller C L, Oprea T I, Chae K, Park H K, Korach K S, Laws S C, Wiese T E, Kelce W R, Gray L E. Ligand-based identification of environmental estrogens. Chemical Research in Toxicology,1996,9(8): 1240-1248.
    [101]Marty M S, Crissman J W, Carney E W. Evaluation of the male pubertal onset assay to detect testosterone and steroid biosynthesis inhibitors in CD rats. Toxicological Sciences,2001,60(2): 285-295.
    [102]Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss A K, Mann P C, Gray L E. Cellular and molecular mechanisms of action of linuron:An antiandrogenic herbicide that produces reproductive malformations in male rats. Toxicological Sciences,2000,56(2):389-399.
    [103]Pickford D B, Morris I D. Effects of endocrine-disrupting contaminants on amphibian oogenesis: Methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro. Environmental Health Perspectives,1999,107(4):285-292.
    [104]Guillette L J, Brock J W, Rooney A A, Woodward A R. Serum concentrations of various environmental contaminants and their relationship to sex steroid concentrations and phallus size in juvenile American alligators. Archives of Environmental Contamination and Toxicology,1999,36(4): 447-455.
    [105]Stoker T E, Laws S C, Crofton K M, Hedge J M, Ferrell J M, Cooper R L. Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols. Toxicological Sciences,2004,78(1):144-155.
    [106]Horiguchi T, Takiguchi N, Cho H S, Kojima M, Kaya M, Shiraishi H, Morita M, Hirose H, Shimizu M. Ovo-testis and disturbed reproductive cycle in the giant abalone, Haliotis madaka:possible linkage with organotin contamination in a site of population decline. Marine Environmental Research,2000, 50(1-5):223-229.
    [107]Rawlings N C, Cook S J, Waldbillig D. Effects of the pesticides carbofuran, chlorpyrifos, dimethoate, lindane, triallate, trifluralin,2,4-D, and pentachlorophenol on the metabolic endocrine and reproductive endocrine system in ewes. Journal of Toxicology and Environmental Health-Part A,1998, 54(1):21-36.
    [108]Marinovich M, Guizzetti M, Ghilardi F, Viviani B, Corsini E, Galli C L. Thyroid peroxidase as toxicity target for dithiocarbamates. Archives of Toxicology,1997,71(8):508-512.
    [109]Harris C A, Henttu P, Parker M G, Sumpter J P. The estrogenic activity of phthalate esters in vitro. Environmental Health Perspectives,1997,105(8):802-811.
    [110]Gray L E, Wolf C, Lambright C, Mann P, Price M, Cooper R L, Ostby J. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl-and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicology and Industrial Health,1999,15(1-2):94-118.
    [111]Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives,2001,109(3):239-244.
    [112]Fisher J S, Turner K J, Brown D, Sharpe R M. Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood. Environmental Health Perspectives,1999,107(5):397-405.
    [113]Andersen H R, Halling-Sorensen B, Kusk K O. A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicology and Environmental Safety,1999,44(1):56-61.
    [114]Perez P, Pulgar R, Olea-Serrano F, Villalobos M, Rivas A, Metzler M, Pedraza V, Olea N. The estrogenicity of bisphenol A-related diphenylalkanes with various substituents at the central carbon and the hydroxy groups. Environmental Health Perspectives,1998,106(3):167-174.
    [115]Rajapakse N, Ong D, Kortenkamp A. Defining the impact of weakly estrogenic chemicals on the action of steroidal estrogens. Toxicological Sciences,2001,60(2):296-304.
    [116]Kaltreider R C, Davis A M, Lariviere J P, Hamilton J W. Arsenic alters the function of the glucocorticoid receptor as a transcription factor. Environmental Health Perspectives,2001,109(3): 245-251.
    [117]Stoica A, Katzenellenbogen B S, Martin M B. Activation of estrogen receptor-alpha by the heavy metal cadmium. Molecular Endocrinology,2000,14(4):545-553.
    [118]Johnson M D, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler P F, Lirio A A, Foss C, Reiter R, Trock B, Paik S, Martin M B. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nature Medicine,2003,9(8):1081-1084.
    [119]Telisman S, Cvitkovic P, Jurasovic J, Pizent A, Gavella M, Rocic B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environmental Health Perspectives,2000,108(1):45-53.
