用户名: 密码: 验证码:
抗氯氟氰菊酯甜菜夜蛾对昆虫生长调节剂的敏感性及其神经ATPase和多功能氧化酶活性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜菜夜蛾(Spodoptera exigua)属鳞翅目夜蛾科,是一种世界性分布的杂食性重要农业害虫,主要危害蔬菜、棉花和观赏性植物等。由于一直依靠化学防治,甜菜夜蛾已对多种类型农药尤其是菊酯类杀虫剂产生抗性。昆虫生长调节剂如虫酰肼和几丁质合成抑制剂类杀虫剂是近年来防治甜菜夜蛾的主要替代农药。这类杀虫剂对鳞翅目害虫都表现了高度的选择性,对哺乳动物、鸟、鱼类、其它脊椎动物和大多数天敌无毒害作用,是害虫综合防治的重要优选药剂。害虫对药剂都存在产生抗药性的风险,为了更有效地控制甜菜夜蛾的危害,掌握甜菜夜蛾对此类杀虫剂的敏感性变化十分重要。
     昆虫的生命活动是通过神经系统电位传导进行调控的,神经电位是由神经膜内外离子浓度不同形成的电位差,信号传导则是神经膜电位发生连续变化而向下传递的。神经膜内外不同离子浓度的调节主要靠神经膜上的ATPase进行调控。Na-K-ATPase催化ATP末端磷酸水解,并利用其高能磷酸键释放的自由能进行Na+、K+逆电化学梯度运输,维持细胞膜内外Na+、K+离子浓度的相对恒定及渗透压的平衡。Ca2+对轴突传导、突触神经递质释放及神经膜的稳定性等起重要作用,正常情况下神经膜外Ca2+离子的浓度高于膜内浓度,Ca2+在膜内外的调节主要靠Ca-ATPase和Ca-Mg-ATPase来进行。拟除虫菊酯类杀虫剂的作用靶标主要是神经膜上的钠离子通道和维持膜内外离子浓度稳定的Na-K-ATPase、Ca-ATPase和Ca-Mg-ATPase等。目前已报道许多害虫对拟除虫菊酯类杀虫剂产生了不同程度的抗性,有些害虫的抗性甚至达到了高水平或极高水平阶段。钠离子通道变异和神经ATPase活性下降是产生抗药性的重要原因。
     本文研究内容包括三部分:抗性甜菜夜蛾对昆虫生长调节剂的敏感性测定、抗性甜菜夜蛾神经ATPase活性变化和多功能氧化酶活性变化的研究。研究结果如下:
     1、在室内相同条件下,分别用点滴法和浸叶法测定甜菜夜蛾抗氯氟氰菊酯品系和敏感品系3龄幼虫LD50(ug/头)或LC50值(mg/L)。用点滴法测定结果表明,甜菜夜蛾3龄幼虫对氯氟氰菊酯的抗性倍数是5163.0倍;用浸叶法测定甜菜夜蛾3龄幼虫对氯氟氰菊酯的抗药性倍数是985.2倍。浸叶法测定甜菜夜蛾抗性品系3龄幼虫对昆虫生长调节剂的敏感性结果表明,甜菜夜蛾抗性品系和敏感品系对供试药剂的敏感性均存在明显差异。甜菜夜蛾敏感品系对供试药剂的敏感性由高到低顺序为甲氧酰肼(1.866 mg/L)﹥虫酰肼(5.574 mg/L)﹥氟铃脲(13.37 mg/L)﹥抑食肼(58.61 mg/L)﹥除虫脲(178.5 mg/L);甜菜夜蛾抗性品系对供试药剂的敏感性由高到低顺序为甲氧酰肼(4.863 mg/L)﹥虫酰肼(21.45mg/L)﹥氟铃脲(64.36mg/L)﹥抑食肼(325.4mg/L)﹥除虫脲(567.3mg/L)。测定结果表明,与敏感品系相比,甜菜夜蛾抗性品系3龄幼虫对昆虫生长调节剂甲氧酰肼、虫酰肼、氟铃脲、抑食肼、除虫脲的敏感性分别下降:3.81、5.55、4.81、3.85和2.61倍,其中对部分药剂的敏感性下降倍数达到5倍以上,表现出低水平抗药性。
     2、分别测定了甜菜夜蛾敏感品系和抗氯氟氰菊酯品系神经Na-K-ATPase、Ca-ATPase和Ca-Mg-ATPase的活力,结果表明,甜菜夜蛾敏感品系和抗性品系Na-K-ATPase活力差异不显著,而抗性品系Ca-ATPase和Ca-Mg-ATPase活力明显低于敏感品系。分别测定氯氟氰菊酯对敏感和抗性品系Na-K-ATPase、Ca-ATPase和Ca-Mg-ATPase活力的抑制作用,结果表明,在浓度为10-8~10-3 mol/L时,氯氟氰菊酯对敏感和抗性品系Na-K-ATPase、Ca-ATPase和Ca-Mg-ATPase的活力均有抑制作用,并且对敏感品系的抑制作用要高于对抗性品系的抑制作用。如氯氟氰菊酯浓度为10-4 mol/L时,对敏感品系Na-K-ATPase活力抑制率为29.6%,抗性品系为21.8%;对敏感品系Ca-ATPase活力抑制率为34.3%,抗性品系为21.9%;对敏感品系Ca-Mg-ATPase活力抑制率为22.3%,抗性品系为16.9%。结果表明甜菜夜蛾抗性品系上述3种ATP酶对氯氟氰菊酯的敏感性已明显下降。
     3、测定了抗氯氟氰菊酯甜菜夜蛾种群在室内用人工饲料连续饲养和未用药剂筛选条件下多功能氧化酶系活性的变化规律。测定甜菜夜蛾田间种群室内F2、F20、F41代及敏感品系5龄幼虫中肠微粒体甲氧试卤灵-O-脱甲基酶、乙氧试卤灵-O-脱乙基酶、芳香基羟基化酶及艾氏剂环氧化酶活性结果表明,与敏感品系相比,田间种群甲氧试卤灵-O-脱甲基酶和艾氏剂环氧化酶的活性仅F2代差异显著,F20和F41代差异不显著;乙氧试卤灵-O-脱乙基酶和芳香基羟基化酶的活性F2、F20、F41代均差异显著。表明微粒体多功能氧化酶系不同酶在甜菜夜蛾不同抗性水平阶段的作用不同。
