用户名: 密码: 验证码:
溴菌腈在香蕉和土壤中的残留及在土壤中吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴菌腈(bromothalonil)是一种应用广泛的杀菌剂。本文以气相色谱(GC-ECD)为检测手段,研究了农药溴菌腈在香蕉和土壤中的残留分析方法、残留消解动态规律、最终残留量,溴菌腈在土壤中的吸附行为。为溴菌腈在香蕉上登记,最高残留量标准的制定,安全合理使用提供理论依据,为评价溴菌腈的环境安全性提供科学依据。研究结果如下:
     1.建立了溴菌腈在香蕉和土壤中的气相色谱(GC-ECD)分析方法。
     样品采用乙腈提取,弗罗里硅土柱净化,5:5的丙酮+正己烷洗脱液液洗脱,正己烷定容,气相色谱(GC-ECD)检测,气相色谱(GC-ECD)检测条件为:毛细管色谱柱:DB-1(30m×0.32 mm×1.0μm);程序升温:起始温度80℃,保持0.3min,以25℃·min-1升温至240℃,保持0.5min,再以60℃·min-1升温至280℃,保持8min;检测器温度300℃;进样口温度250℃;载气:氮气,纯度≥99.999%;不分流进样;尾吹气流速:50mL·min-1;溴菌腈保留时间7.22min左右;溴菌腈的最小检测量(LOD)为8×10-12 mg,在香蕉中的最低检测浓度(LOQ)为0.02mg·kg-1。
     添加回收率结果表明:在添加浓度为0.05~0.5 mg·L-1范围内,溴菌腈在土壤中的回收率为91%~105%,相对标准偏差为1.8%~4.4%;在香蕉中的回收率为80%~100%,相对标准偏差为1.8%~4.8%;方法简便、快速,灵敏度、精确度高、精密度良好,符合农药残留检测的要求。
     2.研究了溴菌腈WP在香蕉和土壤中的残留消解动态。
     按一次施药多次采样的方法对溴菌腈可湿性粉剂在香蕉和土壤中的残留消解动态进行研究。施药浓度为2250 g (a. i.)·hm-2,两年的结果表明:溴菌腈在香蕉和土壤中的消解动态曲线,降解过程均符合一级动力学模式。溴菌腈在香蕉中的消解动态方程为:2009年,C=0.4294e-0.3771t相关系数R2=0.9289;2010年,C=0.4974e-0.376t相关系数R2=0.9126;溴菌腈在土壤中的消解动态方程为:2009年,C=0.4914e-0.3611t,相关系数R2=0.91,2010年,C=0.122e-0.3735t,相关系数R2=0.9653;溴菌腈在香蕉中的半衰期为1.8d,药后14d消解达到90%以上,溴菌腈在土壤中的半衰期为1.9d,药后14 d消解达到90%以上,溴菌腈在香蕉和土壤中的消解都很快,属于易降解农药。
     3.研究了澳菌腈WP在香蕉和土壤中的最终残留量。
     施药时以登记时的最高推荐剂量作为残留试验的低剂量,低剂量的2倍剂量作为残留试验的高剂量,以1125 g (a. i.)·hm-2为低浓度,2250 g (a. i.)·hm-2为高浓度分别施药,低浓度很高浓度分别施药3次,4次,每次施药间隔7d,以最后一次施药后的7d、14d、21d分别采样测定结果,测定结果表明:溴菌腈在香蕉果中的最终残留量为0.03-0.066mg·kg-1之间,在土壤中的最终残留量为0.041-0.068mg·kg-1之间。香蕉上药后21d的残留量都比较低为0.03mg·kg-1,土壤中药后21d的残留量稍高为0.04mg·kg-1。根据实验结果,参照溴菌腈在其他作物上的最高残留限量0.1mg·kg-1,建议40%溴菌腈可湿性粉剂在香蕉和土壤中合理使用时施药剂量不要超过2250 g (a. i.)·hm-2,安全间隔期不少于7d,溴菌腈在香蕉上采收后食用是安全的。
     4.研究了溴菌腈溴菌腈的土壤吸附行为。
     本文还研究了溴菌腈在红土、泥土、沙土上的吸附特性,结果表明:溴菌腈的吸附主要跟土壤有机质含量有关,在相同条件下,有机质含量高的泥土对溴菌腈的吸附最强,随着有机质含量的减少,对溴菌腈的吸附也相对减弱。土壤对溴菌腈的吸附主要以物理吸附为主,溴菌腈易被土壤吸附,对环境影响相对比较小。
Bromothalonil is a widely used fungicide. In this paper, the residue dynamics and the final residues of bromothalonil in the banana and soil were determined by gas chromatography equipped with an electron-capture detector (GC-ECD), and residue detection method of bromothalonil was studied ang optimized with it, and adsorption in soil. The study provides reference for making the rules of MRL and using the pesticide properly in banana, and provides the scientific basis for evaluate environmental security of bromothalonil. The results were as follows:
     1.The analysis method for determination of bromothalonil in banana and soil by GC-ECD was established.