    [120]Facemire C F, Gross T S, Guillette L J. Reproductive Impairment in the Florida Panther-Nature or Nurture. Environmental Health Perspectives,1995,103:79-86.
    [121]O'Connor J C, Cook J C, Marty M S, Davis L G, Kaplan A M, Carney E W. Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs). Critical Reviews in Toxicology,2002,32(6):521-549.
    [122]Hutchinson T H, Pickford D B. Ecological risk assessment and testing for endocrine disruption in the aquatic environment. Toxicology,2002,181:383-387.
    [123]Ashby J, Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environmental Health Perspectives,1998,106(11):719-720.
    [124]Yamasaki K, Sawaki M, Takatsuki M. Immature rat uterotrophic assay of bisphenol A. Environmental Health Perspectives,2000,108(12):1147-1150.
    [125]Spearow J L, Doemeny P, Sera R, Leffler R, Barkley M. Genetic variation in susceptibility to endocrine disruption by estrogen in mice. Science,1999,285(5431):1259-1261.
    [126]Ashby J, Lefevre P A. The peripubertal male rat assay as an alternative to the Hershberger castrated male rat assay for the detection of anti-androgens, oestrogens and metabolic modulators. Journal of Applied Toxicology,2000,20(1):35-47.
    [127]宋福永,李杰.应用卵黄蛋白原检测内分泌干扰物质的研究进展.环境与健康杂志,2004,21(4):264-266.
    [128]邓南圣,吴峰.环境中的内分泌干扰物.北京:化学工业出版社,2004:21.
    [129]Bolger R, Wiese T E, Ervin K, Nestich S, Checovich W. Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environmental Health Perspectives,1998,106(9):551-557.
    [130]Andersen H R, Andersson A M, Arnold S F, Autrup H, Barfoed M, Beresford N A, Bjerregaard P, Christiansen L B, Gissel B, Hummel R, Jorgensen E B, Korsgaard B, Le Guevel R, Leffers H, McLachlan J, Moller A, Nielsen J B, Olea N, Oles-Karasko A, Pakdel F, Pedersen K L, Perez P, Skakkeboek N E, Sonnenschein C, Soto A M, Sumpter J P, Thorpe S M, Grandjean P. Comparison of
    short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environmental Health Perspectives,1999,107:89-108.
    [131]Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry,1996,15(3): 241-248.
    [132]Zacharewski T. In vitro bioassays for assessing estrogenic substances. Environmental Science & Technology,1997,31(3):613-623.
    [133]Nishikawa J, Saito K, Goto J, Dakeyama F, Matsuo M, Nishihara T. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicology and Applied Pharmacology,1999,154(1):76-83.
    [134]Coldham N G, Dave M, Sivapathasundaram S, McDonnell D P, Connor C, Sauer M J. Evaluation of a recombinant yeast cell estrogen screening assay. Environmental Health Perspectives,1997,105(7): 734-742.
    [135]谢国红,胡建英,李功,马兴杰,刘国光.酵母双杂交法筛检酚类物质的内分泌干扰作用.中国环境科学,2002,22(3):249-253.
    [136]Migliaccio S, Newbold R R, Mclachlan J A, Korach K S. Alterations in estrogen-levels during development affects the sSkeleton-use of an animal-model. Environmental Health Perspectives,1995, 103:95-97.
    [137]Iafrati M D, Karas R H, Aronovitz M, Kim S, Sullivan T R, Lubahn D B, ODonnell T F, Korach K S, Mendelsohn M E. Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nature Medicine,1997,3(5):545-548.
    [138]Couse J F, Korach K S. Estrogen receptor null mice:what have we learned and where will they lead us? (vol 20, pg 358,1999). Endocrine Reviews,1999,20(4):459-459.
    [139]Brucker-Davis F, Thayer K, Colborn T. Significant effects of mild endogenous hormonal changes in humans:Considerations for low-dose testing. Environmental Health Perspectives,2001,109:21-26.
    [140]马明月,苏雅,李宏革,张玉敏.镍对雌性大鼠生殖功能影响研究.中国公共卫生学报,1998,17(2):104-105.
    [141]Brouwer A, Morse D C, Lans M C, Schuur A G, Murk A J, Klasson-Wehler E, Bergman A, Visser T J. Interactions of persistent environmental organohalogens with the thyroid hormone system: Mechanisms and possible consequences for animal and human health. Toxicology and Industrial Health,1998,14(1-2):59-84.
