用户名: 密码: 验证码:
南水北调中线水源区多尺度生态环境综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为南水北调中线工程的水源区,丹江口库区的生态环境状况在水质安全和净化上具有重要作用,对整个南水北调工程及汉江盆地的经济发展也具有重要意义。本研究针对南水北调中线水源区生态环境的特征及生态环境主要问题,借鉴集成研究思路,基于丹江口水库水源区土地利用、森林植被现状及时空变化特征,结合地形、地质、地貌、土壤、降雨等自然环境因子,从“水源区—库区—小流域”多尺度、多方位、多角度、采用不同的方法研究生态环境状况、林地变化、土壤侵蚀、非点源污染的时空特征、土地利用的水文响应,全面了解研究区生态环境状况,并提出相关综合整治对策和措施,加强水源区生态环境建设,确保水源区水质安全,为中线水源区生态环境建设以及可持续发展提供科学依据。本研究取得以下主要结论和成果:
     (1)本文以南水北调中线水源区为研究对象,建立了水源区环境信息数据库,在此基础上,提出一种模糊层次分析法和GIS相结合的生态环境脆弱性评价方法。根据水源区生态环境状况及人为影响,生态环境脆弱性分为潜在脆弱性、轻度脆弱性、中度脆弱性、强度脆弱性、极强度脆弱性5个等级。结果显示:水源区整体生态环境处于中度脆弱性;轻度脆弱性区域主要分布在西北部秦岭山区、南部大巴山区及东部环丹江水库周边区域,极强度脆弱性区域主要分布在河南省内丹江口水库北部以及山西省西部。
     (2)以水源区遥感影像为主信息源,辅以DEM、植被分布图、土地利用图及相关社会经济资料,对该区域20年来森林覆盖的动态变化和区域分异特征进行了研究。采用典范对应分析(CCA)研究了林地分布及其变化与环境因子间的关系。研究结果表明水源区1980年、1990年、2000年林地面积分别为67631km2、61635km2、65051km2,斑块数依次为41790个、71276个、69632个,平均斑块面积为1.62 km2、0.86 km2、0.93 km2,呈破碎化趋势;林地分布主要由海拔、降雨和坡度等因素决定,而林地变化的主要影响因子是海拔、坡度和人口。
     (3)应用遥感和GIS技术,借助TM数据为信息源,在建立土壤侵蚀解译标志的基础上,对丹江口库区土壤侵蚀进行了监测研究。结果表明,1990-2007年间,丹江口库区水土流失状况逐步好转,表现在微度、轻度土壤侵蚀面积呈持续增加,中度以上土壤侵蚀面积呈减小的趋势。土壤侵蚀等级年变化率的排序为:剧烈侵蚀>极强度侵蚀>中度侵蚀>轻度侵蚀>微度侵蚀>强度侵蚀。总体而言,各个等级土壤侵蚀平均重心在经度上的变化大于在纬度上的变化。土壤侵蚀等级之间转化十分复杂,源于自然因素和人为因素的双重影响,库区土壤侵蚀仍处于边治理、边破坏的状态。
     (4)在已有研究的基础上,以1990、2000、2007三期TM影像为基础,解译出土地利用图,辅以DEM、气象数据及相关社会经济资料,在GIS支持下使用输出系数模型对库区三期非点源污染进行空间模拟和负荷估算。研究结果表明库区非点源污染TN、TP负荷1990~2007年间总量呈增长趋势,2000年以后增长速度加快,整体非点源污染形势恶化。旱地是库区最大TN负荷来源,人是主要TP负荷来源,人口增长、畜禽养殖业对库区TN、TP负荷贡献已经超过了土地利用。河南省淅川县非点源污染最为严重,应成为重点治理区域。
     (5)以丹江口库区的胡家山小流域为研究区,提取15个集水区对其土地利用结构进行分析,结果表明:胡家山流域的土地利用类型以旱地和林地为主,在各个集水区内,从上游到下游,旱地、居民地面积所占比例逐渐增大,林地所占比例逐渐减少。林地主要分布在高海拔、坡度15°-25°区域,旱地主要分布在低海拔区域,居民地主要分布在海拔350m以下较为平缓的区域。整体看来,整个流域土地利用类型距离河岸两边距离:林地>草地>居民地>农田。对整个胡家山小流域而言,呈现从上游到下游土地利用相对合理指数减少的趋势。
     (6)结合降雨气候资料和水质监测点的氮素输出数据,引入景观空间负荷对比指数,分析土地利用结构对氮素输出的影响。结果表明:胡家山小流域地表水非点源污染比较严重,各支流从上游到下游TN、NO3--N输出浓度呈逐渐增大趋势。林地、荒草地、水域与氮素输出浓度呈负相关;居民地、旱地等与氮素输出浓度显著正相关。在0.01显著水平上,相对高度、坡度和距离三者及其综合景观空间负荷对比指数与TN、NO3--N输出浓度均具有显著相关性,其相关程度高于加权重土地利用类型面积百分比之和Lw,高于任何单一土地利用类型。说明景观空间负荷对比指数对于发生非点源污染的空间风险具有很好的指示作用,可以作为非点源污染空间风险评价的有用方法。
     (7)提出以整个中线水源区为治理范围,以小流域治理为单元,以生态环境改善、水质保障为中心,采取整体规划,划整为零,再以零凑整,实现整个中线水源区的综合治理。水源区尺度侧重跨区域机构建立、开展水功能区划、建立特色生态保护区,并加强林地管理;库区尺度要做好移民安置工作,加强水土流失和非点源污染综合防治;小流域综合治理包括水土保持工程、生态农业、土地利用结构优化、农村污染资源化及植被缓冲带重建等。
The Danjiangkou reservoir lies in the upper Hanjiang basin and is the source of water for the Middle Route Project (MRP) under the South-to-North Water Transfer Scheme (SNWT) in China. The eco-environment of water resource areas plays an important role in water conservation and purification and would have significant implications for the economic prosperity in Hanjiang basin as well as for the SNWT. According to the eco-environmental characteristics and primay reco-environment issues in water resource areas, referring to the ideas of integrated study, based on temporal-spatial characteristics of land use and forest vegetation, associated with natural environmental factors including terrain, topography, geology, soil, etc, multi-scale, multi-perspective, multi-approaches were included in the research involving eco-environmental vulnerability, forest change, soil erosion, non-point pollution and hydrological responses of land use from Water Resource Areas (WRA), Danjiangkou Reservoir Area.(DRA), to Hujiashan small watershed. Based on The research results above, the ending of this paper tried to bring forward several strategies and measures for comprehensive environmental rehabilitation to enhance the ecological construction and environmental protection and insure the safety of water quality, which will provide scientific basis for environmental construction and sustainable development in water resource areas. The present study came to make important results and achievements as the following.
