用户名: 密码: 验证码:
普通小麦及其近缘种花发育基因WAG-2的克隆、定位及差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是一种重要的粮食作物,世界上约1/3的人以小麦为主食。小麦花器官是粮食赖以产生的基础,花器官的发育状况直接影响其产量和品质。AGAMOUS亚家族基因在花器官的形成和分化过程中起着承上启下的作用,研究AG同源基因的结构、表达及其功能等对于种子植物育种有着潜在的应用前景。小麦WAG-2基因是隶属于AGAMOUS亚家族的一个C功能基因,与小麦花器官发育,尤其是雌蕊、心皮、胚珠的发育密切相关。本研究以WAG-2基因为研究对象,主要通过分子生物学和生物信息学技术,克隆WAG-2基因序列、分析进化动态、进行染色体定位、探讨表达模式,研究结果将为进一步阐明WAG-2基因在小麦花器官中的功能奠定基础,为小麦花发育研究补充新的数据,对指导小麦栽培育种也有一定的指导意义。主要研究结果如下:
     1.利用RACE和RT-PCR方法,克隆得到普通小麦三雌蕊突变体及其近缘种乌拉尔图P1428181、拟斯卑尔脱山羊草P1487231、节节麦465和野生二粒小麦D48的WAG-2基因cDNA全长序列。从5个物种共5份材料中获得15个等位类型。38个SNP位点导致20个位点的氨基酸残基改变,2个位点含有插入/缺失突变。15个WAG-2基因等位变异共有13个氨基酸不同的蛋白分子,其分子量为30.83-31.39kDa,等电点为8.99-9.23,均属于亲水性蛋白,不具备典型的跨膜结构,亚细胞定位属于核蛋白,符合转录因子的特征。蛋白翻译后修饰的磷酸化位点以Ser残基为主,Thr和Tyr残基含量较少,糖基化修饰主要是N-糖基化位点,没有O-糖基化位点。各等位变异蛋白分子二级结构中各种结构所占比例存在相似之处,二级结构含量呈现出α-螺旋>无规则卷曲>p-折叠>p-转角的趋势。15个等位变异与其它物种AG同源基因氨基酸序列的聚类分析结果表明,AG亚家族C功能基因被分成WAG-1clade和WAG-2clade两个类群,WAG-2及其15个等位变异和水稻OsMADS3、大麦HvAG1聚在一起,不仅因为它们具有较高的氨基酸序列相似性,也暗示它们具有相似的功能。
     2.采用几对套叠引物对10个种的29份小麦材料基因组DNA进行了PCR扩增,经克隆、测序、序列拼接、比对分析共获得50条序列。各物种WAG-2基因均含有7个外显子和6个内含子。编码区核苷酸多样性π值介于0.00195-0.01108,明显小于非编码区π值,说明编码区的遗传变异程度比非编码区小。由于编码区主要负责编码有生物学功能的蛋白质,承受的选择压力相对较大,所以变异频率较低。整个分析区以及编码区的核苷酸多样性值都是六倍体小麦和四倍体小麦大于二倍体近缘种的值。不同基因组的同源基因虽然序列上相似,但存在一定的多态性,这是造成四倍体和六倍体小麦WAG-2基因核酸序列多态性较高的原因之一。对于栽培种而言,当产生的SNP和Indel在经历了自然选择、人工选择、驯化的影响最终被保留了下来,就有可能以某种方式帮助个体成功地进化。各物种Ka/Ks(0.12-0.41)均明显小于1,说明WAG-2属于相对保守基因。在二倍体AA基因组物种,SS基因组物种,DD基因组物种,四倍体物种和六倍体物种中,转换与颠换的比值呈现逐渐下降的趋势,依次是:2.0,1.73,1.5,1.34和1.27,与不同的物种受选择的压力程度不同有关,暗示WAG-2基因在不同倍性小麦中的进化程度不同。聚类分析结果表明,50个WAG-2基因序列依据染色体来源不同明显聚为三大类。第一大类群即A基因组类群,包括来自二倍体AA基因组以及含A基因组的四倍体和六倍体类型的一些基因序列,乌拉尔图小麦的WAG-2可能较为原始。第二大类群即B基因组群,主要由所有来自SS基因组的拟斯卑尔脱山羊草,以及含B基因组的四倍体和六倍体物种的基因序列所构成。拟斯卑尔脱山羊草P1486262的WAG-2可能提供了四倍体小麦和六倍体小麦的WAG-2基因。来源于DD基因组WAG-2基因与SS基因组的WAG-2基因序列具有较近的遗传关系,可能是因为这些材料都同属于山羊草属。第三大类群也就是D基因组类群,仅仅包括二倍体DD基因组节节麦AS75, Y207, Y172和RM188四个材料的基因序列。
     3.WAG-2基因内含子4的长度在A、B、D基因组之间差异明显。二倍体A基因组以及四倍体和六倍体A基因组中是151bp, S/B基因组中为193bp或206bp,D基因组中是231bp。本研究选用普通小麦的三个供体种乌拉尔图、拟斯卑尔脱山羊草和节节麦,以及野生二粒小麦、中国春,在WAG-2基因内含子4两侧的外显子区设计引物,以扩增内含子4。结果乌拉尔图,拟斯卑尔脱山羊草,节节麦中分别扩增到单一条带。野生二粒小麦中扩增到两条条带,分别与乌拉尔图和拟斯卑尔脱山羊草中的两条条带相对应。中国春中扩增到三条条带,分别与三个二倍体物种中扩增到的条带在大小以及位置上相对应。6份小麦第三同源染色体的缺体-四体品系中均扩增到两条条带,双端体系Dt3AL、Dt3BL和Dt3DL也仅扩增到两条条带,分别缺失A、B和D基因组相对应的条带,这说明,WAG-2基因在普通小麦中有三个拷贝,分别位于小麦第三同源染色体群3A、3B、3D短臂上。
     4.对各物种WAG-2基因gDNA与cDNA序列进行了比对,结果发现WAG-2是选择性剪切基因。选择性剪切区域位于第三内含子和第四外显子边界,属于5'端选择性剪切。不同剪切体在各物种小穗发育不同时期的表达模式不同,显示了它们在功能上的分化。乌拉尔图小麦PI428181中,WAG-2A的表达占优势,在药隔期达到高峰。节节麦465中,以WAG-2F的表达为主,也在药隔期达到高峰。剪切体WAG-2A和WAG-2F的产生方式都是剪切类型1,这表明剪切类型1是乌拉尔图PI428181和节节麦465小穗发育过程中主要的一种剪切方式,在雌雄蕊的形成、发育中发挥更为重要的作用。拟斯卑尔脱山羊草PI487231中,剪切体WAG-2C和WAG-2D(E)的表达具有一定的发育阶段偏爱性,分别在小穗发育不同时期执行各自的功能,WAG-2C在药隔期的表达达到高峰,主要与雌雄蕊的形成、发育相关,而WAG-2D(E)在雌雄蕊原基形成期的表达达到最大,主要与雌雄蕊原基的分化有关。剪切类型2是野生二粒D48的主要剪切方式,WAG-2J(K)的表达在药隔期达到高峰,表明WAG-2J(K)在雌雄蕊发育阶段发挥更为重要的作用。小麦三雌蕊突变体和中国春的四个等位变异的表达模式明显不同。小麦三雌蕊突变体在雌雄蕊原基形成期和药隔期都是WAG-2M的表达水平最高,且WAG-2M在药隔期的表达达到高峰。而中国春中,雌雄蕊原基形成期WAG-2L'的表达水平相对较高,药隔期WAG-2N'的表达水平达到高峰。WAG-2M和WAG-2N'分别由剪切类型1和剪切类型2产生,这一表达模式的不同是否与三雌蕊小麦雌蕊的发育有关值得进一步研究。
Wheat is an important crop, providing staple food for about one-third population in the world. As the basis for grain formation, floral organ development directly controls wheat yield and quality. AGAMOUS gene plays a vital role in floral organ formation and differentiation. Study on AG gene structure, expression and function has a potential application prospect for seed plant breeding. Wheat AG-like gene WAG-2, a class C MADS-box gene acts to specify wheat floral organ development, especially the pistil, carpel, ovule. In this study, using molecular biology and bioinformatics technology, WAG-2genes structure, sequences diversity, evolutionary dynamic, chromosomal location, expression pattern were discussed. The research results will lay the foundation for further studying on WAG-2gene function in wheat floral organs, add new data for wheat flower development, also has guiding significance for wheat breeding. The main results are summarized as follows:
     1. The full-length cDNA sequence of WAG-2was cloned from five accessions or varieties by RACE and RT-PCR. Fifteen allelic types of WAG-2were obtained. A total of38SNPs loci result in20sites amino acid residue variations. In addition,2sites of Indel mutation were detected. Fifteen WAG-2allelic variations encode13proteins with different amino acid sequences. The molecular weight of13WAG-2protein is30.83-31.39kDa with theoretical PI=8.99-9.23. Most amino acids of13WAG-2proteins are hydrophilic amino acids, so they may be soluble protein. Protein post-translational phosphorylation sites modification is more in Ser than Thr and Tyr residues. Glycosylation is mainly N-glycosylation site, but no O-glycosylation site. Secondary structures of13WAG-2proteins are mainly composed of α-helices, random coils, extended band and β-turn. The phylogenetic tree indicates that monocot class C gene family is separated into two groups, WAG-1clade and WAG-2clade. The WAG-2clade insists of barley HvAG2, rice OsMADS3, which suggests that the genes in the WAG-2clade have more similar function to dicot class C genes.
     2. Fifty sequences of WAG-2gene were characterized from29wheat accessions using overlapping primers. Sequence comparisons show that WAG-2genes of different species have similar structures, including seven exons and six introns. The nucleotide polymorphism π in coding region (0.00771-0.01108) is lower than that in non-coding region (0.03795-0.05728), which suggests that genetic variation in coding region is smaller than that in non-coding region because of stronger selection pressure in the coding region. For all region and coding region, the nucleotide polymorphism π is higher in tetraploid and hexaploid species than that in diploid species. Homologous genes sequences from A, B or D genome have a certain degree of polymorphism, which causes higher nucleotide polymorphism in tetraploid and hexaploid species. For the cultivation species, when the SNPs and Indels are eventually survived under the effects of natural selection, artificial selection and domestication, they may help individuals successfully evolve in some way. Ka/Ks values (0.12-0.41) of WAG-2are all<1, which indicates that WAG-2is a conservative gene. The Ti/Tv are2.0(AA genome species),1.73(SS genome specie),1.5(DD genome species),1.34(tetraploid species) and1.27(hexaploid species), which suggests that WAG-2genes have different evolution level in different species. The results of cluster analysis show that50WAG-2gene sequences are clustered into three groups. Group I named A contain all sequences from AA genome diploids and sixteen sequences containing genome A from AABB tetraploid and AABBDD hexaploid. The WAG-2gene from T. urartu may be more primitive. Group II named B contain all sequences from the BB genome diploids and sixteen sequences containing genome B from AABB tetraploid and AABBDD hexaploid. The WAG-2genes of tetraploid and hexaploid wheat may be provided by the one in Ae. speltoides PI486262. The WAG-2genes from SS genome have closer genetic relationship with those from DD genome species, probably because they belong to the Aegilops. Group III named D contain four sequences from the DD genome diploids AS75, Y207, Y172and RM188.
     3. The lengths of intron4of WAG-2gene are significantly different among A, B, D genome. For diploid, tetraploid and hexaploid genome species, the lengths of intron4are151,193or206and231bp respectively in genome A, S/B and D. In this study, three accessions from T.urartu, Ae. speltoides, Ae.tauschii (considered to be the donor of common wheat) and wild emmer wheat (T. dicoccoides), Chinese spring were selected to amplify intron4using primers designed in both sides of the exon. The results demonstrate that only one band was detected in T.urartu, Ae. speltoides and Ae.tauschii. Two bands corresponding to the ones from T.urartu, Ae. speltoides were obtained in emmer wheat. Three bands corresponding to the ones from three diploid donor species were detected in Chinese spring. For group3Nulli-tetra (NT) lines and Ditelosomic (DT) lines Dt3AL, Dt3BL, Dt3DL, two bands were detected and one band respectively corresponding to A, B, D genome was missing. These results indicate that in the wheat genome there are three homologous WAG-2genes located on the group3chromosomes short arm.