    [142]Colborn T. Clues from wildlife to create an assay for thyroid system disruption. Environmental Health Perspectives,2002,110:363-367.
    [143]瞿璟琰,施华宏,刘青坡,姚晨岚.污染物对鱼类的甲状腺激素干扰效应及其作用机制.生态毒理学报,2007,2:25-31.
    [144]Cooke P S, Holsberger D R, Witorsch R J, Sylvester P W, Meredith J M, Treinen K A, Chapin R E. Thyroid hormone, glucocorticoids, and prolactin at the nexus of physiology, reproduction, and toxicology. Toxicology and Applied Pharmacology,2004,194(3):309-335.
    [145]Abu E O, Bord S, Homer A, Chatterjee V K K, Compston J E. The expression of thyroid hormone receptors in human bone. Bone,1997,21(2):137-142.
    [146]Del Terra E, Francesconi A, Donnini D, Curcio F, Ambesi-Impiombato F S. Thyrotropin effects on ultraviolet radiation-dependent apoptosis in FRTL-5 cells. Thyroid,2003,13(8):747-753.
    [147]Schriks M, Vrabie C M, Gutleb A C, Faassen E J, Rietjens I M C M, Murk A J. T-screen to quantify functional potentiating, antagonistic and thyroid hormone-like activities of poly halogenated aromatic hydrocarbons (PHAHs). Toxicology in Vitro,2006,20(4):490-498.
    [148]Li J, Ma M, J.Wang Z. A two-hybrid yeast assay to quantify the effects of xenbotics on thyroid hormone-mediated gene expression. Environmental Toxicology and Chemistry,2008,27:159-167.
    [149]Shi L M, Fang H, Tong W D, Wu J, Perkins R, Blair R M, Branham W S, Dial S L, Moland C I, Sheehan D M. QSAR models using a large diverse set of estrogens. Journal of Chemical Information and Computer Sciences,2001,41(1):186-195.
    [150]Tong W D, Perkins R, Strelitz R, Collantes E R, Keenan S, Welsh W J, Branham W S, Sheehan D M. Quantitative structure-activity relationships (QSARs) for estrogen binding to the estrogen receptor: Predictions across species. Environmental Health Perspectives,1997,105(10):1116-1124.
    [151]Waller C L. A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. Journal of Chemical Information and Computer Sciences,2004,44(2):758-765.
    [152]Asikainen A H, Ruuskanen J, Tuppurainen K A. Consensus kNN QSAR:A versatile method for predicting the estrogenic activity of organic compounds in silico. A comparative study with five estrogen receptors and a large, diverse set of ligands. Environmental Science & Technology,2004, 38(24):6724-6729.
    [153]Hu J Y, Aizawa T. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Research,2003,37(6):1213-1222.
    [154]Jacobs M N. In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology, 2004,205(1-2):43-53.
    [155]Marini F, Roncaglioni A, Novic M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. Journal of Chemical Information and Modeling, 2005,45(6):1507-1519.
    [156]So S S, van Helden S P, van Geerestein V J, Karplus M. Quantitative structure-Activity relationship studies of progesterone receptor binding steroids. Journal of Chemical Information and Computer Sciences,2000,40(3):762-772.
    [157]Asikainen A, Ruuskanen J, Tuppurainen K. Spectroscopic QSAR methods and self-organizing molecular field analysis for relating molecular structure and estrogenic activity. Journal of Chemical Information and Computer Sciences,2003,43(6):1974-1981. [158] Gao H, Katzenellenbogen J A, Garg R, Hansch C. Comparative QSAR analysis of estrogen receptor ligands. Chemical Reviews, 1999,99(3):723-744.
    [159]Garg R, Kurup A, Hansch C. Comparative QSAR:On the toxicology of the phenolic OH moiety. Critical Reviews in Toxicology,2001,31(2):223-245.
    [160]Suzuki T, Ide K, Ishida M, Shapiro S. Classification of environmental estrogens by physicochemical properties using principal component analysis and hierarchical cluster analysis. Journal of Chemical Information and Computer Sciences,2001,41(3):718-726.
    [161]季力,王晓栋,杨旭曙,刘树深,王连生.遗传算法结合共轭梯度法改进BP算法人工神经网络用于环境雌激素的QSAR研究.科学通报,2007,52(18):2116-2121.
    [162]Ai N, DeLisle R K, Yu S J, Welsh W J. Computational models for predicting the binding affinities of ligands for the wild-type androgen receptor and a mutated variant associated with human prostate cancer. Chemical Research in Toxicology,2003,16(12):1652-1660.