     (1) This study established an environmental information system database of WRA. Based on the database, an eco-environmental vulnerability assessment method using integrated fuzzy AHP (FAHP) and GIS was developed. According to eco-environmental conditions and anthropic effects, vulnerability was classified into five levels:potential, light, medium, heavy and very heavy. The results indicated that eco-environmental vulnerability in the DRA was moderate overall. Regions with lower eco-environmental vulnerability were located in Qinling Mountain area in the northwest, Daba Mountain area in the south and the area immediately surrounding Danjiangkou Reservoir in the east. Two regions with very high eco-environmental" vulnerability were located in the north of Danjiangkou Reservoir in Henan province and in the western part of Shanxi province.
     (2) Based on sources of RS images, associated with DEM, vegetation distribution map, land-use map and the corresponding socio-economic data, this paper attempted to reveal the spatio-temporal dynamics of forest cover in recent 20 years, and then utilized the canonical correspondence analysis (CCA) method to study the relationship between forestland distribution or transformation and environment parameters. The results indicated that forestland area had decreased continuously from 67631 km2 in 1980 to 61635 km2 in 1990, and then it started to increase to 65051 km2 in 2000, and the average annual rate of change had gradually dropped from-9.3% during 1980 to 1990 to 5.4% during 1990 to 2000; meanwhile, the forest landscape had a fragmentation trend. The result of the CCA order showed that the major environment variables affecting forestland distribution were elevation, rainfall and slope, and the major environment variables affecting forestland transformation were elevation, slope and population.
     (3) Based on RS and GIS technology, the spatial and temporal variations of soil erosion were investigated for DRA. Interpretation characteristic indexes were established from remote sensing images and other data. Results showed that from 1990 to 2007, the total erosion area of the DRA was decreased; it shows concretely as follows:the area of light soil erosion has continually expanded and the area above the moderate soil erosion was reduced.The annual change in each soil erosion level was in the order of serious erosion> very strong erosion> moderate erosion> light erosion> slight erosion> strong erosion. Overall, the change ranges of the average center of gravity in longitude were far greater than latitude for each soil erosion level. Because of the dual influence of the nature factor and the artificial factor, the conversion between each soil erosion level was very complex, and soil erosiom was at management margin damage in DRA.
     (4) Based on the existing studies and the export coefficient model, the non-point source (NPS) pollution load in DRA was estimated and its spatial distribution in 1990, 2000 and 2007 were simulated with RS and GIS techniques. Results indicate that the pollution load of TN has a small change from 3.325 X 104 t in 1990 to 3.379X 104t in 2000, then it increased to 3.710×104t in 2007. The pollution load of TP were 167×104t, 0.169×104t and 0.186×104t respectively in 1990,2000 and 2007. The main source of TN pollution load was dry land, and most of the TP pollution load was from people produce. Xichuan country in Henan province was the worst non-point polluted, and should be the key administration area of controlling water pollution in the future.
     (5) With Hujiashan small watershed as the research area, we studied the structure characteristics of land use in 15 catchments. The results showed that the major land covers in the study areas are forest and upland, and the proportion upland and residential area gradually increased from upriver to downriver in each catchment, while the proportions of forest increased.forest mainly distributed in higher altitudes and in a steep slope (15°-25°); forest mainly distributed in lower altitudes; residential area mainly distributed in flat terrain below 350 m. In the whole watershed, the distances to river from the river was in the order of forest> grassland> residential area> upland. Relative rationality indices of land use showed a decreasing trend from upriver to downriver in Hujiashan watershed
     (6) This paper studied the effect of land use types on nitrogen export base on the dates of land use and nitrogen expoxt in Hujiashan watershed, and a landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components'spatial distribution and land use structure on nitrogen expoxt. The result showed that the nonpoint source pollution of surface water environment was very serious and in each branch the concentration of TN and NO3--N gradually increased from upriver to downriver. The concentration of TN and NO3--N were negatively correlated with forest, grassland and water body while significant positively correlated with residential area and upland. There were conspicuous correlations among the LSI related to relative elevation, slope, relative distance and integrated LSI with the concentration of TN and NO3--N at 0.01 level, which were higher than the sum of weighted area percentage of land use (Lw) and any single land use type. This tell us LCI was good indicators of nitrogen exports and thus have big potential in non-point source ponution risk evaluation.
     (7) Taking Water Resource Areas of MRP as the comprehensive management region, taking small watershed as basic unit, taking eco-environment improvement and water quality protection as center, the paper considered that comprehensive planning should be used to realize comprehensive improvement. At WRA scale, it was need to establish management Institution across the region, develop water function zoning, establish special ecological protection zones and enhance the construction and preservation of the forests. At DRA scale, doing migration settlement work well and strengthening comprehensive prevention of soil erosion and non-point source pollution should be placed on the prominent position. At small watershed, it was imperative to take measures of comprehensiue treatment, including soil and water conservation project, ecological agriculture, optimizing land use structure, utilization of rural disposals and vegetative environmental buffers, etc.