The beet armyworm, Spodoptera exigua (Hbüner), is a polyphagous noctuid of worldwide importance that feeds on various agricultural crops, including vegetable, cotton and omamental. The heavy dependence on insecticides for control of this pest has resulted in the emergence of resistance to a variety of insecticides. Insect growth regulators (IGRs) including tebufenozide and chitin inhibitors are the major insecticides used to control Spodoptera exigua in the field. They have selective toxicity towards different pests, and have less adverse effects on mammals, birds, fishes and other vertebtrates, as well as various beneficial insects. In order to maintain long effective controlling, we must pay more attention to sensitivity of these insecticides to beet armyworm.
     The life activities of insect is controlled by its nerve system potential conduction. Nerve potential is the potential difference dues to the different ion concentration of inside and outside neurilemma. ATPase in the neurilemma mostly controls the different ion concentration of inside and outside neurilemma. Na-K-ATPase catalyses the bottom phosphoric acid of ATP to be hydrolyzed, and the high-energy phosphate bond liberatives free energy which can be used to counter-transport Na+、K+ with electrochemistry gradient, in order to maintain the relative invariablenes and balance of osmotic pressure of Na+、K+ concentration of inside and outside neurilemma. Ca2+ plays an important part in neuraxon conduction, synapse neurotransmitters release and neurilemma stability. In normal condition, Ca2+ concentration of outside neurilemma is higher than that inside neurilemma. And the modulation of Ca2+ inside and outside neurilemma mainly depends on Ca-ATPase and Ca-Mg-ATPase. Target sites of pyrethroid insecticides are sodium channel on the neurilemma and Na-K-ATPase、Ca-ATPase and Ca-Mg-ATPase which can maintain the stability of ions inside and outside neurilemma. The variation of sodium channel and the decreased activities of nerve ATPase are main causes to pyrethroid insecticide resistance.
     Three parts are involved in this thesis: (1) sensitivity of insect growth regulators to resistant strain of beet armyworm, Spodoptera exigua and (2) inhibition of Lambda-cyhalothrin on Nerve Na-K-ATPase, Ca-ATPase and Ca-Mg-ATPase in the Beet Armyworm.(3)active changes of multi-function oxidases in Beet Armyworm.The results are as follows.