    [163]Waller C L, Juma B W, Gray L E, Kelce W R. Three-dimensional quantitative structure-activity relationships for androgen receptor ligands. Toxicology and Applied Pharmacology,1996,137(2): 219-227.
    [164]季力,高士祥,王晓栋,张爱茜,王连生.环境内分泌干扰物的定量结构-活性相关研究.化学进展,2009,21:335-339.
    [165]Roncaglioni A, Novic M, Vracko M, Benfenati E. Classification of potential endocrine disrupters on the basis of molecular structure using a nonlinear modeling method. Journal of Chemical Information and Computer Sciences,2004,44(2):300-309.
    [166]Liu H X, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chemical Research in Toxicology,2006,19(11): 1540-1548.
    [167]Turner D B, Willett P, Ferguson A M, Heritage T. Development and validation of the EVA descriptor for QSAR studies. Abstracts of Papers of the American Chemical Society,1997,214:158-COMP.
    [168]Tuppurainen K. EEVA (electronic eigenvalue):A new QSAR/QSPR descriptor for electronic substituent effects based on molecular orbital energies. Sar and Qsar in Environmental Research,1999, 10(1):39-46.
    [169]Beger R D, Freeman J P, Lay J O, Wilkes J G, Miller D W. C-13 NMR and electron ionization mass spectrometric data-activity relationship model of estrogen receptor binding. Toxicology and Applied Pharmacology,2000,169(1):17-25.
    [170]Saliner A G, Amat L, Carbo-Dorca R, Schultz T W, Cronin MTD. Molecular quantum similarity analysis of estrogenic activity. Journal of Chemical Information and Computer Sciences,2003,43(4): 1166-1176.
    [171]Fradera X, Amat L, Besalu E, CarboDorca R. Application of molecular quantum similarity to QSAR. Quantitative Structure-Activity Relationships,1997,16(1):25-32.
    [172]Gallegos A, Robert D, Girones X, Carbo-Dorca R. Structure-toxicity relationships of polycyclic aromatic hydrocarbons using molecular quantum similarity. Journal of Computer-Aided Molecular Design,2001,15(1):67-80.
    [173]Waller C L, Bradley M P. Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationship studies. Journal of Chemical Information and Computer Sciences,1999,39(2):345-355.
    [174]Rashid M, Singla D, Sharma A, Kumar M, Raghava GPS. Hmrbase:a database of hormones and their receptors. http://www.biomedcentral.com/1471-2164/10/307.2010
    [175]Denison M S, Pandini A, Nagy S R, Baldwin E P, Bonati L. Ligand binding and activation of the Ah receptor. Chemico-Biological Interactions,2002,141(1-2):3-24.
    [176]von Langen J, Fritzemeier K H, Diekmann S, Hillisch A. Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol. Chembiochem,2005,6(6):1110-1118.
    [177]高常安,张爱茜,蔺远,韩朔睽,王连生.受体功能区结构与环境内分泌干扰效应生物差异的关系.生态毒理学报,2007,2(4):364-374.
    [178]Celik L, Lund J D D, Schiott B. Exploring Interactions of endocrine-disrupting compounds with different conformations of the human estrogen receptor alpha ligand binding domain:a molecular docking study. Chemical Research in Toxicology,2008,21(11):2195-2206.
    [179]Spreafico M, Smiesko M, Peristera O, Rossato G, Vedani A. Probing small-molecule binding to the liver-X receptor:a mixed-model QSAR study. Molecular Informatics,2010,29(1-2):27-36.
    [180]Vedani A, Dobler M, Spreafico M, Peristera O, Smiesko M. VirtualToxLab-in silico prediction of the toxic potential of drugs and environmental chemicals:Evaluation status and Internet access protocol. Altex-Alternativen Zu Tierexperimenten,2007,24(3):153-161.
    [181]Vedani A, Smiesko M. In silico toxicology in drug discovery-concepts based on three-dimensional models. Atla-Alternatives to Laboratory Animals,2009,37(5):477-496.
    [182]Vedani A, Spreafico M, Peristera O, Dobler M, Smiesko M. VirtualToxLab-in silico prediction of the endocrine-disrupting potential of drugs and chemicals. Chimia,2008,62(5):322-328.