引文
1.白清俊.流域土壤侵蚀预报模型的回顾与展望.人民黄河,1999,21(4):18-21.
    2.北京大学现代科学与哲学研究中心.钱学森与现代科学技术.北京:人民出版社,2001,16
    3.卜兆宏,孙金庄,周伏建,等.水土流失的定量遥感方法及其应用研究.土壤学报,1997,34(3):235-245
    4.蔡海生,陈美球,赵小敏.脆弱生态环境脆弱度评价研究进展.江西农业大学学报,2003,25(2):270-275
    5.蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展.地理科学进展,2003,22(3):242-250
    6.丹江口库区及上游水污染防治和水土保持规划编制组.丹江口库区及上游水污染防治和水土保持规划.2004.12
    7.常秋玲.南水北调中线水源区(南阳市)生态环境综合研究.[博士学位论文].北京:中国地质大学图书馆,2007
    8.畅军庆,张荣南.南水北调湖北库区水环境现状及问题分析.环境科学与技术,1997,(2):1-4
    9.陈军伟,孔祥斌,张凤荣,等.基于空间洛伦茨曲线的北京山区土地利用结构变化.中国农业大学学报,2006,11(4):71-74
    10.陈利顶,傅伯杰,王军.黄土丘陵区典型小流域土地利用变化研究:以陕西延安地区大南沟流域为例.地理科学,2001,21(1):46-51
    11.陈利顶,傅伯杰,徐建英,等.基于“源—汇”生态过程的景观格局识别方法——景观空间负荷对比指数.生态学报,2003,23(11):2406-2413
    12.陈利顶,傅伯杰,张淑荣,等.异质景观中非点源污染动态变化研究.生态学报,2002,22(6):808-816
    13.陈利顶,傅伯杰,赵文武,等.“源—汇”景观理论及其生态学意义.生态学报,2006,26(5):1444-1449
    14.陈美球,蔡海生,赵小敏,等.基于GIS的鄱阳湖区脆弱生态环境的空间分异特征分析.江西农业大学学报,2003,25(4):523-527
    15.陈松林.基于GIS的土壤侵蚀与土地利用关系研究.福建师范大学学报(自然科学版),2000,16(1):106-109
    16.陈文波,肖笃宁,李秀珍.景观指数分类、应用及构建研究.应用生态学报,2002,13(1):121-125
    17.陈宜瑜.中国全球变化的研究方向.地球科学进展,1999,14(4):319-323
    18.陈佑启,杨鹏.国际上土地利用/土地覆盖变化研究的新进展.经济地理,2001,21(1):95-100
    19.陈芸芝,陈崇成,汪小钦.多源数据在森林资源动态变化监测中的应用.资源科学,2004,26(4):146-152
    20.丁圣彦,梁国付.地理环境因素对伊洛河流域森林景观的影响.地理研究,2007,26(5):906-914
    21.丁晓雯,刘瑞民,沈珍瑶.基于水文水质资料的非点源输出系数模型参数确定方法及其应用.北京师范大学学报,2006,42(5):534-538
    22.窦明,左其亭,胡彩虹.南水北调工程的生态环境影响评价研究.郑州大学学报(工学版),2005,26(2):63-66
    23.杜国明,张树文.20世纪末期大兴安岭北段林地变化研究.资源科学,2006,28(3):59-65
    24.樊万选.南水北调中线水源区天然林恢复与保护的生态经济问题研究.绿色中国,2005,(20):39-41
    25.封光寅.南水北调中线工程对水源区水沙及生态影响研究.北京:中国水利水电出版社,2007,31-33
    26.符素华,刘宝元.土壤侵蚀量预报模型研究进展.地球科学进展,2002,17(1):78-84
    27.高超,朱继业,窦贻俭,等.基于非点源污染控制的景观格局优化方法与原则.生态学报,2004,24(1):109-116
    28.高更和.南水北调中线工程源头区水土流失及其治理——南阳市汉水流域研究.水土保持通报,2002,(3):65-68
    29.葛全胜,陈浮勤,张雪芹.全球变化的集成研究.地球科学进展,2000,15(4):461-466
    30.顾胜,李思悦,张全发.汉江堵河流域地表水质时空变化特征.长江流域资源与环境,2009,18(1):41-46
    31.郭烁,夏北成,江学顶.基于GIS与人工神经网络的广州森林景观生态规划.中山大学学 报(自然科学版),2005,44(5):121-23
    32.国务院.丹江口库区及上游水污染防治和水土保持规划,国函(2006)10号
    33.韩文权,常禹.景观动态的Markov模型研究——以长白山自然保护区为例.生态学报,2004,24(9):1958-1965
    34.胡甲均,张玉华.丹江口库区及其上游水土流失现状及防治对策.中国水利,2003,(13),47-49
    35.胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究.土壤学报,2001,38(2):167-175
    36.胡雪涛,陈吉宁,张天柱.非点源污染模型研究.环境科学,2002,23(3):124-128
    37.黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训.科学通报,1955,(12):15-21.
    38.蒋国富,白耕勤.南水北调中线工程水源区生态环境问题探析.南阳师范学院学报(自然科学版),2004,3(9):72-76
    39.颉耀文,陈怀录,徐克斌.数字遥感影像判读法在土壤侵蚀调查中的应用.兰州大学学报(自然科学版),2002,38(2):157-162.
