用户名: 密码: 验证码:
2,4-滴丁酯环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,4-滴丁酯环境行为研究旨在阐明2,4-滴丁酯在环境中的归宿和潜在危害,为其科学合理使用和环境安全性评价提供科学依据。本文建立了2,4-滴丁酯残留分析方法。并通过此方法研究了2,4-滴丁酯的水解、光解、土壤降解、土壤吸附及淋溶迁移等环境行为特性。
     建立了土壤和水样中2,4-滴丁酯GC检测方法。在0.05-10 mg·L-1范围内,2,4-滴丁酯峰面积和浓度间相关性良好,线性回归方程:y=33371x-7189.8,相关系数x=0.997 4;水样中添加0.005-0.1 mg·L-1,2,4-滴丁酯的平均回收率是100.63%,变异系数1.30%;土壤中添加0.01、0.1mg·kg-1,2,4-滴丁酯的平均回收率102.15%,变异系数4.99%;2,4-滴丁酯在水中的最低检测浓度为0.005mg·L-1;土壤中的最低检测浓度为0.05 mg·kg-1。该方法满足残留分析检测的要求,为研究2,4-滴丁酯环境行为奠定了基础。
     2,4-滴丁酯在缓冲溶液中水解速率依次为:pH9>pH7>pH5,水解半衰期(25℃)分别为10.7 min、5.8 d、23.5 d。水解反应是碱催化水解,pH值是决定因素;温度对2,4-滴丁酯的水解影响明显,随温度升高,降解加快。在15℃到35℃范围内,温度每提高10℃,水解速率增加1.57倍;2,4-滴丁酯水解反应的活化能与温度之间无明显相关性,而活化熵与温度呈显著的相关性,相关系数r=1;活化熵为负值说明水解反应由活化熵的增加所驱动;2,4-滴丁酯水解产物甲酯化衍生后,经GC-MS鉴定,根据其结构推测,2,4-滴丁酯的水解机制是先发生酯键断裂生成2,4-二氯苯氧乙酸,再进一步醚键断裂生成2,4-二氯苯酚。
     2,4-滴丁酯在不同溶剂中的光解存在明显差异,在正己烷中光解速率最快,其次是甲醇,而在丙酮中几乎无降解;光解同时受初始浓度的影响,2,4-滴丁酯在正己烷中的光解随浓度不同而异,高浓度光解缓慢,低浓度光解迅速,可能原因是光能一定的条件下,高浓度使单位分子平均接受的光能减少,发生光降解的几率减少。
     2,4-滴丁酯在砂土、壤土和粘土中的降解半衰期分别为10.85d、8.38d、6.94d,在相应灭菌土壤中的降解半衰期分别为46.2d、27.28d和38.93d;通过灭菌和未灭菌土壤中2,4-滴丁酯的降解比较,得出土壤微生物对2,4-滴丁酯的土壤降解起着重要作用;土壤有机质含量因影响土壤微生物的种类和数量而影响2,4-滴丁酯的土壤降解;自然状态下2,4-滴丁酯在土壤中的降解不能很好地符合一级动力学方程,降解同时伴有水解、挥发、光解等多种作用,可能受光强,温差等多种自然因素和其他因素的影响,使降解呈现不规律性。
     采用振荡平衡法研究了2,4-滴丁酯的吸附特性。2,4-滴丁酯在三种供试土壤中的吸附均符合Fruendlch等温吸附方程,相关系数r均在0.95以上。在粘土和壤土上的吸附等温线呈L型,在砂土上的吸附等温线呈S型;2,4-滴丁酯在砂土、壤土和粘土中的吸附常数Kd分别为0.96,1.73和5.90,表明其不易被土壤吸附;2,4-滴丁酯在三种土壤中的吸附强弱顺序为:粘土>壤土>砂土,有机质含量增加,吸附能力增强;2,4-滴丁酯在砂土、壤土和粘土中的吸附自由能分别为12.40 kJ·mol-1、12.18 kJ·mol-1、13.82 kJ·mol-1,均小于40kJ·mol-1,表明2,4-滴丁酯在土壤中的吸附属于物理吸附,吸附机理可能有氢键、偶极键作用而不存在化学键吸附作用。
     土壤薄层层析法研究了2,4-滴丁酯的移动性。2,4-滴丁酯在三种土壤中的Rr值分别为粘土0.19、壤土0.45、砂土0.56,分别属于第1V等级不易移动、第Ⅲ等级中等移动、第Ⅲ等级中等移动;2,4-滴丁酯在土壤中的移动性强弱顺序为:砂土>壤土>粘土,随土壤有机质含量增加,移动性减弱。
A study to environmental behaviors of 2,4-D butylate was aimed at elucidating 2,4-D butylate fate and potential hazards,and providing a seientifie basis for reasonable using, and evaluating environmental safety.A method for residue determination of 2,4-D butylate was developed. Via this method,environmental behavior of 2,4-D butylate was studied, such as absorption, mobibity,hydrolysis,soil degradation.