    [183]VirtualToxLab. http://www.biograf.ch/index.php?id=home.2009.
    [184]Tong W D, Perkins R, Collantes E R, Welsh W J, Branham W S, Sheehan D M. Quantitative structure-activin relationships (QSARs) for estrogen binding to the estrogen receptor:Predictions across species. Abstracts of Papers of the American Chemical Society,1997,214:101-ENVR.
    [185]Tong W D, Perkins R, Xing L, Welsh W J, Sheehan D M. QSAR models for binding of estrogenic compounds to estrogen receptor alpha and beta subtypes. Endocrinology,1997,138(9):4022-4025.
    [186]Baughman G L, Weber E J. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environmental Science & Technology,1994,28(2):267-278.
    [187]Weber E J, Adams R L. Chemical-mediated and sediment-mediated reduction of the azo-dye disperse-blue-79. Environmental Science & Technology,1995,29(5):1163-1170.
    [188]Kurihara R, Shiraishi F, Tanaka N, Hashimoto S. Presence and estrogenicity of anthracene derivatives in coastal Japanese waters. Environmental Toxicology and Chemistry,2005,24(8): 1984-1993.
    [189]刘芸,李剑,马梅,王子健,饶凯锋,张玉秀.代谢活化作用对多溴代联苯类污染物类/抗甲状腺激素活性的影响.生态毒理学报,2008,3(1):27-33.
    [190]Marsh G, Bergman A, Bladh L G, Gillner M, Jakobsson E. Synthesis of p-hydroxybromodiphenyl ethers and binding to the thyroid receptor. Organohalogen Compound 1998,37:305-38.
    [191]Kitamura S, Shinohara S, Iwase E, Sugihara K, Uramaru N, Shigematsu H, Fujimoto N, Ohta S. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers. Journal of Health Science,2008,54(5):607-614.
    [192]Yu S J, Keenan S M, Tong W, Welsh W J. Influence of the structural diversity of data sets on the statistical quality of three-dimensional quantitative-activity relationship (3D-QSAR) models: Predicting the estrogenic activity of xenoestrogens. Chemical Research in Toxicology,2002,15(10): 1229-1234.
    [193]Routledge E J, Sumpter J P. Structural features of alkylphenolic chemicals associated with estrogenic activity. Journal of Biological Chemistry,1997,272(6):3280-3288.
    [194]Gierthy J F, Arcaro K F, Li A, Silber P, Lloyd S, Yang Y. Optimization and validation of the MCF-7 focus assay for estrogen modulators. Toxicological Sciences,2003,72(1):154-155.
    [195]Golbraikh A, Shen M, Xiao Z Y, Xiao Y D, Lee K H, Tropsha A. Rational selection of training and test sets for the development of validated QSAR models. Journal of Computer-Aided Molecular Design,2003,17(2):241-253.
    [196]Zefirov N S, Palyulin V A. QSAR for boiling points of "small" sulfides. Are the "high-quality structure-property-activity regressions" the real high quality QSAR models? Journal of Chemical Information and Computer Sciences,2001,41(4):1022-1027.
    [197]饶凯锋,马梅,王子健.南方某水厂处理工艺中内分泌干扰物的变化规律.环境科学,2004,25(6):123-126.
    [198]Fang H, Tong W D, Perkins R, Soto A M, Prechtl N V, Sheehan D M. Quantitative comparisons of in vitro assays for estrogenic activities. Environmental Health Perspectives,2000,108(8):723-729.
    [199]Todeschini R, Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany. 2000.
    [200]王惠文,偏最小二乘回归方法及其应用.北京:国防工业出版社,1999.
    [201]AMBIT Discovery v0.04. http://ambit.acad.bg/downloads/AmbitDiscovery/.2008
    [202]Eriksson L, Jaworska J, Worth A P, Cronin M T D, McDowell R M, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environmental Health Perspectives,2003,111(10):1361-1375.
    [203]Tropsha A, Gramatica P, Gombar V K. The importance of being earnest:Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science,2003,22(1):69-77.
    [204]Chen C W, Hurd C, Vorojeikina D P, Arnold S F, Notides A C. Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochemical Pharmacology,1997,53(8):1161-1172.
    [205]Maier C G A, Chapman K D, Smith D W. Differential estrogenic activities of male and female plant-extracts from 2 dioecious species. Plant Science,1995,109(1):31-43.