    40.孔祥丽,王克林,.陈洪松,等.广西河池地区土地利用变化与社会经济发展水平关系的典范对应分析.自然资源学报,2007,22(1):131-140
    41.李斌,张金屯.黄土高原地区植被与气候的关系.生态学报,2003,23(1):82-89
    42.李长安,蔡述明,陈绍娟.南水北调中线工程与汉江经济带的发展.中国人口·资源与环境,2001,11(4):131-132
    43.李国栋.脆弱生态环境的概念及分类.地理译报,1993,12(1):36-43
    44.李家洋,陈泮勤,葛全胜,等.全球变化与人类活动的相互作用——我国下阶段全球变化研究工作的重点.地球科学进展,2005,20(4):371-377
    45.李军,周成虎.地球空间数据集成多尺度问题基础研究.地球科学进展,2000,15(1):48-52
    46.李俊然,陈利顶,‘郭旭东,等.土地利用结构对非点源污染的影响.中国环境科学,2000,20(6):506-510
    47.李璐,史志华,朱惇,等.南水北调中线水源区森林覆盖变化及其影响因子分析.自然资源学报.2009,24(6):1049-1057
    48.李锐,杨勤科.区域水土流失快速调查与管理信息系统研究.郑州:黄河水利出版社,2000
    49.李锐.水土流失动态监测与评价研究现状与问题.中国水十保持,1999,(11):31-33
    50.李锐.遥感技术与土地退化评价.水土保持学报,1989,3(2):65-71
    51.李双成,杨勤业.中国森林资源动态变化的社会经济学分析.地理研究,2000,19(1):1-6
    52.李思悦,程晓莉,顾胜,等.南水北调中线水源地丹江口水库水化学特征研究.环境科学,2008a,29(8):2111-2116
    53.李思悦,张全发.运用水质指数法评价南水北调中线水源地丹江口水库水质.环境科学研究,2008b,21(3):61-68
    54.李思悦,张全发.南水北调中线丹江口库区主要生态环境问题及植被恢复.中国农村水利水电,2008c,(3):1-4
    55.李秀彬.全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向.地理学报,1996,51(6):553-557
    56.梁雄兵,张中旺,谢海燕,等.南水北调中线工程水源地的主要环境问题分析.人民长江,2005,36(4):53-54,57
    57.廖纯艳,黄健.3S技术在丹江口水库水源区水土流失动态监测中的应用.水土保持通报,2007,27(1):58-61,71
    58.刘昌明.南水北调工程对生态环境的影响.海河水利,2002,(1):1-5
    59.刘瑞民,何孟常,王秀娟.大辽河流域上游非点源污染输出风险分析.环境科学,2009,30(3):663-667
    60.刘瑞民,沈珍瑶,丁晓雯,等.应用输出系数模型估算长江上游非点源污染负荷.农业环境科学学报,2008,27(2):677-682
    61.刘瑞民,杨志峰,丁晓雯,等.土地利用/覆盖变化对长江上游非点源污染影响研究.环境科学,2006,27(12):2407-2414
    62.刘燕华,李秀彬.脆弱生态环境与可持续发展.北京:商务印书馆,2001,8
    63.刘震.我国水土保持小流域综合治理的回顾与展望.中国水利,2005,(22):17-20
    64.柳晶辉,杨坤,张力.丹江口库区土地利用/覆被与景观格局变化.长江流域资源与环境,2008,17(3):457-460
    65.卢明森.“从定性到定量综合集成法”的形成与发展——献给钱学森院士93寿辰.中国工程科学,2005,7(1):9-16
    66.罗璇.小流域土地利用结构对氮素输出的影响.[硕士学位论文].武汉:华中农业大学图书 馆,2009
    67.吕一河,傅伯杰.生态学中的尺度及尺度转换方法.生态学报,2001,21(12):2096-2105
    68.马蔚纯,陈立民,李建忠,等.水环境非点源污染数学模型研究进展.地球科学进展,2003,18(3):358-366
    69.钱学森,于景元,戴汝为.一个科学新领域——开放复杂巨系统及其方法论.自然杂志,1990,13(1):3-10
    70.邱彭华,徐颂军,谢跟踪,等.基于景观格局和生态敏感性的海南西部地区生态脆弱性分析.生态学报,2007,27(4):1257-1264
    71.邱扬,傅伯杰,王军,等.黄土丘陵小流域土地利用的时空分布及其与地形因子的关系.自然资源学报,2003,18(1):20-29
    72.邱扬,傅伯杰.异质景观中水土流失的空间变异与尺度变异.生态学报,2004,24(2):330-337
    73.冉圣宏,金建君,薛纪渝.脆弱生态区评价的理论与方法.自然资源学报,2002,17(1):118-122
    74.佘江峰,冯学智,林广发,等.多尺度时空数据的集成与对象进化模型.测绘学报,2005,34(1):71-77
    75.沈泽昊,张全发,岳超,等.南水北调中线水源区土地利用/土地覆被的空间格局.地理学报,2006,61(6):633-644
    76.史德明,梁音.我国脆弱生态环境的评估与保护.水土保持学报,2002,16(1):6-10
    77.史培军,宫鹏,李晓兵,等.土地利用/覆盖变化研究的方法与实践.北京:科学出版社,2000:1-60
    78.史培军,李晓兵,江源,等.土地利用履盖变化与生态安全响应机制.北京:科学出版社,2004:1
    79.史志华,蔡崇法,丁树文,等.基于GIS的汉江中下游农业面源氮磷负荷研究.环境科学学报,2002a,22(4):473-477
    80.史志华,王天巍,蔡崇法,等.三峡库区乐天溪流域生态修复效果的遥感监测研究.自然资源学报,2006,21(3):473-480
    81.史志华,张斌,蔡崇法,等.汉江中下游农业面源污染动态监测信息系统的建立与初步应用.遥感学报,2002b,6(5):382-386
    82.水利部长江水利委员会.南水北调中线工程规划(2001年修订)简介.中国水利,2003,(2):48-55
    83.宋述军,周万村.岷江流域土地利用结构对地表水水质的影响.长江流域资源与环境,2008,17(5):712-715
    84.孙惠南.近20年来关于森林作用研究的进展.自然资源学报,2001,16(5):407-412
    85.索安宁,王天明,王辉,等.基于格局—过程理论的非点源污染实证研究:以黄土丘陵沟壑区水土流失为例.环境科学,2006,27(12):2415-2420
    86.水利部调水局丹江口库区及上游水污染防治和水土保持规划编制组.丹江口库区及上游水污染防治和水土保持规划.2004
    87.陶和平,高攀,钟祥浩.区域生态环境脆弱性评价——以西藏“一江两河”地区为例.山地学报,2006,24(6):761-768
    88.唐克丽,等编.中国水土保持.北京:科学出版社.2004.