     The samples were extracted with acetonitrile and cleaned-up with florisil column, then eluted with acetone:hexane (5:5v/v), volume with hexane, and determined by gas chromatography equipped with an electron-capture detector (GC-ECD), GC-ECD test condition of bromothalonil:capillary column:DB-1 (30m×0.32 mm×1.0μm); temperature programming:initial temperature 80℃, hold time 0.3min, ramp 25℃·min-1 to 240℃, hold time 0.5min, ramp 60℃·min-1 to 280℃, hold time 8min; detector temperature 300℃; injector temperature 250℃; carrier gas:nitrogen, purity(?)99.999%; Splitless injection; makeup 50mL·min-1; retention time 7.22min; the minimum detectable amount of bromothalonil (LOD) for the 8×10-12 mg, the lowest detectable concentration of banana (LOQ) was 0.02 mg·kg-1
     On the level of 0.05~0.5 mg·L-1,the results of recoveries showed that the recovery ratio of bromothalonil was 80% to 105% in the soil,the relative standard deviations was 1.8% to 4.8%, the recovery ratio in banana was 91% to 100%,relative standard deviation was 1.8% to 4.4%,. This method was simple, rapid, sensitive, high accuracy, good precision,in line with the requirements of pesticide residues.
     2. The residue dynamics of bromothalonil WP in banana and soil.
     The dosage 2250 g(a.i.)·hm-2 bromothalonil WP was applied in banana and soil, two years'field test showed that the degradation procedure of bromothalonil was correspond to the mathematic pattern,C=Coe-kt. In banana, the dynamic equations were C=0.4294e-0.3771t, R2=0.9289 (2009); C=0.4974e-0.376t, R2=0.9126 (2010); the dynamic equations in soil were C-0.4914e-03611t, R2=0.91 (2009); C=0.122e-0.3735t, R2=0.9653; The half-life of bromothalonil was 1.8 d in banana,1.9 d in soil in 2009 and in 2010, Bromothalonil decomposed more than 90% in banana and in soil after had been sprayed for 14 d. Bromothalonil was dissipated rapidly in banana and soil, bromothalonil is easy to degrade.
     3. The final residue of bromothalonil in the banana and soil was studied.
     The recommended maximum dose was the low dose,1125 g (a.i.)·hm-2. The double of The recommended maximum dose was high concentration,2250 g (a.i.)·hm-2. The pesticide was respectively sprayed three times and four times, the samples was collected at each seven days interval, after the last spraying 7d, 14d, 21d The results demonstrated that the final residue dose were 0.03-0.066mg·kg-1 in banana and 0.041-0.068mg·kg-1 in soil. The residues in 21 d after spraying were 0.03mg·kg-1 in banana and 0.04mg·kg-1 in soil, the maximum residue limit of bromothalonil with reference to that in other crops 0.1 mg·kg-1 was recommended. It was suggested that the drug dose of 40% bromothalonil WP should not exceed 2250 g (ai)·hm-2 when reasonably used, the safe internal time was no less than 7d. It was safe to eat after spraying bromothalonil to harvest banana.
     4. The absorption of bromothalonil in clay, mud, sand were also studied in this paper that the absorption of bromothalonil mainly concerned with the soil organic matter content, under the same conditions, the soil with high organic matter behave the highest absorption of bromothalonil, the soil behave relatively less absorption of bromothalonil with the reduction in organic matter content. The adsorption of bromothalonil in soil mainly based on physical adsorption, which is susceptible to soil adsorption leading to relatively small impact on the environment.
引文
1.赵善欢,植物化学保护(第三版)[M].北京.中国农业出版社,2001:5
    2.华小梅.我国农药的生产、使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33~45.
    3.王晓光,李海屏.我国高毒有机磷农药替代品种的开发进展[J].农药,2001,40(2):10~13.
    4.蔡道基.农药与环境,安徽化工[J],2000(1):13~18.