     4. The results of WAG-2gDNA and cDNA sequences alignment show that WAG-2is an alternative splicing gene. The alternative splicing loci locates in boundary between intron3and exon4, and WAG-2belongs to5'alternative splicing gene. In each species, WAG-2transcripts are differentially expressed, which suggests they have certain differentiation in function. The expression level of WAG-2A and WAG-2F are higher in PI428181(T.urartu) and465(Ae.tauschii) respectively and all reach the peak at anther seperation stage. Both WAG-2A and WAG-2F are produce by the alternative splicing type1, which indicate alternative splicing type1is the main splice form in PI428181(T.urartu) and465(Ae.tauschii) and contributes more to formation, development of staments and pistils. The expression of WAG-2C and WAG-2D(E) show bias and respectively pay important role in different development stages of spikelet. WAG-2C mainly participates in formation, development of staments and pistils because of the highest expression level at anther connective stage. However, WAG-2D(E) has the highest expression level at pistil and stamen primordiuxn formation stage, which suggests WAG-2D(E) is responsible for differentiation of staments and pistils, WAG-2J(K) produced by alternative splicing type2, which is the main alternative form in D48(T. dicoccoides), also reaches the expression peak at anther connective stage. Thus WAG-2J(K) pays a vital role in formation, development of staments and pistils. The expression patterns of four allelic variations from three pistil mutant and Chinese spring are markedly different. The WAG-2M has the highest expression level at pistil and stamen primordiuxn formation, as well as anther connective stage in three pistil mutant wheat. But unlike three pistil mutant, WAG-2L'has higher expression level at pistil and stamen primordiuxn formation stage. The expression level of WAG-2N' reaches the peak at anther connective stage. WAG-2M and WAG-2N'are produced respectively by alternative splicing type1and type2. Whether changed expression pattern is associated with the pistil development of three pistil mutant needs to further study.
引文
1. Adam H, Jounannic S, Morcllo F, Verdeil JL, Duval Y and Tregear J W. Determination of flower structure in Eeaeis guineesis:Do palm use the same homoetic genes as other species? Annual of Botany,2007,100(1):1-12.
    2. Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta G.S, Pouplana LR, Martinez-Castilla L and Yanofsky MF. An ancestral MADS-box gene duplication occured before the divergence of plants and animals. Proc Natl Acad Sci, USA,2000,97:5328-5333.
    3. Ambrose BA, Lerner D R, Ciceri P, Padilla C M, Yanofsky M F, Schmidt R J. Molecular and genetic analysis of the Silky1 gene reveals conservation in floral organ specification between eudicots and monocots. Mol Cell,2000,5:569-579.
    4. Anderson JA, Churehill GA, Autrique JE, et al. Optimizing Parental selection for Genetic linkage maps. Genome,1993,36:181-186.
    5. Angenent GC, Busscher M, Franken J, Mol JNM and van Tunen AJ. Differential expression of two MADS box genes in wild type and mutant petunia flowers. Plant Cell,1992.4:983-993.
    6. Badaeva ED, Friebe B, Gill BS. Genome differentiation in Aegilop L. Distribution of Highly repetitive DNA sequences on chromosomes of diploid species. Genome,1996,39:293-306.
    7. Baga M, Glaze S, Mallard CS, et al. A starch-branching enzyme gene in wheat produces alternatively spliced trancripts. Plant Molecular Biology,1999,40:1019-1030.
    8. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology Evolution,1999,16:37-48.
    9. Bao X, Franks RG, Levin JZ, et al. Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell,2004,16:1478-1489.
    10. Batzoglou, Pachter JP, et al. Human and mouse gene structure:comparative analysis and application to exon predietion. Genome Research,2000,10(7):950-958.
    11. Baum BR, Bailey LG. The origin of the A genome donor of wheats (Triticum:Poaceae):A perspective based on the sequence variation of the 5S DNA gene units. Genet Resour Crop Evo, 2004,51:183-196.
    12. Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li M A, Saedler H, Theissen G. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics,2002,266:942-950.
    13. Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution,2003.29:464-489.
    14. Benedito VA, Visser PB, et al. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Liliun longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Journal of Experimental Botany,2004,55(401):1391-1399.
    15. Bierne N, Lehnert SA, et al. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol,2000,9 (2):233-235.
    16. Blake NK, Lehfeldt BR, Lavin M, Talbert LE. Phylogenetic reconstruction based on low copy DNA sequence in an allopolyploid:The B genome of wheat. Genome,1999,42:351-360.
    17. Blom N, Sicheritz-Ponten T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics,2004,4(6): 1633-1649.
    18. Boss PK, Vivier M, et al. A cDNA from grapevine(Vitis vinifera L.) shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Molecular Biology,2001,45:541-553.
    19. Bowman JL, Smyth DR and Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell,1989,1:37-52.
    20. Bradley D, Carpenter R, Sommer H, Hartley N and CoenE. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Anrirrkinum. Cell,1993,72:85-95.
    21. Brunner AM, Rottmann WH, Shepparo LA, Krutovskii K, Difazio SP, Leonrdi S, Strauss SH. Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Molecular Biology,2000,44:619-634.
    22. Brookes AJ. The essence of SNPs. Gene,1999,234:177-186.
    23. Brandolini A, Vaccino P, Boggini G, ozkan H, Kilian B, Salamini F. Quantification of genetic relationships among A genomes of wheats. Genome,2006,49:297-305.
    24. Buckler IV ES, Thornsberry JM. Plant molecular diversity and applications to genomics. Plant Biology,2002,5:107-111.
    25. Buonocore V, Biasi MGD, Giardina P, Poreio E, Silano V. Purification and properties of an a-amylase tetrameric inhibitor from wheat kernel. Biochim. Biophys. Acta,1985,831:40-48.