     1. In the same condition in laboratory, LD50 or LC50 of 3rd instar larva of susceptible strain and Lambda-cyhalothrin resistant strain of beet armyworm were determined. The results detected by topical application showed that 3rd instar larva of the resistant strain had 5163.0 fold resistance to Lambda-cyhalothrin compared to the susceptible strain. The results detected by dipping method showed that 3rd instar larva of the resistant strains had 985.2 fold resistance to Lambda-cyhalothrin. Sensitivity of five insect growth regulators to resistant and susceptible stains of beet armyworm was evaluated. The order of sensitivity to 3rd instar larvae of susceptible strain detected by leaf-dipping method was methoxyfenozide﹥tebufenozide﹥hexaflumuron﹥RH-5849﹥diflubenzuron. The resistant stain showed the similar resistant orders to 5 IGRs as susceptible strain. Compared with susceptible strain, the sensitivity of resistant stain to methoxyfenozide, tebufenozide, hexaflumuron, RH-5849 and diflubenzuron decreased 3.81, 5.55, 4.81, 3.85 and 2.61 folds respectively.
     2. The activities of Na-K-ATPase, Ca-ATPase and Ca-Mg-ATPase in susceptible and Lambda-cyhalothrin resistant strains of beet armyworm, Spodoptera exigua, were determined. The results indicated that there was no significant difference in Na-K-ATPase activity between the two strains, but Ca-ATPase and Ca-Mg-ATPase activities were much lower in resistant strain than in susceptible strain. Lambda-cyhalothrin at concentrations of 10-8-10-3 mol/L inhibited obviously the three above ATPase activities in two strains, and the inhibition was higher in susceptible strain than in resistant strain. For example, At concentration of 10-4 mol/L, the inhibition on Na-K-ATPase, Ca-ATPase and Ca-Mg-ATPase activities was 29.6%, 34.3% and 22.3% in susceptible strain and 21.8%, 21.9% and 16.9% in resistant strain respectively. The results showed that the sensitivity of three above ATPases in resistant strain decreased to Lambda-cyhalothrin.
     3. Larvae of beet armyworm were reared on artificial diet and evaluated for resistance to Lambda-cyhalothrin for 43 generations under laboratory condition without exposure to any insecticides (for non-selection). Four indices of monoxygenase activities [methoxyresorufin O-demethylase (MROD), ethoxyresorufin O-deethylase (EROD), arylhydrocarbon hydroxylase (AHH) and aldrin epoxidase (AE)] were compared between F2, or F20, or F43 generation and the susceptible strain, respectively. Compared with the susceptible strain, the activities of MROD and AE in midguts in fifth instar larvae of F2 generation showed significant difference, those of F20 and F43 generations showed no significant difference. In the same way, the activities of MROD and AHH of F2, F20 and F43 generation also showed significant difference. This indicated that the resistance of Spodoptera exigua to lambda-cyhalothrin was closely correlated with multi-function oxidase which may play different roles at different resistant levels.
引文
1.丁志宽,荀贤玉,林双喜,苏恒山.秋延辣椒和花椰菜上甜菜夜蛾的发生及防治.中国蔬菜, 2007, (2): 59.
    2.马义,马民,周天鸿,霍新北.高效氯氰菊酯对德国小蠊Ca-ATPase抑制效应.中国公共卫生, 2006, 22(9): 1080~1081.
    3.王开运,姜兴印,仪美芹,陈丙坤,夏晓明.甜菜夜蛾抗药性及其机理.植物保护学报, 2002, 29(3): 229~234.
    4.王永山,王凤良,金中时.江苏沿海地区甜菜夜蛾发生特点及综合治理技术.江苏农业科学, 2003, (5): 68~69.
    5.王利华,吴益东.与拟除虫菊酯抗性相关的烟粉虱钠通道基因突变及其检测.昆虫学报, 2004, 47(4): 449~453.
    6.王进锋.花椰菜田甜菜夜蛾的发生及防治技术.上海蔬菜, 2007, (6): 84.
    7.王艳青.美国棉田甜菜夜蛾的发生及其防治.植保技术与推广, 2001, 21(1): 44~45.
    8.王瑞明,徐文华,林付根,董炳章.江苏沿海农区甜菜夜蛾发生特点研究进展.华东昆虫学报, 2007, 16(2): 81~86.
    9.冯北元,徐慕禹.大鼠脑突触体(Na-K)ATPase活力的微量测定方法.生物化学与生物物理进展, 1981, (2): 48~49.
    10.兰亦全,赵士熙.甜菜夜蛾对三种拟除虫菊酯杀虫剂的抗性稳定性研究.农药学学报, 2004, 6(1): 77~80.