    5.徐晓白,典型化学污染的在环境中的变化及生态效应[M].化学工业出版社,1998:81~92.
    6.华小梅,单小军.我国农药的生产使用状况及其污染环境因子分析,环境科学进展[J].1996:45(5).16~21
    7.叶央芳,赵宇华.土壤化学研究及应用:农药及微生物降解[M].中国环境科学生物出版社,1997,14(5):25~29.
    8.农业部农药检察所编,新编农药手册(续册)[M].中国农业出版社,1998:253~255.
    9.世界贸易组织/贸易技术壁垒协定(WTO/TBT).国家质量技术监督局中国WTO/TBT通报咨询中心.1998.
    10.岳永德.农药残留分析[M].北京,中国农业出版社,2003:273~242.
    11.龚道新,汪传刚,胡湘望.曝吩磺隆在土壤中的吸附及表面活性剂对吸附的影响.农业环境科学学报[J].2007,26(5):1689~1693.
    12.李艳霞,张保东.农药残留检测技术的研究[J]周口师范学院学报,2004,5(22):79~82.
    13.鞠兴荣,袁建.食品中限量元素分析样品的预处理技术进展[J].食品科学,2004,25(2):199~203.
    14.易军,李云春,弓振斌.食品中农药残留分析的样品前处理技术进展[J].化学进展,2002,14(6):415~424.
    15.陈华才,简论农药残留量检测中的样品前处理技术[J].中国计量学院学报,2002,13(3):240~244.
    16.于徊萍,王彩梅,食品农药残留分析的现代进展[J].吉林粮食高等专科学校学报,2001,16(1):15~17.
    17.杨曼君,农药残留分析中的提取新技术[J].农药科学与管理,2000,21(1):13~15.
    18.申继忠.农药残留分析样品前处理新技术简介[J].农药科学与管理,1998,64:8~10.
    19.姚建国,周卯星,冯瑜.蔬菜水果中的农药残留分析进展[J].山西农业科学,2003,31(2):49~55.
    20.李兴红.气相色谱法分析食品中残留农药的方法研究[D].华中师范大学,2002:33~35.
    21.郭寅龙.固相微萃取/气相色谱/质谱联用技术在农药残留分析中的应用[J].分析测试技术与仪器, 2001,7(4):230~235.
    22.金维平,曹志林.国内农药残留的色谱分析法研究进展[J].计量与测试技术,2007,34(1):15~17.
    23.乙小娟,朱加叶,王莉等.气质联用法测定食品中特丁基对苯二酚[J]. 食品科学,2007,028(006):262~265.
    24.纪淑娟,刘长江,佐藤元昭等.用气-质联用技术检测葱、蒜、韭菜中多种农药残留量时试样预处理方法[M].理化检验:化学分册,2006,42(11):914~917.
    25.刘勇军,吴银良,刘素英等.固相萃取气相色谱-质谱联用法测定动物组织中的莱克多巴胺[J].食品科学,2006,027(008):231~234.
    26.秦燕,王志元,陈捷等.蛋白受体结合筛选-气质联用法测定动物组织中的氯霉素残留[J].分析试验室,2005,24(5):36~39.
    27.郑和辉,吕静.农药残留检测技术进展概况[J].农药科学与管理,1997,62(2):10~12.
    28.许中坚,刘广深,刘维平.土壤中溶解性有机质的环境特性与行为[J].环境化学,2003,22(5):427~430.
    29.刘维平,季瑾.农药在土壤—水环境中归宿的主要支配因素—吸附和脱附[J].中国环境科学,1996,16(1):25~30.
    30.王琪全,刘维平.乙草胺和异丙甲草胺在土壤中吸附的研究[J].土壤学报,2000,37(1):95~100.
    31.方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94~97.
    32.李克斌等.除草剂苯达松与腐殖酸作用机理的研究[J].上海环境科学,1998,17,(5):18~20.
    33.应兴华,徐霞.影响农药在土壤与沉积物上吸附作用的研究[J].中国农学通报,2005,21(8):393~396.
    34.袁东海等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境化学.2005,24(1):7~11.
    35.徐晓白.有毒有机物环境行为和生态毒理论文集[M].北京:中国科学出版社,1990:103~111.
    36.汪传刚.噻吩磺隆在土壤中的吸附及其对三叶浮萍生长的影响[D].湖南农业大学硕士学位论文.2007:44~45.
    37.王琪全,刘维平.除草剂灭草烟在土壤中的吸附、脱附[J].中国环境科学,1998,18(4):314~318.