    26. Carels N & Bernardi G. Two classes of genes in plants. Genetics,2000,154:1819-1825.
    27. Castagna R, Maga G, Pernzin M, Heun M, relationship of Einkorn wheats. T'heor Appl Genet Salamini F. RFLP-based genetic,1994,88:818-823.
    28. Castillo-Davis Cl, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection for short introns in highly expressed genes.Nat Genet 2002,31:415-418.
    29. Causier B, Castillo R, Zhou J, Ingram R, Xue YB, Schwarz-Sommer Z, Daries B. Evolution in action:following function in duplizated floral homeotic genes.Current Biology,2005,15: 1508-1512.
    30. Chaidansaei T, Samanhudi, Sugiarti H, Santoso D, Angenent GC, Maagd RA. Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Science,2006,170:968-975.
    31. Cheng Y, Kato N, Wang W, Li J, Chen X. Two RNA binding proteins, HEN4 and Hual, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev Cell,2003,4:53-66.
    32. Choi, T, Huang, M, Gorman, C, et al. A genetic intron increases gene expression in transgenic mice. MOL Cell.Biol,1991,11:3070-3074.
    33. Choi HK, Kim D, et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa Genetics,2004, 166(3):1463-1502.
    34. Christopher J L, Irizarry K. Alternative Splicing in the Nervous System:An emerging source of diversity and regulation. Biol Psychiatry,2003,54(8):771-776.
    35. Coen ES, Meyerowitz EM. The war of the whorls:genetic interactions controlling flower development. Nature,1991,353,31-37.
    36. Collins FS, Guyer MS. Chakravarti A Variations on a theme:Cataloging human DNA sequence variations. Science,1997,278:1580-1581
    37. Colombo L, Franken J, Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell,1995,7:1859-1868
    38. Comeron JM. Selective and mutational patterns associated with gene expression inhumans: Influences on synonymous composition and intron presence. Genetics,2004,167:1293-1304.
    39. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Human Genetic, 1988,78:151-155.
    40. Cooper DN, Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease:patterns and predictions. Human Genetic,1990,85:55-74.
    41. Corte-Real HB, Dixon DR and Holland PWH. Intron-targeted PCR:a new approach to survey neutral DNA polymorphism in bivalve populations, Mar Biol,1994,120:407-413.
    42. Daguin C and Borsa P. Genetic characterisation of Mytilus galloprovincialis Lmk. in North West Africa using nuelear DNA markers, J Exp Biol Ecol,1999,235:55-65.
    43. Danyluk J, Kane NA, Breton G, et al. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiology,2003,132:1849-1860.
    44. Daud HM, Gustafson JP. Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat(Triricum aestivum).Genome,1996,39:543-548.
    45. Davies B, Motte P, Keck E, Saedler H, Sommer H, et al. PLENA and FARINELLI:redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO Journal,1999,18:4023-4034.
    46. Dezar CA, Tiono MF, Gonzalez DH, Chan RL. Identification of three MADS-box genes expressed in sunflower capitulum. Journal of Experimental Botany,2003,54(387):1637-1639.
    47. Dinesh, Kurnar S P, Baker B J. Alternatively spliced N resistance gene transcripts:Their possible role in tobacco mosaic virus resistance. Proe Natl Acad Sci USA,2000,97:1908-1913.
    48. Ditta G., Pinyopich A., Robles P, Pelaz S and Yanofsky MF. The SEP 4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol,2004,14:1935-1940.
    49. Doyle JJ. Evolution of a plant homeotic multigene family:toward connecting molecular systematics and molecular developmental genetics. System Biology,1994,43:307-328.
    50. Dubcovsky J, Luo MC, Dvorak J. Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc. Nat1 Acad Sci USA,1995,92:6645-6649.
    51. Duret L, Mouehiroud M, GautierC, Statistica L. Analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol,1995,40:308-317.52. Egawa C, Kobayashi F, Ishibashi M, et.al. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst,2006,81:77-91.
    52. Egea-Cortines M, Saedler H and Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J,1999,18:5370-5379.
    53. Eisenberg E, Levanon EY. Human housekeeping genes are compact.Trends Genet 2003, 19:362-365.
    54. Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell,2003,15:2603-2611.
    55. Feuillet C, Penger A, Gellner K, Mast A and Keller B. Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol,2001,125:1304-1313.
    56. Ficarro SB, McCleland ML, Stukenberg PT, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology,2002, 20(3):301-305.
    57. Fox-Walsh KL, Dou Y, Lam BJ, Hung S, Baldi PF and Herte KJ. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl Acad Sci USA,2005,102:16176-16181.
    58. Fu D, Szucs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Hayes P M, Dubcovsky J. Large deletion within the Wrst intron VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genom,2005,273:54-65.
    59. Galili S, Avivi Y, Millet E, Feldman M. RFLP based analysis of three RbeS subfamilies indiploid and polyploid species of wheat. Mol Gen Genet,2000,263:674-680.
    60. Gao XM, Xia YM, Li QJ. Isolation of two putative homologues of PISTILLATA and AGAMOUS from Alpinia oblongifolia (Zingiberaceae) and characterization of their expression. Plant Science,2006,170:674-684.
    61. Garg K, Green P, Nickerson DA. Identification of candidate coding region single nucleotide polymorphisms in 165 human genes using assembled expressed sequence tags. Genome Research, 1999,9:1087-1092.
    62. Gaut BS. Molecular clocks and nucleotide substitution rates in higher plants. Evol Biol,1998, 30:93-120.
    63. Gazave E, Marques-Bonet T, Fernando O, Charlesworth B and Navarro A. Patterns and rates of intron divergence between humans and chimpanzees. Genome Biology,2007,8:R21.
    64. Gelfand M S, Dubchak I, Dralyuk I, Zorn M. ASDB:database of alternatively spliced gene.Nucleic Acids Res,1999,27(1):301-302.
    65. Golovkin M, Reddy AS. Structure and expression of a plant Ul snRNP 70K gene:Alternative splicing of UI snRNP 70K Pre-mRNA produces two different transcripts. Plant Cell,1996,8: 1421-1435.