    [206]Consonni V, Todeschini R, Pavan M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors.1. Theory of the novel 3D molecular descriptors. Journal of Chemical Information and Computer Sciences,2002,42(3):682-692.
    [207]Hayashi S M, Hong H H L, Toyoda K, Ton T V T, Devereux T R, Maronpot R R, Huff J, Sills R C. High frequency of Ras mutations in forestomach and lung tumors of B6C3F1 mice exposed to 1-amino-2,4-dibromoanthraquinone for 2 years. Toxicologic Pathology,2001,29(4):422-429.
    [208]Yen J H, Lin K H, Wang Y S. Acute lethal toxicity of environmental pollutants to aquatic organisms. Ecotoxicology and Environmental Safety,2002,52(2):113-116.
    [209]McFarland J W. On the parabolic relationship between drug potency and hydrophobicity. Journal of Medicinal Chemistry,1970,13:1092-1196.
    [210]Famini G R, Wilson L Y. Using theoretical descriptors in linear free energy relationships: characterizing several polarity, acid and basicity scales. Journal of Physical Organic Chemistry,1999, 12(8):645-653.
    [211]Nguyen T H, Goss K U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science & Technology,2005,39(4):913-924.
    [212]Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj P K. Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Chemical Research in Toxicology,2006,19(3):356-364.
    [213]Frisch M J, Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C. Iyengar, S. S. Tomasi, J. Cossi, M. Rega, Millam, N. J., Klene, M. Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. Gaussian 09, Revision A.I. Gaussian, Inc., Wallingford CT,2009.
    [214]Stratmann R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. Journal of Chemical Physics,1998,109(19):8218-8224.
    [215]Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters,1996,256(4-5):454-464.
    [216]Casida M E, Jamorski C, Casida K C, Salahub D R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold. Journal of Chemical Physics, 1998,108(11):4439-4449.
    [217]Becke A D, Johnson E R. A density-functional model of the dispersion interaction. Journal of Chemical Physics,2005,123(15):154101.
    [218]Cances E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model:Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics,1997,107(8):3032-3041.
    [219]Mennucci B, Tomasi J. Continuum solvation models:A new approach to the problem of solute's charge distribution and cavity boundaries. Journal of Chemical Physics,1997,106(12):5151-5158.
    [220]Cossi M, Scalmani G, Rega N, Barone V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. Journal of Chemical Physics, 2002,117(1):43-54.
    [221]Golbraikh A, Tropsha A. Beware of q2! Journal of Molecular Graphics & Modelling,2002,20(4): 269-276.
    [222]Liu X H, Wu C D, Han S K, Wang L S, Zhang Z. The acute toxicity of alpha-branched phenylsulfonyl acetates in Photobacterium phosphoreum test. Ecotoxicology and Environmental Safety,2001,49(3):240-244.
    [223]Boon J P, Lewis W E, Tjoen-A-Choy M R, Allchin C R, Law R J, de Boer J, ten Hallers-Tjabbes C C, Zegers B N. Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web. Environmental Science & Technology, 2002,36(19):4025-4032.
    [224]Dodder N G, Strandberg B, Hites R A. Concentrations and spatial variations of polybrominated diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States. Environmental Science & Technology,2002,36(2):146-151.
    [225]Mazdai A, Dodder N G, Abernathy M P, Hites R A, Bigsby R M. Polybrominated diphenyl ethers in maternal and fetal blood samples. Environmental Health Perspectives,2003,111(9):1249-1252.
    [226]Marsh G, Athanasiadou M, Bergman A, Asplund L. Identification of hydroxylated and methoxylated polybrominated diphenyl ethers in Baltic Sea salmon (Salmo salar) blood. Environmental Science & Technology,2004,38(1):10-18.
    [227]Meironyte D, Noren K, Bergman A. Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study,1972-1997. Journal of Toxicology and Environmental Health-Part A, 1999,58(6):329-341.
    [228]Ikonomou M G, Rayne S, Addison R F. Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian arctic from 1981 to 2000. Environmental Science & Technology,2002,36(9):1886-1892.
    [229]Rahman F, Langford K H, Scrimshaw M D, Lester J N. Polybrominated diphenyl ether (PBDE) flame retardants. Science of the Total Environment,2001,275(1-3):1-17.
    [230]Haglund P S, Zook D R, Buser H R, Hu J W. Identification and quantification of polybrominated diphenyl ethers and methoxy-polybrominated diphenyl ethers in Baltic biota. Environmental Science & Technology,1997,31(11):3281-3287.