     An analytical method for determining 2,4-D butylate residues in water and soil by GC-ECD was described. The line equation was y=33371x-7189.8 with the linearty ranging from 0.05-10 mg-L"1, the correlation coefficient r=0.9974. The method had been validated by spiking different concentrations of 2,4-D butylate to soil and water. The result showed that the average recovery for water was 100.63%, spiked at 0.005-0.1 mg-L-1, while the coefficient of variability was 1.30%. The average recovery for soil was 102.15%, spiked at 0.01-0.1 mg-kg-1, while the coefficient of variability was 4.99%. The LOD were 0.005 mg-L-1,0.05 mg-kg-1, for water and soil samples, respectively. It indicated that the developed method could be applied for residue determination and environmental behavior of 2,4-D butylate.
     Hydrolysis velocity of 2,4-D butylate in different buffer solutions was in order of pH9>pH7>pH5, while hydrolysis half lives (25℃) were 10.7 min,5.8 d and 23.5 d, reseparately.2,4-D butylate,s hydrolysis was base-catalyzed hydrolysis,which indicated that the pH was a crucial factor. Temperature had a significant effect on 2,4-D butylate's hydrolysis,which was increased with temperature increasing. The hydrolysis velocity increased 1.57 times for each temperatur increase of 10℃. There existed no obvious correlations between the activation energies of 2,4-D butylate hydrolysis and temperatures,but the activationentropy absolute values of 2,4-D butylate hydrolysis increased with the increasing temperatures in the environment. The activationentropy absolute values of 2,4-D butylate hydrolysis was negative,suggesting that hydrolysis of 2,4-D butylate in the aqueous solutions was driven by the activation entropy. The hydrolytic products of 2,4-D butylate were identified as 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol by GC-MS, suggesting that the degradation route of 2,4-D butylate was mainly via ester bonds and aryl ether bond cleavage.
     There was significant difference with the photolytic rate of 2,4-D butylate in different solvents. The photolytic rate of 2,4-D butylate in n-hexane was faster than in methanol, and it would not be degraded in acetone solvent. The photolytic rate was influenced by initial concentration of 2,4-D butylate.The photolytic rate became faster when decreasing concentration of 2,4-D butylate in n-hexane, maybe because higher concentration cause competitivly absorb certain light energy, each molecule got less energy and probability of photolysising.
     Half lives of 2,4-D butylate in sand, loam and clay were 10.85d,8.38d and 6.94d, respectively, while in those three sterilized soils,the half lives were46.2d,27.28d and 38.93d, respectively.It indicated that soil microorganisms had s significant effect on the degradation of 2,4-D butylate in soil. The soil organic content influence degradation of 2,4-D butylate in soil through influencing microorganism sort and number.Under field environment, degradation of 2,4-D butylate in soil couldn't followed the first order reaction well,its maybe because degradation often accompanied by hydrolysis, photolysis and volatilize, affected by light intensity, difference in temperature and some other factors.