    89.王介勇,赵庚星,王祥峰,等.论我国生态环境脆弱性及其评估.山东农业科学,2004,(2):9-11
    90.王娟,RS-GIS-EIS技术支持下的吉林西部生态环境集成研究.[博士学位论文].长春:吉林大学图书馆,2004
    91.王良民,王彦辉.植被过滤带的研究和应用进展.应用生态学报,2008,19(9):2074-2080
    92.王少军,张志.湖北省丹江口市土壤侵蚀景观形成机理.水土保持通报,2001,21(5):63-69
    93.王思远,张增祥,周全斌,等.遥感与GIS支持下的中国森林植被动态变化分析.资源科学,2002,24(5):64-69
    94.王晓昌,张荔,袁宏林,等.水资源利用与保护.北京:高等教育出版社,2008,119
    95.邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2007:17
    96.邬建国.景观生态学——格局、过程、尺度与等级.北京:高等教育出版社,2007,189
    97.肖辉军.基于多时相多源影像的丹江口市土壤侵蚀监测研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    98.熊黑钢,周哲,马晓钰,韩茜等.干旱区生态环境对PRED系统影响的定量研究——以新疆和田民丰县为例.中国人口·资源与环境,2004,14(6):21-26
    99.徐新良,刘纪远,庄大方,等.中国林地资源时空动态特征及驱动力分析.北京林业大学 学报,2004a,26(1):41-46
    100.徐新良,刘纪远,庄大方,等.基于3S技术的中国东北地区林地时空动态特征及驱动力分析.地理科学,2004b,24(1):55-60
    101.徐志仿,徐铜.丹江口库区及上游水资源保护对策.人民长江,2008,39(23):21-22,37
    102.杨勤科,李锐,曹明明.区域土壤侵蚀定量研究的国内外进展.地球科学进展,2006,21(8):849-856
    103.杨胜天,朱启疆.人机交互式解译在大尺度土壤侵蚀遥感调查中的作用.水土保持学报,2000,14(3):88-91
    104.杨天柱.丹江口库区生态林现状与建设对策.河南林业科学,2005,25(2):38-40
    105.杨晓军.丹江口库区可持续发展能力分析.长江流域资源与环境,2008,17(6):819-824
    106.姚娜.丹江口库区土壤氮磷养分流失特点的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    107.于景元,周晓纪.从综合集成思想到综合集成实践——方法、理论、技术、工程.管理学报,2005,2(1):4-10
    108.张宝文.推进生态农业建设向纵深发展.农民日报,2002年6月5日第1版
    109.张光辉.土壤侵蚀模型研究现状与展望.水科学进展,2002,13(3):389-396.
    110.张力威,范治晖,朱东恺.南水北调工程丹江口库区生态移民战略思考.环境经济,2005,(1):37-41
    111.张娜.生态学中的尺度问题:内涵与分析方法.生态学报,2006,26(7):2340-2353
    112.张秋菊,傅伯杰,陈利顶.关于景观格局演变研究的几个问题.地理科学,2003,23(3):264-271
    113.张全发,苏荣辉,江明喜,等.南水北调工程及其生态安全:优先研究领域.长江流域资源与环境,2007,16(2):217-221
    114.张文辉,卢涛,马克明,等.岷江上游干旱河谷植物群落分布的环境与空间因素分析.生态学报,2004,24(3):552-559
    115.张增祥,赵晓丽,陈晓峰,等.基于遥感和地理信息系统(GIS)的山区土壤侵蚀强度数值分析,农业工程学报,1998,14(3):77-83
    116.张中旺,李新民.南水北调中线工程水源地的主要问题与对策.华中师范大学学报(自然 科学版),2004,38(4):510-514
    117.赵文武,傅伯杰,陈利顶.尺度推绎研究中的几点基本问题.地球科学进展,2002,17(6):905-911
    118.赵晓丽,张增祥,刘斌,等.基于遥感和GIS的全国土壤侵蚀动态监测方法研究.水土保持通报,2002,22(1):29-32
    119.赵跃龙,刘燕华.中国脆弱生态环境分布及其与贫困的关系.地球科学进展,1996,11(3):245-251
    120.赵跃龙,张玲娟.脆弱生态环境定量评价方法的研究.地理科学进展,1998,17(1):67-72
    121.中国科学院遥感应用研究所,水利部水土保持监测中心.《全国土壤侵蚀动态遥感监测与数据库更新》技术规程,2000
    122.中国科学院遥感应用研究所,水利部水土保持监测中心.《全国土壤侵蚀遥感调查》技术规程,1999
    123.周劲松.山地生态系统的脆弱性与荒漠化.自然资源学报,1997,12(1):10-16
    124.周为峰,吴炳方.土壤侵蚀调查中的遥感应用综述.遥感技术与应用,2005,20(5):537-542
    125.周为峰,吴炳方.区域土壤侵蚀研究分析.水土保持研究,2006,13(1):265-268
    126.周正朝,上官周平.土壤侵蚀模型研究综述.中国水土保持科学,2004,2(1):52-55
    127.朱明勇,党海山,谭淑端,等.湖北丹江口水库库区降雨侵蚀力特征.长江流域资源与环境,2009,18(9):837-842
    128.朱显谟,陈代中,杨勤科,等.1:500万中国土壤侵蚀图.见:《中华人民共和国自然地图集》编辑委员会,中华人民共和国自然地图集(第二版).北京:中国地图出版社,1999
    129.朱显谟.1:500万中国土壤侵蚀图.见:《中华人民共和国自然地图集》编辑委员会,中华人民共和国自然地图集.北京:科学出版社,1965
    130.朱显谟.黄土高原土壤水蚀的主要类型及其有关因素.见:土壤学与水土保持编委会,土壤学与水土保持——朱显漠院士论文选集.西安:陕西人民出版社,2005
    131.庄咏涛.渭河临潼断面以上流域非点源总氮负荷研究.[硕士学位论文].西安理工大学图书馆,2002
    132. Abbott M B, Bathurst J C, Cunge J A, et al. Introduction to the European Hydrological System-Structure of a Physically-based, Distributed Modelling system. Journal of Hydrology, 1986,87 (1,2):61-77
    133. Abdullah S F, Nakagoshi N. Forest fragmentation and its correlation to human land use change in the state of Selangor, peninsular Malaysia. Forest Ecology& Management,2007,241:39-48
    134. Adger W N. Vulnerability. Global Environmental Change.2006,16,268-281
    135. Ahearn D S, Sheibley R W, Dahlgren R A, et al. Land use and land cover influence on water quality in the last free flowing river draining the western Sierra Nevada, California. Journal of Hydrology,2005,313:234-247
    136. Aspinall R., Pearson D. Integrated geographical assessment of environmental condition in water catchments:Linking landscape ecology, environmental modelling and GIS. Journal of Environmental Management,2000,59:299-319
    137. Basnyat P, Lawrence D T, Kathryn M F, et al. Relationships between landscape characteristics and nonpeint source pollution inputs to coastal estuaries. Environmental Management,1999,23 (4):539-549
    138. Batjes N H. Global assessment of land vulnerability to water erosion on a one half degree by one half degree grid. Land Degradation&Development,1996,7 (4):353-365
    139..Boughton D A, Smith E R and O'Neill R V. Regional vulnerability:A conceptual framework. Ecoystem Health,1999,5 (4):312-322
    140. Braak C J F. Canonical correspondence analysis:a new eigenvector method for multivariate director gradient analysis. Ecology,1986,67:1167-1179
    141. Brazier R E, Rowan J S, Anthony S G, et al. "MIRSED" towards an MIR approach to modelling hillslope soil erosion at the national scale. Catena,2001,42 (1):59-79
    142. Buckley J J. Fuzzy Hierarchical Analysis. Fuzzy Sets and Systems,1985,17:233-247
    143. Chen C T. Extensions of TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems,2000,114:1-9
    144. Chen H C and Du P F. Potential Ecological Benefits of the Middle Route for the South-North Water Diversion Project. Tsinghua Science and Technology,2008,13 (5):715-719