    [231]Qiu X H, Bigsby R M, Hites R A. Hydroxylated Metabolites of Polybrominated Diphenyl Ethers in Human Blood Samples from the United States. Environmental Health Perspectives,2009,117(1): 93-98.
    [232]Kawashiro Y, Fukata H, Inoue M O, Kubonoya K, Jotaki T, Takigami H, Sakai S I, Mori C. Perinatal Exposure to Brominated Flame Retardants and Polychlorinated Biphenyls in Japan. Endocrine Journal, 2008,55(6):1071-1084.
    [233]Athanasiadou M, Cuadra S N, Marsh G, Bergman A, Jakobsson K. Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua. Environmental Health Perspectives,2008,116(3):400-408.
    [234]Guvenius D M, Aronsson A, Ekman-Ordeberg G, Bergman A, Noren K. Human prenatal and postnatal exposure to polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorobiphenylols, and pentachlorophenol. Environmental Health Perspectives,2003,111(9): 1235-1241.
    [235]McDonald T A. A perspective on the potential health risks of PBDEs. Chemosphere,2002,46(5): 745-755.
    [236]Hallgren S, Darnerud P O. Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects. Toxicology,2002,177(2-3):227-243.
    [237]Hakk H, Letcher R J. Metabolism in the toxicokinetics and fate of brominated flame retardants-a review. Environment International,2003,29(6):801-828.
    [238]Tseng L H, Li M H, Tsai S S, Lee C W, Pan M H, Yao W J, Hsu P C. Developmental exposure to decabromodiphenyl ether (PBDE 209):Effects on thyroid hormone and hepatic enzyme activity in male mouse offspring. Chemosphere,2008,70(4):640-647.
    [239]Kojima H, Takeuchi S, Uramaru N, Sugihara K, Yoshida T, Kitamura S. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells. Environmental Health Perspectives, 2009,117(8):1210-1218.
    [240]Hamers T, Kamstra J H, Sonneveld E, Murk A J, Kester M H A, Andersson P L, Legler J, Brouwer A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicological Sciences,2006,92(1):157-173.
    [241]Darnerud P O, Aune M, Larsson L, Hallgren S. Plasma PBDE and thyroxine levels in rats exposed to Bromkal or BDE-47. Chemosphere,2007,67(9):S386-S392.
    [242]Zhou T, Taylor M M, DeVito M J, Crofton K A. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicological Sciences,2002,66(1):105-116.
    [243]Colosi L M, Huang Q G, Weber W J. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals. Journal of the American Chemical Society,2006,128(12):4041-4047.
    [244]Chattaraj P K, Sarkar U, Roy D R. Electrophilicity index. Chemical Reviews,2006,106(6): 2065-2091.
    [245]Alonso M, Casado S, Miranda C, Tarazona J V, Navas J M, Herradon B. Decabromobiphenyl (PBB-209) activates the aryl hydrocarbon receptor while decachlorobiphenyl (PCB-209) is inactive: Experimental evidence and computational rationalization of the different behavior of some halogenated biphenyls. Chemical Research in Toxicology,2008,21(3):643-658.
    [246]Karelson M, Lobanov V S, Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews,1996,96(3):1027-1043.
    [247]Kruszews.J, Krygowsk.Tm. Definition of Aromaticity Basing on Harmonic Oscillator Model. Tetrahedron Letters,1972, (36):3839-&.
    [248]Kalinowska M, Siemieniuk E, Kostro A, Lewandowski W. The application of A(j), BAC,1-6, HOMA indexes for quantitative determination of aromaticity of metal complexes with benzoic, salicylic, nicotinic acids and benzene derivatives. Journal of Molecular Structure-Theochem,2006, 761(1-3):129-141.
    [249]Li J, Ma M, Wang Z J. A two-hybrid yeast assay to quantify the effects of xenobiotics on thyroid hormone-mediated gene expression. Environmental Toxicology and Chemistry,2008,27(1):159-167.
    [250]Hamers T, Kamstra J H, Sonneveld E, Murk A J, Visser T J, Van Velzen M J M, Brouwer A, Bergman A. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Molecular Nutrition & Food Research,2008,52(2):284-298.
    [251]Hurth K M, Nilges M J, Carlson K E, Tamrazi A, Belford R L, Katzenellenbogen J A. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling. Biochemistry,2004,43(7):1891-1907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700