    11.兰亦全,赵士熙.抗三氟氯氰菊酯甜菜夜蛾品系的相对适合度研究.华东昆虫学报, 2004, 13(1): 88~91
    12.兰亦全,赵士熙.甜菜夜蛾抗药性监测及机理.福建农林大学学报(自然科学版), 2004, 33(1): 26~29.
    13.龙丽萍,蔡健和,覃建林.广西不同甜菜夜蛾种群对杀虫剂的敏感性.植物保护, 2006, 32(1): 103~105.
    14.田雨,冷欣夫.溴氰菊酯对不同品系家蝇脑突触体膜蛋白磷酸化及酶活性的影响.昆虫学报, 1999, 42(2): 113~119.
    15.田雨,冷欣夫,庄佩君.昆虫钠通道的结构和与击倒抗性有关的基因突变.昆虫学报, 2004, 47(6): 830~836.
    16.任兰花,郝伟,王继藏.甜菜夜蛾在鲁西南地区越冬问题的初步探讨.昆虫知识, 2005, 42(1): 79~81.
    17.刘万才,姜玉英,汤金仪,姜京宇,王睿文.我国甜菜夜蛾的发生现状及治理对策.中国农学通报, 1998, 14(3): 41~45.
    18.李广宏,陈其津,庞义.甜菜夜蛾人工饲料研究.中山大学学报, 1998, 37(4): 1~5.
    19.刘元美,杨培利,李代玲,徐希然.几种低毒杀虫剂防治大葱甜菜夜蛾试验.山东农业科学, 2006, (2), 71~72.
    20.刘永杰,赵旭东,沈晋良,高聪芬,周晓梅,贾变桃.甜菜夜蛾泰安郊区田间种群对杀虫剂的抗药性水平监测.华东昆虫学报, 2004, 13(2): 72~75.
    21.刘永杰,沈晋良,赵旭东,徐蓬军,束怀瑞.多功能氧化酶系与甜菜夜蛾对氯氟氰菊酯抗药性的关系.农药学学报, 2005, 7(1): 19~23.
    22.刘永杰,沈晋良.甜菜夜蛾对四类杀虫剂的抗药性监测.棉花学报, 2002, 14(6): 356~360.
    23.刘永杰,沈晋良.甜菜夜蛾抗氯氟氰菊酯品系相对适合度、抗性生化机理及抗性遗传方式.昆虫学报, 2003, 46(1): 567~572.
    24.刘向阳,朱福兴,张凯.甜菜夜蛾抗药性研究现状.昆虫知识, 2007, 44(5): 632~636.
    25.江幸福,罗礼智,胡毅.甜菜夜蛾爆发原因及防治对策.昆虫学报, 1999, 42(3): 270~276.
    26.江幸福,罗礼智,胡毅.幼虫食物对甜菜夜蛾生长发育、繁殖及飞行的影响.植物保护, 1999, 25(3): 32~34.
    27.朱树勋,司升云,邹丰,刘小明,吴士雄.甜菜夜蛾抗药性测定及田间抗性监测.昆虫知识, 1996, 33(2): 82~85.
    28.朱毅.甜菜夜蛾对高产值经济林杞柳的危害与防治.安徽农业科学, 2006, 34(6): 1240,1218
    29.刘悦秋,江幸福.甜菜夜蛾的生物防治.植物保护, 2002年, 28(1): 54~56.
    30.乔惠丽,洪冲,文祯中.昆虫抗药性分子机制.南阳师范学院报, 2007, 6(9): 50~56.
    31.宋天俊,藏明君,周永玲,高一凤,刘深增.甜菜夜蛾的发生为害及综合防治技术.中国果蔬, 2004, (5): 26~27
    32.许方程,郑永利,吴永汉,李忡星,姜周铎.浙南地区甜菜夜蛾发生规律与测报技术.浙江农业学报, 2007, 19(4): 289~292.
    33.李宏. ATPase的研究进展.生物学杂志, 1996, 9~12.
    34.何运转,李梅,冯国蕾.拟除虫菊酯对家蝇Na-K-ATPase抑制作用的研究.昆虫学报, 1999, 42(1): 19~24.
    35.吴孔明,刘芹轩.棉蚜对杀虫剂抗性的稳定性.昆虫学报, 1995,38(2): 253~255.