    145. Chen H, Guo S L, Xu, C Y, et al. Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. Journal of Hydrology,2007,344,171-184
    146. Cheng J and Masser I. Modelling urban growth pattems:a multiscale perspective. Environment and Planning A,2003,35 (4):679-704
    147. Congalto R and Mead D. Integrated geographical assessment of environmental eondition in water catehments:linking landscape ecology, environmental modeling and GIS. Journal of Environmental Management,1983,59:299-319
    148. CORINE,1992:Soil Erosion Risk and Important Land Resources in the Southern Regions of the European Community. EUR 13233, Luxembourg
    149. Costanza R and Mageau M. What is a health ecosystem? Aquatic Ecology,1999,33 (1):105-115
    150. Csutora R and Buckley J J. Fuzzy hierarchical analysis:the Lambda-Max method. Fuzzy Sets and Systems,2001,120:181-195
    151. De Jong S M, Paracchini M L, Bertolo F, et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena,1999,37 (3-4):291-308
    152. Dosskey M C. Setting priorities for research on pollution reduction functions of agricultural buffers. Environmental Management,2002,30:641-650
    153. Eakin H and Luers A L. Assessing the vulnerability of social-environmental systems. Annual Review of Environment and Resources,2006,31,365-394
    154. Fan S C and Chan-Kang C.2005. Road development, economic growth and poverty reduction in China. International Food Policy Research (IFPRI) Report No.138. Washington, USA
    155. Fitz T W and Mackayb D S. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology,2000,236:35-53
    156. Ford J D, Smit B, Wandel J. Vulnerability to climate change in the Arctic:a case study from Arctic Bay Canada. Global Environmental Change,2006,16 (2),145-160
    157. Fu B J, Liu G H, Wang X K, et al. Ecological issues and risk assessment in China. International Journal of Sustainable Development& World Ecology,2004,11,143-149
    158. Fu B J, Zhao W W, Chen L D, et al. Assessment of soil erosion at large basin scale using RUSLE and GIS:a case study in the Loess Plateau of China. Land Degradation& Development,2005, (16):73-85
    159. Fu B J, Zhang Q J, Chen L D, et al. Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena,2006,65,41-48
    160. Girffith J A. Geographic thechniques and recent applications of remote sensing to landscape-water quality studies. Water Air and Soil Pollution,2002,138:181-197
    161.Gowrie M N. Environmental Vulnerability Index for the Island of Tobago, West Indies. Conservation Ecology,2003,7(2):11
    162. Haith D A. Land Use and Water Quality in New York River. Environmental Engineering Division, ASCE,1976,102 (1):1-15
    163. Hietel E, Waldhardt R, Otte A. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecology,2004,19:473-489
    164. Hunsaker C T and Daniel A L. Hierarchical approach to the study of water quality in rivers. Bioscienee,1995,45 (3):193-203
    165. Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modeling approach. Journal of Hydrology,1996,183:323-349
    166. Johnson L B, Carl R, George E H, et al. Landscape influences on water chemistry in midwestem stream ecosystems. Freshwater Biology,1997,37:193-208
    167. Jones K B, Neale A C, Nash M S, et al. Predicting nutrient and sediment loadings to streams from landscape metrics:A multiple watershed study from the United States Mid-Atlantic region. Landscape Ecology,2001,16:301-312
    168. Kennedy R S H, Spies T A. Forest cover changes in the Oregon Coast Range from 1939 to1993. Forest Ecology and Management,2004,200:129-147
    169. Kirkby M J, Abraham R, McMahon M D, et al. MEDALUS soil erosion models for global change. Geomorphology,1998,24 (1):35-49
    170. Knight C L, Briggs J M, Duane Nellis M. Expansion of gallery forest on Konza Prairie Research Natural Area Kasas. Landscape Ecology,1994,9 (2):117-125
    171. Kok K, Farrow A, Veldkam P A, et al. A method and application of multi-scale validation in spatial landuse models. Agriculture, Ecosystems& Environment,2001,85 (1-3):223-238
    172. Kupfer J. National assessments of forest fragmentation in the US. Global Environmental Change, 2006,16:73-82
    173. Laarhoven P J M and Pedrycz W. A fuzzy extension of Saaty's priority theory. Fuzzy Sets and Systems,1983,11:229-41
    174. Lamb D, Erskine P D, Parrotta J A. Restoration of degraded tropical forest landscapes. Science, 2005,310:1628-1632
    175. Leibowitz S G, Loehle C, Li B L, et al. Modeling landscape function and effects:A network approach. Ecological Modeling,2000,132:77-94
    176. Leonard R A, Knisel W G, Still D A. GLEAMS:Ground water Loading Effects of Agricultural Management Systems. Transactions of the ASAE,1987,30 (5):1403-1418