    66. Gregis V, Sessa A, Colombo L, et al. AGL24, SHORT VEGETATIVE PHASE, and APETALA 1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell,2006,18:1373-1382.
    67. Gu YQ, Coleman-Derr D, Kong XY and Anderson OD. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiol,2004,135:459-470.
    68. Haddrill PR, Charlesworth B, Halligan DL and Andolfatto P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content.Genome Biology,2005, 6:R67.
    69. Hama E, Takumi S, Ogihara Y and Murai K. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats.Planta,2004,218:712-720.
    70. Hammer K, Filatenko AA, Korzun V. Microsatellite:A new tool for distinguishing diploid wheat species. Genet Resour Crop Evol.,2000,47:497-505
    71. Harding RM, Fullerton SM, Griffiths RC, Bond J, Cox MJ, Schneider JA, Moulin DS, Clegg JB. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet, 1997,60:772-789.
    72. Hasbe M. Evolution of reproductive organs in land plants. Journal of Plant Research,1999,112: 463-474.
    73. Hawkins JD. A survey on intron and exon lengths. Nucleic Acids Research,1988,16(21): 9893-9908.
    74. Holliday R, Girgg WG. DNA methylation mutation. Mutation Research,1993,285:61-67.
    75. Hong R, Hamaguchi LH, Busch MA, Weigel D. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. The Plant Cell,2003,15: 1296-1309.
    76. Honma T and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.Nature,2001,409:525-529.
    77. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat, Proc. Natl. Acad. Sci. USA.2002a.99:8133-8138.
    78. Immink RG, Gadella TW, Ferrario S, Busscher M and Angenent G.C. Analysis of MADS box protein-protein in Arabidopsis flower development.Science,2002,303:2022-2025.
    79. International Human Genome Sequencing Consortium:Initial sequencing and analysis of the human genome. Nature,2001,409 (6822):860-921.
    80. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature,2004,431(7011),931-945.
    81. Jager M, Hassanin A, Manuel M, Guyader HL, Deutsch J. MADS-box genes in Ginkgobiloba and evolution of the AGAMOUS family. Molecular Biology andEvolution,2003,20(5):842-854.
    82. Jack T, Sieburth L, Meyerowitz E. Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. Plant J,1997,11:825-839.
    83. Johnson BL, Dhaliwal HS. Reproduction isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot,1976,63:1088-1094.
    84. Kang HG, Noh YS, Chung YY, et al. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology,1995,29,1-10.
    85. Kang H, Jang S, Chung J, Cho Y and An G. Characterization of two rice MADS box genes that control flowering time. Mol.Cells,1997,7:559-566.
    86. Kang HG, Jeon JS, Lee S, et al. Identification of class B and class C floral organ identity genes from rice plants. Plant Molelcular Biology,1998,38:1021-1029.
    87. Kanno A, Nakasda M, Akita Y and Hirai M, Class B gene expression and the modified ABC model in nongrass monocots, The Scientific World Journal,2007,7:269-279.
    88. Katar MM, Colomb L, Franken J, Busscher M, Masiero S, Campgne MM, Angenent G C. Multiple AGAMOUS homologous from cucumber and petunia differ in their ability to induce reproductive organ fate. The Plant Cell,1998,10:171-182.
    89. Kempin SA, Mandel MA, Yan MF. Conversion of perianth into reproductive organs by ectopic expression of tobacco floral homeotic gene NAG1. Plant Physiology,1993,103:1041-1046.
    90. Kitahara K, Matsumoto S. Rose MADS-box genes'MASAKOC1 and Dl'homologous to class C floral indentity genes. Plant Sci,2000,151:121-134.
    91. Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development:Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics,1998,149:765-783.
    92. Kramer EM, Jaramillo MA, Di Stilio V S. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS-box genes in angiosperms. Genetics,2004,166:1011-1023.
    93. Krupa A, Preethi G and Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thr and Tyr kinases. Journal of Molecular Biology,2004,339(5):1025-1039.
    94. Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiology, 2000,41:710-718.
    95. Lareau LF, Green RE, Bhatnagar RS, et.al. The evolving roles of alternative splicing. Curr Opin Struct Biol,2004,14:273-282.
    96. Lazar G, Goodman H M.The Arabidopsis splicing factor SRI is regulated by alternative splicing Plant Mol Biol,2000,42:571-581.
    97. Lecorre V, Bernard M. Assessment of the type and degree of restriction fragment length polymorphism (RFLP) in diploid species of the genus Triticum. Theor Appl Genet,1995,90: 1063-1067.
    98. Lee J, Cho Y, Yoon H, Suh M, Moon J, Lee I, Weigel D, Yun C, Kim J. Conservation and rice. Trends Plant Sci,2005,58:823-838.
    99. Lenhard M, Bohnert A, Jurgens G et al. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell,2001,105:805-814.
    100. Lessa EP. Rapid survey of DNA sequence variation in natural populations.Mol Biol Evol,1992, 9:323-330.
    101. Linden CG, Vosman B, Smulders MJM. Cloning and characterization of four apple MADS box genes isolation from vegetative tissue. Journal of Experimental Botany,2002,53(371): 1025-1036.
    102. Litt A, Irish VF. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:Implications for the evolution of floral development.Genetics,2003,165:821-833.
    103. Lohmann JU, Hong RL, Hobe M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell,2001,105:793-803.
    104. Lopez-Dee ZP, Wittich P, Rigola D, Del Buono I, Sari-Gorl M, Kater M M, Colombo L. OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet, 1999,25:237-244.
    105. Liu B, Segal G, Rong JK, Feldman M. A chromosome-specific sequence common to the B genome of polyploid wheat and Aegilops searsii. Plant Syst. Evol.,2003b,241:55-66.
    106. Luo MC, Yang ZL, Kota RS, Dvorak J. Recombination of chromosomes 3Am and 5Am of Triticum monococcum with homoeologous chromosomes 3A and S5A of wheat:The distribution of recombination across chromosomes. Genetics,2000,154:1301-1308.