    36.吴世昌,顾言真,沈忠良,郑惠忠.甜菜夜蛾的抗药性监测及防治.植物保护学报, 1995, 22(1): 95~96.
    37.吴益东,沈晋良,谭福杰,尤子平, 1996.棉铃虫对拟除虫菊酯杀虫剂抗性稳定性研究.昆虫学报, 39(4): 342~346.
    38.何玉仙,杨秀娟,翁启勇,游泳.甜菜夜蛾的抗药性研究及其治理.世界农业, 1999, 242(6): 41~43.
    39.何运转,李梅,何凤琴.拟除虫菊酯对家蝇Ca-ATPase、Ca-Mg-ATPase的抑制作用.昆虫学报, 2001, 44(3): 297~303.
    40.何运转,李梅,何凤琴.杀虫剂作用的分子行为.上海远东出版社, 2003, 327~345.
    41.迟立鹏,陶玫,李正跃,陈国华.食物对甜菜夜蛾生长发育及繁殖的影响.西南农业学报, 2005, 18(4): 435~438.
    42.张纯胄,刘化宙.浅析蔬菜病虫害的抗药性及其治理对策.上海农业科技. 2007, (4): 97~98.
    43.张悦丽,高兴祥.甜菜夜蛾生物防治研究进展.农药, 2004, 43(5): 209~211.
    44.吴秋芳,路志芳.葱田甜菜夜蛾的发生与防治.河北农业科技, 2007, 19.
    45.何玉仙,杨秀娟,游泳,翁启勇.甜菜夜蛾田间种群的药剂敏感性测定.华东昆虫学报. 2006, 15(2): 140~142.
    46.杨秀娟,何玉仙,翁启勇,游泳,王长方.甜菜夜蛾群体繁殖及其对杀虫剂毒力敏感性测定.华东昆虫学报, 2002, 11(2): 95~98.
    47.杨玉国,徐泽海,杨建国,王泽民,王德,赵世福,张金良.低毒农药防治甜菜夜蛾试验初报.北京农业, 2008, (1): 19~20.
    48.陈永兵,张炳光,何紫萱.温州地区甜菜夜蛾生活史研究初报.福建农业学报, 2005, 20(2): 84~86.
    49.邱立红,张文吉, 2001.微粒体多功能氧化酶系与棉铃虫对氰戊菊酯抗药性的关系.昆虫学报, 44(4): 447~453.
    50.沈晋良,吴益东,棉铃虫抗药性及其治理.北京:中国农业出版社. 1995, 132~135.
    51.郑允,高静华.甜菜夜蛾抗药性之研究.中华农业研究, 1993, 42(4): 396~402.
    52.罗礼智,曹雅忠,江幸福.甜菜夜蛾发生危害特点及其趋势分析.植物保护, 2000, 6(3): 37~39.
    53.孟香清,芮昌辉,范贤林.三种增效剂对甜菜夜蛾防治的增效作用.农药学学报, 2000, 2(4): 82~84.
    54.欧晓明,黄明智,王晓光.昆虫抗性靶标部位及其在杀虫剂创制中的作用.现代农药, 2003, 2(5): 11~15.
    55.赵善欢.植物化学保护.北京:中国农业出版社, 2000, 83~90.
    56.姜艳杰,谭伟明.甜菜夜蛾抗药性研究进展.安徽化工. 2007, 33(5): 1~4.
    57.徐文华,王瑞明,周汝芹.盐城农区甜菜夜蛾的灾变规律与监控新技术研究.江西农业学报. 2006, 18(5): 62~65.
    58.徐金汉,黄志鹏,余月萍.甜菜夜蛾生物学特性及药效测定.福建农业大学学报, 1998, 27(1): 732
    59.徐蓬军,刘永杰,李艳伟,杨田堂.甜菜夜蛾对昆虫生长调节剂类杀虫剂的敏感性测定.农药科学与管理, 2006, 27(4): 10~12.
    60.郭平,郭小侠.西安地区草坪夜蛾类害虫生物学习性及综合防治.陕西师范大学学报, 2007, 35(6): 51~53
    61.袁永达,王冬生,於文俊.上海地区甜菜夜蛾的抗药性及防治.上海农业学报, 2006, 22(1): 42~45.
    62.唐振华,吴士雄,昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社. 2002, 284~288.
    63.唐振华,袁建中,庄佩君,陶黎明, 2004.昆虫钠通道的结构和与击倒抗性有关的基因突变.昆虫学报, 47(6): 830~836.