    177. Li A N, Wang A S, Liang S L, et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-A case study in the upper reaches of Minjiang River, China. Ecological Modelling,2006,192:175-187
    178. Li H E, Joseph H W L, Koenig A. Nutrient load estimation in nonpoint source pollution of Hong Kong region. Water Science& Technology,2005,51 (3-4),209-216
    179. Li S Y, Gu S, Liu W Z, et al. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena,2008a,75:216-222
    180. Li S Y, Xu Z F, Cheng X L, et al. Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China. Environmental Geology,2008b,55 (5):977-983
    181. Li S Y and Zhang Q F. Geochemistry of the upper Han River basin, China,1:Spatial distribution of major ion compositions and their controlling factors. Applied Geochemistry,2008c,23: 3535-3544
    182. Li S Y, Gu S, Tan X, et al. Water quality in the upper Han River basin, China:The impacts of land use/land cover in riparian buffer zone. Journal of Hazardous Materials,2009,165 (1-3):317-324
    183. Li Z W, Zeng G M, Zhang H, et al. The integrated eco-environment assessment of the red soil hilly region based on GIS-A case study in Changsha City, China. Ecological Modelling,2007, 202:540-546
    184. Liu Qijing, Li Xuanran, Ma Zeqing, et al. Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. Forest Ecology and Management,2005,210:25-37
    185. Locantore N W, Tran L. T, O'Neill R V, et al.. An overview of data integration methods for regional assessment. Environmental Monitoring and Assessment,2004,94:249-61
    186. Lu H, Gallant J, Prosser I P, et al. Prediction of Sheet and Rill Erosion Over the Australian Continent, Incorporating Monthly Soil Loss Distribution:Canberra:CSIRO Land and Water Technical Report 13/01,2001
    187. Mander U, Kull A, Kuusemets V. Nutrient flows and land use change in a rural catchment:A modelling approach. Landscape Ecology,2000,15:187-199
    188. Marceau D J. The scale issue in social and natural sciences. Canadian Journal of Remote Sensing, 1999,25 (4):347-356
    189. Mattikalli N M and Richards K S. Estimation of surface water quality changes in response to land use change:application of the export coefficient model using remote sensing and geographical information system. Journal of Environ Management,1996,48:263-282
    190. Mikhailov L and Tsvetinov P. Evaluation of services using a fuzzy analytic hierarchy process. Applied Soft Computing,2004,5:23-33
    191.Nagasaka A and Nakamura F. The influences of land-use changes on hydrology and riparian environment in a northern Japanese. Landscape Ecology,1999,14:543-556
    192. Nagendra H. Drivers of reforestation in human-dominated forests. PANS,2007,104: 15218-15223
    193. Naillard P and Santos N A P. A spatial-statistical approach for modeling the effect of non point sourcc pollution on different water quality parameters in the Velhas watershed-Brazil. Journal of Environmental Management,2008,86:158-170
    194. Omernik J M. The influence of land use on stream nutrient levels. New York:USEPA Corvallis, O R,1976
    195. Pan D, Domon G, Blois S, et al. Temporal (1958-1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landscape Ecology,1999,14 (1):35-52
    196. Park Y S, Chon T S, Kwak I S, et al. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Science of the Total Environment,2004,327: 105-122
    197. Phillips J D. An evaluation of the factors determining the effectiveness of water quality buffer zones. Journal of Hydrology,1989,107:133-145
    198. Puyravaud, J P. Standardizing the calculation of the annual rate of deforestation. Forest Ecology & Management,2003,177:593-596
    199. Rahman M R, Shi Z H, Cai C F. Soil erosion hazard evaluation-An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling,2009,220:1724-1734
    200. Renard K G, Foster G R, Weesies G A, et al. RUSLE-revised universal soil loss equation. Journal of Soil and Conservation,1991,46 (1):30-33
    201. Rivera L W and Aide T M. Forest recovery in the karst region of Puerto Rico. Forest Ecology and Management,1998,108:63-75
    202. Rudel T K, Coomes O T, Moran E, et al. Forest transitions:towards a global understanding of land use change. Global Environmental Change,2005,15:25-31
    203. Sarkar S, Chiu L, Kafatos M, et al. Sensitivity of rainfall on land cover change over South East Asia:Some observational results. Advances in Space Research,2007,39:73-78
    204. Satty T L. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology,1977,15:234-281
    205. Servenay A, Prat C, Erosion extension of indurated volcanic soils of Mexico by aerial photographs and remote sensing analysis. Geoderma,2003,117:367-375
    206. Shi T. Ecological agriculture in China:bridging the gap between rhetoric and practice of sustainability. Ecological Economics,2002,42:359-368