    107. Ma H, Yanofsky MF and Meyerowitz EM. AGL1-AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev,1991,5:484-495
    108. Macknight R, Bancroft I, Page T, et.al. FCA, a gene Controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains.Cell,1997,89:737-745.
    109. Macknight R, Duroux M, Laurie R, et.al. Functional significance of the altemative transcript proeessing of the Arabidopsis floral promoter FCA.P1ant Cell,2002,14:877-888.
    110. Maestra B, Naranjo T. Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theor Appl Genet,1998,97:181-186.
    111. Malcomber ST, Kellogg EA. SEPALLATA gene diversity and location:bravenew whorls.Trends Plant Sci,2005,10:427-435.
    112. Mandel MA and Yanofsky MF. A gene triggering flower formation in Arabidopsis. Nature,1995, 377:522-524.
    113. Mandel MA, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature,1992,360:273-277.
    114. Martin T, Hu M, Labbe H, Mchugh S, Svircev A, Miki B. PpAG1, a homolog of AGAMOUS, expressed in developing peach flowers and fruit.Canadian Journal of Botany,2006,84:767-776.
    115.Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stiziel NO, Hillier L, Kwok PY, Gish WR. A general approach to single-nucleotide polymorphism discovery. Nature Genet, 1999,23:452-456.
    116. Mena M, Ambrose B, Meeley RB, et al. Diversification of C-function activity in maize flower development. Science,1996,274:1537-1540.
    117. Meguro A, Takumi S, Ogihara Y, et al. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod,2003,15,221-230.
    118. Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schimidt RJ. A characterization of the MADS-box gene family in maize. Plant J,1995,8:845-854.
    119. Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ. Diversity and location of C-function activity in maize flower development. Science,1996,274:1537-1540.
    120. Metakovsky EV, Baboev SK. Polymorphism of gliadin and unusual gliadin alleles in Triticum boeoticum. Genome,1992,35:1007-1015.
    121.Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi. Altered expression of wheat AINTEGUMENTA homolog, WANT-1, in pistil and pistil-like transformed stamen of an alloplasmic line with Aegilops crassa cytoplasm. Dev Genes Evol,2009,219:175-187.
    122. Mizukami Y, Huang H, Tudor M, Hu Y, Ma H. Functional domains of the floral regulator AGAMOUS:characterization of the DNA binding domain and analysis of dominant negative mutations. The Plant Cell,1996,8:831-845.
    123.Modrek B, Resch A, Grasso C, Lee C. Genome2wide analysis of alternative splicing using human expressed sequence data. Nucleic Acids Research,2001,29(13):2850-2859.
    124. Montag K, Salamini, Thompson R D. ZEMa, a member of a novel group of MADS-box genes, is alternatively spliced in maize endosperm. Nucleic Acids Res,1995,23:2168-2177.
    125. Munster T, Deleu W,Wingen LU, Ouzunova M, Cacharron J, Faigl W, Werth S, Kim JTT, Saedler H and Theissen G. Maize MADS-box genes galore.Maydica,2002,47:287-301.
    126. Murai K, Murai R, Takumi S and Ogihara Y. Cloning and characterization of cDNAs corresponding to the wheat MADS box genes. Proc 9th Int Wheat Genet Symp,1998,1:89-94.
    127. Murai K, Takumi S, Koga H and Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures,caused by nuclear-cytoplasm interaction in wheat. Plant J,2002,29:169-181.
    128. Murai K, Miyamae M, Kato H, Takumi S and Ogihara Y. WAP1,a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol,2003,44:1255-1265.
    129. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development,2003,130:705-718.
    130. Nicholas KB and Nicholas HBJ. GeneDoc:A tool for editing and annotating multiple sequence alignments. Embnew News,1997,4:1-4.
    131. Nickerson DA, Taylor SL, Weiss KM, et al. DNA sequence diversity in a 9.7 kb region of the human lipoprotein lipase gene. Nature Genetics,1998,19:233-240.
    132. Nielsen R. Molecular signatures of natural selection. Annu Rev Genet,2005,39:197-218.
    133. Ogihara Y, Mochida K, Nemoto Y, Murai K, Yamazaki Y, Shin-I T, Kohara Y. Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J,2003,33:1001-1011.
    134.Paolacci AR, Tanzarella OA, Porceddu E, et al. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat(Triticum aestivum L.). Mol Genet Genomics,2007,278:689-708.
    135. Parenicova L, de Folter S, Kieffer M, Horner D, Favalli C, BusscherJ, Cook H,Ingram R, Kater M, Davies B, Angenent G, Colombo L Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADA world. Plant cell,2003,15:1538-1551.
    136. Parfitt D, Herbert RJ, Rogers HJ, Francis D. Differential expression of putative floral genes inPharbitis nilshoot apices cultured on glucose compared with sucrose.Journal of Experimental Botany,2004,55(406):2169-2177.
    137.Pelaz S, Ditta GS, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature,2000,405:200-203.
    138.Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, et al. Conversion of leaves into petals in Arabidopsis. Current Biology,2001,11:182-184.
    139. Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Colomb L, Kater M M. Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprot,2002, 15:113-128.
    140. Peng ZS. A new mutation in wheat producing three pistils in a floret. J Agron Crop Sci,2003,189: 270-272.
    141. Peng ZS, Yang J, Wei SH, et al. Characterization of common wheat(Triticum aestivum L.) mutation line producing three pistils in a floret. Hereditas,2004,141:15-18.
    142. Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat(Triticum aestivum)Mol Phyl Evol,2006,39:70-82.
    143.Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M. Mining SNPs from EST databases, Genome Researeh,1999,9:167-174.
    144. Pinyopich A, Ditta GS, Savidge B, et al. Assesing the redundancy of MADS-box genes during carpel and ovule development. Nature,2003,424:85-88.
    145. Pnueli L, Hareven D, Rounseley SD, Yanofsky MF, Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 1994,6:163-173.