    38.曹罡,莫汉宏,安凤春.除草剂2,4-D在胡敏酸中的吸附[J].环境科学学报,2002,22(1):120~122.
    39.杨克武,安凤春.单甲脒在土壤中的吸附研究[J].环境化学,1995,14(5):431~435.
    40.欧晓明.新农药硫肟醚的环境化学行为研究[D].浙江大学博士学位论文.2004:59~73.
    41.刘伟,于福利,雷琪.苹果和土壤中溴菌腈残留分析方法[J].农药,2008,47(1):46~47.
    42.刘慧群.40%多·溴·福可湿性粉剂在黄瓜和土壤中的残留分析及消解动态研究[D]. 东北农业大 学硕士论文.2009:50~51.
    43.农业部农药检定所.NY/T 788.农药残留试验准则[M].北京:中国农业出版社,2004:224~226.
    44.农业部农药检定所.农药登记残留田间试验标准操作规程[M].北京:中国标准出版社,2007:158-162,336-340,95-400.
    45.中华人们共和国农业部.中华人民共和国农业行业标准NY/T 761-2004《蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留检测方法》[M].北京:中国农业出版社,2004:157~158.
    46.中华人民共和国农业部.中华人民共和国农业行业标准NY/T 1121.1-2006.土壤检测系列标准[M].北京:中国农业出版社,2006:1234~1236.
    47.蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999:131~132.
    48.张宇.二甲戊灵在马铃薯和土壤中的残留及吸附研究.吉林农业大学硕士学位论文.2005:51.
    49.刘伟,秦曙等.溴菌腈在苹果和土壤中的残留消解动态研究[J].农业环境科学学报,2008,27(2):792~794.
    50. Pusino A, Liu W, Cessa C. Clays and Clay minerals[J].1993,41(6):551.
    51. FAO/WHO. CAC/PR3-1985, Guide to Codes and Reeommendations Concerning Pestieides [M]. Food Agrieulture Organization of United Nations, World Health organization Rome,1985:109.
    52. Gonralves C, Alpendurada M F. Solid phase micro-extraction gas chromatography (tandem) mass spectrometry as a tool for pesticide residue analysis in watersamples at high sensitivity and selectivity with confirmation capabilities [J]. Journal of Chromatography A,1026(2004):239~250.
    53. David T.R, Nanyan Zhang, Automating solid-phase extraction:current aspects and future prospects[J]. Journal of Chromatography A.2000,885(1-2):97~113.
    54. C. Arthur, J. Pawliszyn. Solid phase microextraction with thermal desorption fused silica optical fibers[J]. Anal. Chem,1990,62:2145~2148.
    55. A. L. Simplicio, L. V. Boas, J. Chromatogr. A[M].1999:833~835.
    56. C.Z. Dong, Z.R.Zeng, X.J.Li, Talanta [J].2005,66(3):721.
    57. G.Duflos,V.M. Coin, M.Cornu, J.F.Antinelli, P.Mallel, J.Sci [J]. Food Agric 2006,86(4):600
    58. M.J. Gonzalez-Rodriguez, F.J.A. Liebanas, A.G. Frenich, J. L.M. Vidal, F. J. S. Loez, Anal[J].Bioanal. Chem.2005,382(1):164.
    59. J. X. Yu, C.Y. Wu,J.Xing, J.Chromatogr.A [J].2004,1036(2):101.
    60. Zougagh M, Valcarcel M, Rios A. Supercritical fluid extraction:a critical review of its analytical usefulness[J]. Trends Anal Chem.2004,23(5):1~7.
    61. Lehotay S J. Supercritical fluid extraction of pesticides in foods [J]. J Chromatography A,1997,785 (1-2):289~312
    62. Tang Y L, Wang R C, Huang J F. Relations between red edge Characteristics and agronomic parameters of crops [J]. Pedosphere,2004,14(4):467~474.
    63. Biggar J W, Cheung M W. Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, cphrata, and palouse soils thermo dynamic approach to the adsorption mechanism[J]. Soil Sci.Soc Am. Proc,1973,37:863~868.
    64. Pusi P, Arfaiolip C, et al.Interactions of two ac-etanilide herbicides with two clay surfaces modified with Fe(Ⅲ) oxyhydroxides and hexaclocytri methylammonium [J]. Chemosphere,1993,27(5): 765-771.
    65. Burchil s et al[M]. Versiles,1973:70.
    66. Pusino A, Liu W, Gessa C. J. [J]. Agric Food Chem.,1993,41(3):502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700