    207. Shi Z H, Chen L D, Hao J P, et al. The effects of land use change on environmental quality in the red soil hilly region, China:A case study in Xianning County. Environmental Monitoring and Assessment,2009,150:295-306
    208. Shields D J, Solar S V, Martin W E. The role of values and objectives in communicating indicators of sustainability. Ecological Indicators,2002,2(1-2):149-160
    209. Siddiqui M N, Jamil Z, Afsar J. Monitoring changes in riverine forests of Sindh-Pakistan using remote sensing and GIS techniques. Advances in Space Research,2004,33 (3):333-337
    210. Srinivasan R, Muttiah T S, Arnold J G, et al. Large Area Hydrologic Modeling and Assessment Part Ⅱ:Model Application. Journal of the American Water Resources Association,1998,43 (1): 91-101
    211. Svendsen S M and Kronvang B. Retention of nitrogen and phosphorus in a Danish lowland river system:implications for the export from the watershed. Hydrobiogia,1993,251:123-135
    212. Timmerman P. Vulnerability, resilience and the collapse of society:A review of models and possible climatic applications. Toronto, Canada:Institute for Environmental Studies, University of Toronto,1981
    213. Turner Ⅱ B L, Skole D, Sanderson S, et al. Land use and land cover change science/research plan. IGBP Report No.35 and HDP Report No.7. Stochkholm:IGBP,1995
    214. Turner R E and Nancy N R. Linking landscape and water quality in the Mississippi river basin for 200 years. Bioscience,2003,53 (6):563-572
    215. USDA. CREAMS, A field scale model for chemicals, runoff, and erosion from agricultural management systems. Conservation research report No.26. USDA, Washington, D. C:1980.643
    216. Van der Merwe J H. GIS-aided land evaluation and decision-making for regulating urban expansion:a South African case study. GeoJournal,1997,43,135-151
    217. Villa F and Macleod H. Environmental vulnerability indicators for environmental planning and decision-making:Guidelines and applications. Environmental Management,2002,29 (3), 335-348
    218. Vrieling A, Sterk G, Beaulieu N. Erosion risk mapping:A methodological case study in the Colombian Eastern Plains. Journal of Soil and Water Conservation,2002,57 (3):158-163
    219. Wang J, Da L, Song K, et al. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environmental Pollution,2008,152 (2): 387-393
    220. Wang L S and Ma C. A study on the environmental geology of the Middle Route Project of the South-North water transfer. Engineering Geology,1999,51 (3):153-165
    221. Wear D N, Monnica G T, Robert J N. Land cover an urban-rural gradient:Implication for water quality. Ecological Applications,1998,8 (3):619-630
    222. Whipple W and Hunter J V. Nonpoint sources and planning for water pollution control. Journal of the Water Pollution Control Federation,1977,49:15-23
    223. Whittemore R C. The BASINS model. Water Environment and Technology,1998,10 (12):57-61
    224. Wickham J D, Jones K B, Riitters K H, et al. An integrated environmental assessment of the US Mid-Atlantic Region. Environmental Management,1999,24 (4):553-560
    225. Wiens J A. On the use of "grain" and grain size in ecology. Functional Ecology,1990,4:720
    226. Williams J R, Jones C A, Dyke P T. A modeling approach to delermining the relationship between erosion and soil productivity. Transactions of the ASAE,1984,27 (1):129-144
    227. Woli K P, Nagumo T, Hatano R. Evaluating impact of land use and N budgets on stream water quality in Hokkaido, Japan. Nutrient Cycling in Agroecosystems,2002,63:175-184
    228. Worrall F, Burt T P. The impact of land-use change on water quality at the catchment scale:the use of export coefficient and structural models. Journal of Hydrology,1999,221:75-90
    229. Xiong Y, Zeng G M, Chen G Q, et al. Combining AHP with GIS in synthetic evaluation of eco-environment quality-A case study of Hunan Province, China. Ecological Modelling,2007, 209:97-109
    230. Young R A, Onstad C A, Bosch D D, et al. AGNPS:A non-point source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation,1989,44 (2):168-173
    231. Yu D L and Wei Y H D. Analyzing regional inequality in post-Mao China in a GIS environment. Eurasian Geography and Economics,2003,44:514-534
    232. Zhang Q F, Xu Z F, Shen Z H, et al. The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China. Environmental Monitoring and Assessment,2009,148,369-377
    233. Zhang Q J, Fu B J, Chen L D, et al. Dynamics and driving factors of agricultural landscape in the semiarid hilly area of the Loess Plateau, China. Agriculture, Ecosystems& Environment,2004, 103,535-543
    234. Zhu Y P, Zhang H P, Chen L, et al. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River. The Science of the Total Environment, 2008,406,57-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700