    146. Ponomarenko JV, Merkulova TI, Vasiliev GV, Levashova ZB, Orlova GV, Lavryushev SV, Fokin ON, Ponomarenko P, Frolov AS, Sarai A. rSNP_Guild, a database system for analysis of transcription factor binding to target sequences:application to SNPs and site-direction mutations. Nucleic Acids Research,2001,29(1):312-316.
    147. Purugganan MD, Rounsley SD, Schmidt RJ and Yanofsky MF. Molecular evolution of flower development:Diversification of plant MADS-box regulatory gene family. Genetics,1995, 140:345-356.
    148. Rafalski A. Aplications of single nucleotide polymorphisms in crop genetics, Plant Biology,2002a, 5:94-100.
    149. Rafalski A. Novel genetic mapping tools in plants:SNPs and LD-based approaches. Plant Sci, 2002b,162:329-333.
    150. Rayko E, Jabbari K, Bernardi G. The evolution of introns inhuman duplicated genes.Gene,2006, 365:41-47.
    151. Reddy AS. Alternative splicing of pre-messenger RNAs in plants in the genomic era.Annu Rev Plant Biol,2007,58:267-294.
    152. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES.Structure of linkage disequilibrium and phenotypic assoeiations in the maize genome. Proc Nall Acad Sci USA,2001,98:11479-11484.
    153. Riechmann JL, Meyerowitz EM. MADS domain proteins in plant development. Biol Chem, 1997,378:1079-1101.
    154. Riese M, Faigl W, Quodt V, Verelst W, Matthes A, Saedler H, Munster T. Isolation and charaeterization of new MIKC*-type MADS-box genes ftom the moss physcomitrella patens. Plant Biol (Stuttg),2005,7(3):307-314.
    155. Rozas J, Sanchez-Delbarrio JC, Messeguer X and Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,2003,19:2496-2497.
    156. Rutiledge R, Regan S, Nicolas O,et al. Characterization of An AGAMOUS homologue from the conifer black spruce (Piceamari-ana) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal,1998,15(5):625-634.
    157. Sablowski R. Flowering and determinacy in Arabidopsis. J Exp Bot,2007,58:899-907.
    158. Saitou N and Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4:406-425.
    159. Savidge B, Rounsley SD, Yanofsky MF. Temporal relation-ship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell,1995,7:721-733.
    160. Sasanuma T, Miyashita NT, Tsunewaki K.Wheat phylogeny determined by RFLP analysis of nuelear DNA.3.Intra-and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet,1996,92:928-934
    161. Sasarluma T, Miyashita NT, Tsunewaki K. Wheat phylogeny determined by RFLP analysis of nuclear DNA.3. Intra-and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet,1996,92:928-934.
    162. Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plan Cell,1993,5:729-737.
    163. Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B. Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Research,2003,13:1250-1257.
    164. Seoighe C, Gehring C and HurstL D. Gametophytic selection in Arabidopsis Thaliana support selective model of intron length reduction, PLoS Genel,2005,1:e13.
    165. Sharp PA. Split genes and RNA splicing.Cell,1994,77(6):805-815.
    166. Shitsukawa N, Tahira C, Kassai KI, Hirabayashi C, Shimizu T et al. Genetic and epigenetic alteration among three homoeologous genes of a classs E MADS box gene in hexaploid wheat. Plant Cell,2007,1-15.
    167. Shore P and Sharrocks AD. The MADS- box family of transcription faetors. Eur J Biochem, 1995,229:1-13.
    168. Sitaraman J, Bui M, Liu Z. LEUNIG-HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiol,2008,147:672-681.
    169. Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb.f.). Gene,2006,366:266-276.
    170. Soltics DE, Soltics PS and Tate JA. Advances in the study of polyploidy since plant speciation. New Phytol,2003,161:173-191.
    171. Song IJ, Nakamura T, Fukuda T, Yokoyama J, et al.Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Development Genes Evolution,2006,216:301-313.
    172. Sridhar VV, Surendrarao A, Liu Z. APETALA1 and SEPALLATA 3 interact with SEUSS to mediate transcription repression during flower development. Development,2006,133:3159-3166.
    173. Stanun S, Ben-AriS, Rafalska 1, et.al. Function of alternative splicing. Gene,2005,344:1-20.
    174. Stephens JC, Schneider JA, Tanguay A, Choi J, Acharya T, Stanley SE, Jiang R, Messer CJ, Chew A, Han J H, Duan J,. Carr JL, Lee M S, Koshy B, Kumar A M, Zhang G, Newell W R, Windemuth A, Xu C, Kalbfleisch T S, Shaner S L, Arnold K, Schulz V, Drysdale CM, Nandabalan K, Judson RS, Ruano G, Vovis GF. Haplotype variation and linkage disequilibrium in 313 human genes. Science,2001,293:489-493.
    175. Strater T, Fiseher A, et al. Structural characterization chromosomal location and phylogenetic evolution of two pairs of AGAMOUS-liked MADS-box genes from maize. Gene,1995, 156:155-156.
    176. Taklitajan A. Diversity and classfication of flowering plants. New York:Columbia University Press,1997.
    177. Talbert LE, Blake TK, Storlie EW, Levin M. Variability in wheat based on low-copy DNA sequence comparisons, Genome,1995,38:951-957.
    178. Tamura K, Dudley J, NeiMand Kumar S. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol,2007,24:1596-1599.
    179. Tandre K, Svenson M, Svensson ME, Engstrom P. Conservation of gene structure and activity in the regulation of re-productive organ development of conifers and angiosperms. Plant Journal, 1998,374:615-623.
    180. Tenaillon MI, Swakins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. may L.). Proc Natl Acad Sci, USA, 2001,98:9161-9166.
    181.Theissen G, Strater T, Fischer A, et al. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995,156:155-166.
    182. Theissen G, Kim JT and Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol,1996,43:484-516.
    183. Theissen G, Beeker A, Dirosa A, Kanno A, Kim JT, MunsterT, WinterKU, Saedler H. A short history of MADS-box genes in Plants. Plant Mol. Biol,2000,42:115-149.
    184. Thompson JD, Higgins DG and Gibson TJ. CLUSTALW:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994,22:4673-4680.