    64.夏晓明,王开运,姜兴印,仪美芹.甜菜夜蛾抗药性现状及综合治理研究进展.农药, 2003, 42(8): 1~5.
    65.夏敬源,催金杰,常蕊芹.转基因抗虫棉对甜菜夜蛾的抗性研究.中国棉花, 2000, 27(9): 10~11.
    66.章士美,赵泳祥.中国农林昆虫地理分布.农业出版社, 1996, 260~261.
    67.龚坤元.害虫对拟除虫菊酯抗药性的发展.世界农业, 1986, (6): 44~47.
    68.曾伟,王书安,邓霞.达县分葱田甜菜夜蛾发生规律初步研究.植保技术与推广, 2003, 23(8): 8.
    69.曾伟.蔬菜田甜菜夜蛾生物学特性的调查研究.中国植保导刊, 2008, 28(2): 22~24.
    70.蒋志胜,尚志珍,王小波.美洲大蠊Na+-K+-ATPase作为筛选靶标的初步研究.农药学学报, 2000, 2(4): 28~32.
    71.董炳章,徐文华,王瑞明.甜菜夜蛾在江苏沿海农区的发生与防治.江西棉花. 2007, 29(2): 12~14.
    72.慕卫,吴孔明,张文吉,郭予元.抗高效氯氟氰菊酯甜菜夜蛾近等基因系的交互抗性和种群适合度.中国农业科学, 2005, 38(10): 2007~2013.
    73.慕卫.甜菜夜蛾抗药性及其机理研究.中国农业大学博士学位论文2003.
    74.谭速进,谭晓宏,杜林方,何俊华,唐振华.一种菊酯类复合剂对黑胸散白蚁体内CarEs和Ca-ATPase活性的影响.昆虫学报, 2002, 45(4): 441~446.
    75.潘长虹,马玉萍,孔令军,王超.连云港地区甜菜夜蛾成虫监测技术及在防治上的应用.上海蔬菜, 2007, (1): 50~52.
    76.薛明,董杰,张成省.取食转Bt基因棉等植物对甜菜夜蛾生长发育和药剂敏感性的影响.植物保护学报, 2002, 29(1): 13~18.
    77. Abdullah M., Sarnthoy O., Tantakom S., Isichaikul S., Chaeychomsri S. Kasetsart J. ( Nat . Sci . ), 2000, 34(4): 450~457.
    78. Aldosari SA., Watson TF, Sivasupramaniam S., OsmanA. A.J., Econ. Entomol., 1996 , 89(6): 1359~1363.
    79. Anstead JA,Williamson MS, Denholmi. Evidence formultip le origins of identical insecticide resistance mutations in the aphid myzus persicae. Insect Biochem. Mol. Biol., 2005, 35(3): 249~256.
    80. Atkins EL. The beet armyworm, Spodoptera exigua, a pest of citrus in California. J. Econ. Entomol., 1960, 53: 616~619.
    81. Bassa, Schroederb CI, Turbergb A. Identification of mutations associated with pyrethroid resistance in the para-type sodium channel of the cat flea, Ctenocephalides felis. Insect Biochem. Mol. Biol., 2004, 34(12): 1305~1313.
    82. Brewer MJ, Trumble JT. Beet armyworm resistance to fenvalerate and methomyl; resistance variation and insecticide synergism. J.Agric. Entomol., 1994, 11(4): 291~300.
    83. Bradford MM. A rapid and sensitive method for the quantitation of microgran quantities of protein utilizing e principle of protein dye binding. Anal. Biochem., 1976, 72: 248~254.
    84. Brewer MJ, Trumble JT. Beet armyworm( Lepidoptera: Noctuide) adult and larval susceptibility to three insecticides in managed habitats and relationship to laboratory selection for resistance. J. Econ. Entomol., 1990, 83 (6): 2136~2146.
    85. Brewer MJ. Beet armyworm resistance to fenvalerate and methomyl:resistance variation and insecticide synergism. Journal of Agricultural Entomology, 1994, 11(4): 291~300.
    86. Burris E, Graves JB, Leonard BR, White CA. Beet armyworms (Lepodoptera: Notuidae) in northeast Louisana: observations on an uncommon insect pest. Flotida Entomologist., 1994, 77(4): 454~459.
    87. Chaufaux J, Ferron P. Sensibilite differente de deux populations de Spodoptera exigua Hübner (Lepodaptera:Noctuidae) aux baculovirus et aux pyrethrinoides de synthese. Agronomie, 1986,(6): 99~104.
    88. Clark JM, Matsumura F. The action of two classes of pyrethroids on the inhibition of brain Na-Ca and Ca-Mg-ATPase hydrolyzing activities of the american cockroach. Comp.Biochem Physiol, 1987, 86: 135~145.
    89. Delorme R, Fournier D. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua ( Lepidoptera: Noctuidea) . Pestic. Biochem. Physicol, 1998, 32: 240~246.
    90. Ernst GH, Dittrich V. Comparative measurements of resistance to insecticides in three closely-related old and new world bollworm species. Pestic. Sci., 1992, 34: 147~152 .
    91. Eveleens KG, Bosch R, Ehler LE. Secondary outbreak induction of the beet armyworm by experimental insecticide application in cotton in California. Environ. Entomol, 1973, (2): 497~503.
    92. FAO. Recommended methods for measurement of resistance to pesticides. FAO Plant production Paper.21. Rome, 1980.
    93. Farnham AW, Murray AW, Sawicki RM. Characterization of the structure-activity relationship of kdr and two variants of super-kdr to pyrethroids in the housefly (Musca domestica L.). Pesticide Science, 1987, 19(3): 209~220.
    94. Feng GL, Jacques RM, Clark JM. Suppression of pyrethroid-dependent neurotransmitter release from synaptosomes of knockdown-resistant house flies under pulsed-depolarization condition during continuous perfusion. Pestic. Biochem. Physiol., 1992, 42(1): 64~77.
    95. Garza- Urbina - E, Teran-Vargas-AP. Beet armyworm resistance mechanisms to insecticides in southern Tamaulipas, Mexico.1998Proceeding Beltwide Cotton Conferences, 1998, 2: 1343~1345.
    96. Hemingway J, Hawkes N J, McCarroll. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 2004, 34(7): 653~665
    97. Kerns DL. Resistance of field strains of beet armyworm from Arizona and California to carbamate insecticide. J. Econ. Entomol., 1998, 91: 1038~1043.
    98. Kim YG. Variation in insecticide susceptibilities of the beet armyworm, esterase and acetylcholinesterase activities. Korean journal of applied entomology ( Korea republic) , 1997, 36(2): 172~178.
    99. Laecke KV, Smagghe-G, Degheele-D. Detoxifying enzymes in greenhouse and laboratory strain of beet armyworm. J.Econ. Entomol, 1995, 88: 777~781.
    100.Laecke KV, Degheele D. Detoxification of diflubenzuron and teflubenzuron in the larvae of the beet armyworm ( Spodeptera exigua) (Lepidoptora:Noctuidae).Pesticide Biochemistry and Physiology, 1994, (40): 181~190.
    101.Laecke KV, Degheele D. Carboxylamidaese in Spodoptera exigua properties and distribution in the larval body. Phytoparasitica, 1993, 21: 19~21.
    102.Lee SST, Scott JG, 1989a. An improved method for preparation, stabilization and storage of housefly (Diptera: Muscidae) microsome. J. Econ. Entomol. , 82(6):1 549~1 563.
    103.Lee SST, Scott JG, 1989b. Micosomal cytochro P450 monooxygenases in the house fly (Musca somestica L.): Biochemical changes associated with pyrethroid resistance and phenobarbital induction. Pestic. Biochem. Physiol., 35:1~10.
    104.Liu Zhiqi, Tan Jianguo, Valles Steven M. Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroidinsecticide. Insect Biochemistry and Molecular Biology, 2002, 32(4): 397~404.
    105.Luo M, Bodnaryk RP. The effect of insecticides on Ca-Mg-ATPase and the ATP-dependent calcium pump in moth brain synapotsomes and synaptosome membrance vesicle from the berthe armyworm, Mamestra configurata. Pestic. Biochem Physiol, 1988, 30: 155~165.
    106.Mascarenhas VJ, Graves JB. Dosage-mortality resposes of third instars of beet armyworm to selected insecticides. J. Agric. Entomol, 1998, 15: 125~140.
    107.Mascarenhas VJ, Graves JB, Leonard BR, Burris E. J. Econ. Entomol., 1998, 91(4): 827~833.
    108.Meinke L, Ware GW. Tolerance of three Beet armyworm strains in Arizona to methomyl. J. Econ. Entomol., 1978, 71: 642~646.