    185.Treves RP, Kahana A, Rosenman N, Xiang Y, Silberstein L. Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucunis sativus L.).Plant Cell Physiology,1998,39:701-710.
    186. Urrutia AO, Hurst LD. The signature of selection mediated by expression on human genes. Genome Research,2003,13:2260-2264.
    187. Versteeg R, Schaik B, Batenburg M, Roos M, Monajemi R, Caron H, Bussemaker H&Kampen A, The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Research.2003, 13:1998-2004.
    188. Vinogradov AE. Compactness of human house keeping genes:Selection for economy or genomic design? Trends Genet,2004,20:248-253.
    189. Waddington SR, Carwright PM. Aquantitative scale of spike initial and pistil development inbarley and wheat. Ann Bot,1985,51:119-130.
    190. Wang B, Brendel V. Genomewide comparative analysis of alterative aplicing in plants. PNAS, 2006,103:7175-7180.
    191. Wang DC, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour C, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Topaloglou T, Hubble E, Robinson E, Mittmann M, Morns MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lander ES. Large-scale identitfication, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science,1998,280:1077-1082.
    192. Wang X, Zhao X, et al. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice(Oryza sativa L.) DNA Res,2005,12(6):417-427.
    193. Werneke JM, Chatfield JM, Ogren WL. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in Spinach and Arabidopsis. Plant Cell,1989.1:815-825.
    194. Wolfe K, Gouy M, Yang Y, et al. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence date, Aead Sci USA,1989,86:5201-5205.
    195. Wu F, Xu Y, Chang FQ, Li XD, Ma RC. Cloning and characterization of two MADS-box genes from peach (Prunus persica). Acta Genetica Sinica,2004,31(9):908-918.
    196. Wu ZY, Lu AM, Tang YC, Chen ZD, Li DZ. Synopsis of a new "polyphyletic-polychron ic-polytopic" system of the angiosperms. Acta Phytotax Sin,2002,40:289-322.
    197. Wydner KS, Sechler JL, Boyd CD, et al. Use of an intron length polymorphism to localize the tropoelastin gene to chromosome 5 in a region of linkage conservation with human chromosome 7, Genomics,1994,23:125-131.
    198. Xiang YZ, Zhi JC, Xian SZ. Overexpression of TaMADSl, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006,223:698-707.
    199. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY. Functional diversity and location of the two C-class genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 2006.18:15-28.
    200. Yamada K, Saraike T, Shitsukawa N, et al. Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat(Triticum aestivum L.). Plant Molecular Biology,2009,71:1-14.
    201. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY. Functional diversification of the two C-Class MADS-box genes OSMADS3 and OSMADS58 in Oryza sativa.The Plant Cell, 2006,18(1):15-28.
    202. Yang L, Jin GL, et al. PIP:a database of potential intron polymorphism markers. Bioinformatics, 2007,23(16):2174-2177.
    203. Yang Y, Fanning L and Jack T.2003a. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins APETALA3 and PISTILLATA. Plant J,33:47-59.
    204. Yang Y, Xiang H and Jack T. pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not stamen development. Plant J,2003b,33:177-188.
    205. Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA,2003,100:6263-6268.
    206. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The Protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature, 1990,346:35-39.
    207. Yoo S K, Lee J S, Ahn J H. Overexpression of AGAMOUS-LIKE28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway. Biochemical and Biophysical Research Communications,2006,348:929-936.
    208. Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert A, Teeri TH, Organ identity genes and modified patterns of flower development in Gerbera hybrida. The Plant Journal,1999,17:51-62.
    209. Zahn LN, Feng B, Ma H. Beyond the ABC-model:regulation of floral homeotic genes. In Soltis DE, Leebensmack JH, Soltis PS. Developmental genetics of the flower, Advances in Botanical research 44:Academic Press, Amsterdam,2006,163-207.
    210. Zhao XY, Cheng ZJ, Zhang XS. Overexpression of TaMADSl, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006a,223:698-707.
    211. Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Gen Genom,2006b,276:334-356.
    212.陈铭.后基因组时代的生物信息学,生物信息学,2004,2(2):29-34.
    213.陈曦.杨树和松树内含子多态性的检测和应用.硕士学位论文.杭州,浙江大学,2010.
    214.高志红,张玉明,王珊等.植物花发育调控基因AGAMOUS的研究进展,西北植物学报,2008,28(3):0638-0644.
    215.郭志爱.小麦光周期基因的研究。博士学位论文.温江,四川农业大学,2009.
    216.华志明.植物成花分子机理研究的进展.植物生理学通讯,1998,34(1):74-79.
    217.黄雪玲,冯浩,康振生.小麦条锈菌实时荧光定量PCR分析中内参基因的选择,农业生物技术学报,2012,20(2):181-187.
    218.刘良式等编著.植物分子遗传学.北京:科学出版社,1997.
    219.彭书明,雷泞菲,陈放,唐琳.苦瓜中与AGAMOUS相似基因启动子的克隆和表达载体的构建.植物生理学通讯,2008,44(4):693-698.
    220.王俊英,赵春江,杨宝柱.小麦小花发育与退化的研究,华北农学报,1996,11(2):9-13.
    221.王际睿.小麦种子蛋白及赤霉病抗病相关基因的分子鉴定.博士学位论文.温江,四川农业大学,2008.
    222.王兆龙.小麦小花发育的生理基础及调控研究.博士学位论文.江苏,南京农业大学,2008.
    223.徐雷,宋伟杰,王利琳.豌豆AGAMOUS同源基因功能的初步研究,科学通报,2009,54(20):3207-3212.
    224.余叔文,汤章城.植物生理与分子生物学(第2版).北京:科学出版社,1999.
    225.张耿.芸薹属内含子长度多态性和EST单核苷酸多态性研究.硕士学位论文.杭州,浙江大学,2009.
    226.张磊,刘志鹏,王彦荣.箭筶豌豆AGAMOUS同源基因及其启动子的克隆和分析,作物学报,2011,37(10):1735-1742.
    227.赵向前.水稻内含子长度多态性分子标记的开发和应用.硕士学位论文.杭州,浙江大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700