    109.Moulton JK, Pepper DA, Dennely TJ. Beet armyworm (Spodoptera exigua) resistance to spinosad.Pest Management Science, 2000, 56: 842~848.
    110.Palli SR, Ladd TR, Sohi SS.. Cloning and developmental expression of Choristoneura hormone receptor 3, an ecdysone-inducible gene and a member of the steroid hormone receptor superfamily. Insect Biochem.Mol. Biol., 1996, 26: 485~499.
    111.Pelorme R, Fournier D, Chaufaux J. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua (Lepidoptera:Noctuidae). Pestec. Biochem. Physiol., 1988, 32(3): 240~246.
    112.Perera SC, Ladd TR, Dhadialla TS. Studies on two ecdysone receptor isoforms of the spruce budworm, Christoneura fumiferan. Mol. Cell. Endocrinol, 1999, 152: 73~84.
    113.Ranson H, Jensen B, Vulule JM. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect MolecularBiology, 2000, 9(5): 491~497.
    114.Rashatwar S, Matsumura F. Reduced calcium sensitivity of the sodium channel and the Na+/Ca2+ exchange system in the kdr-type DDT and pyrethroid resistant German cockroach, Blattella germania. Comp. Biochem. Physiol., 1985, 81: 97~103.
    115.Retnakarn A, Macdonald A, Tomkins WL. Ultrasttructural effects of a nonsteroidal ecdysone agonist, RH-5992,on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. Insect Physiol, 1997, 43: 55~68.
    116.Riddiford LM. Hormone receptors and the regulation of insect metamorphosis Receptor. 1993,(3): 203~209.
    117.Riddiford L M. Juvenile hormone:the status of its“status quo”action. Arch Insect Biochem Physiol. Am Zool, 1996, 33: 340~347.
    118.Salgado VL , Irving SN , Miller TA. The importance of nerve terminal depolarization in pyrethroid poisoning of insects. Pestic Biochem Physiol, 1983, 20: 169~182.
    119.Sawicki RM. Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature, 1978, 275(5679): 443~444
    120.Smagghe-G, Dhadialla-TS. Action of the ecdysteroid agonist tebufenozide in susceptible and artificially selected beet armyworm Pesticide Science, 1998, 54(1): 27~34.
    121.Soderlund DM ,Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Ann Rev Entomol , 1989, 34: 77~97.
    122.Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 2003, 33(6): 563~577
    123.Sun GQ, Zhu JS, Chen L. Synergistic action of E74B and ecdysteroid receptor in activating a 20-hydroxyecdysone effector gene. PNAS, 2005, 102(43): 15506~15511.
    124.Swevers L,Cherbas L, Cherbas Peter. Bombyx EcR (BmEcR) andBombyx USP (BmCFl) Combine to Form a Functional Ecdysone Receptor. Insect Biochem., 1996, (3): 217~221.
    125.Teran-Vargas-AP. Response to the beet armyworm from Southern Tamaulipas, Mexico to insecticides. Proceeding Beltwide Cotton Conference, 1997, (12): 1225~1227.
    126.Thummel CS. Flies on steroids–Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet, 1996, 12: 306~310.
    127.Wang SF, Miura K, Miksicek RJ. The mosquito ultraspiracle homologue, a partner of ecdysteroid receptor heterodimer: cloning and characterization of isoforms expressed during vitellogenesis. Mol.Cell. Endocrinol, 1996, 121(2): 119~132.
    128.Williamson MS, Denhol MI, Bell CA. Cloning of a house fly sodium channel gene linked to a pyre-throid resistrance. Abstr Second Int Symp Mol Insect Sci., 1993, 182.
    129.Williamson MS, Martinez-Torres D, Hick CA. Identification of mutations in the housefly para-type sodium channel gene assocated with knockdown resistance (kdr) topyrethroid insecticides. Mol.Gen.Genet.. 1996, 252: 51~60.
    130.Xu F, George MH. Isolation and sequencing of the gene encoding Sp23, a structural protein of spermatophore of the mealworm beetle, Tenebrio molitor. Gene, 1996, 179: 257~262.
    131.Yao TP, Forman BM, Jiang Z. Functional ecdysone recepter is the product of EcR and ultraspiracle gene. Nature, 1995, 366: 476~479.
    132.Zhao XF, Wang JX, Xu XL. Molecular cloning and expression patterns of the molt-regulating transcription factor HHR3 from Helicoverpa armigera. Insect Molecular Biology, 2004, 13(4): 407~412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700