     The adsorption of 2,4-D butylate in three kinds of soils were studied with batch equilibrium technique.Adsorption isotherms of 2,4-D butylate on the soils could be described well by Freundlich equation,correlation coefficent r>0.95. Adsorption isotherm of 2,4-D butylate in clay and loam exhibited L-type isotherm. However, adsorption isotherm of 2,4-D butylate in sand loam was S-type; The adsorption constant (Kd) of 2,4-D butylate in sand, loam and clay was 0.96,1.73 and 5.90 respectively, which suggested that 2,4-D butylate did't easily been adsorbed in soils. Intense extent of 2,4-D butylate adsorbed by three soils in order to clay> loam>sand, which suggested that the soil adsorption capacities of 2,4-D butylate were positively related with the contents of soil organic matter.The amounts of the adsorption free energy (ΔG) of 2,4-D butylate on sand,loam and clay soils were 12.40 kJ-mol-1,12.18 kJ-mol-1,13.82 kJ-mol-1,respectively, (ΔG<40kJ-mol-1)which indicated that the 2,4-D butylate adsorption was dominated by physical adsorption, its adsorption mechanism could be the actions of H-band, dipolar bond, van der waals force and hydrophobic bond, while the chemical bond adsorption action was not existed.
     The mobility of 2,4-D butylate in three kinds of soils were studied with soil thin layer chromatography. Rf(relative flow) of 2,4-D butylate in clay, loam sand were 0.19, 0.45,0.56,respectively. The mobility of methomyl in three soils above mentioned was shown as don't easily mobile and belonged to grade IV pesticide,middling mobile and belonged to grade III pesticide, middling mobile and belonged to gradeⅢpesticide, respectively.The transportation sequence of 2,4-D butylate in the tested soils was sand> loam> clay.2,4-D butylate move to weaken with the increas of soil organic matter content.
引文
[1]赵善欢.植物化学保护(第三版)[M].北京:中国农业出版社,1999
    [2]袁增雯,张一宾.农药与环境[J].上海化工,2000,17:4-5
    [3]蔡道基,朱忠林,单正军.涕灭威对地下水污染敏感区的预测与区划试点[J].环境科学进展,1995,3(1):11-37
    [4]黄普,乔传令.昆虫解毒酶解毒机理及其在农药污染治理中的应用[J].农业环境保护,2002,2(13):285-287
    [5]王晓光,李海屏.我国高毒有机磷替代品种的开发进展[J].农药,2001,40(2):10-13
    [6]孙艳萍.我国农药经营管理现状及其问题分析[J].农药,2009,48(9):698-700
    [7]杨永岗,彭钰欣.农药与未来农业的发展[J].环境导报,1997,6:35-38
    [8]顾晓军,田素芬.农药的负面效应:过去、现状及展望[J].福建农业大学学报(自然科学版),2001,30(1):80-83
    [9]邢岩.辽宁省高毒农药使用现状及治理对策[J].农药,2001,40(12):1-3
    [10]Rachel Carson.寂静的春天[M].吕瑞兰,李长生,译.长春:吉林人民出版社,1997:12-32
    [11]杨燕红,盛国英,傅家谟,等.珠江三角洲一些城市水体中微量有机氯化合物的初步分析[J].环境科学学报,1996,16(1):59-65
    [12]Sluszny C, Graber E R, Gerstl Z. Sorption of striazines herbicides in organic matter amended soils:Fresh and incubated systems[J].Water Air and Soil Pollution,1999,115(1-4):395-410
    [13]刘维屏.农药环境化学[M].北京:化学工业出版社,2006
    [14]Richardson M. Pesticides:friend or foe[J].Water Science and Technology,1998,37(8)19-25
    [15]W.D冈杰.土壤和水中的农药[M].夏增绿,译.北京:科学出版社,1985
    [16]蔡道基.化学农药环境安全评价试验准则[S].北京:国家环保总局,1989
    [17]陈小军,徐汉虹,胡珊,等.农药光催化降解研究进展[J].农药,2006(6):381-384
    [18]欧晓明.新农药硫肪醚的环境化学行为研究[D].杭州:浙江大学博士论文,2004
    [19]施晨辉.丙炔恶草酮在稻田环境中的行为研究[D].杭州:浙江大学博士论文,2009
    [20]刘玉莹.农药污染概况及食物中毒中农药残留分析方法研究进展[J].职业与健康,2006,22(3):178-18
    [21]莫汉宏.农药环境化学行为论文集[M].北京:中国科学技术出版社,1994:54-55
    [22]Konda L N, Czinkota I, Fuleky G, et al. Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil[J]. Journal of Agricultural and Food Chemistry,2002, 50(25):7326-7331
    [23]Smith J A, Galan A. Sorption of nonionic organic contaminants to single and dual cation bentonites from water [J].Environmental Science and Technology,1995,2993:685-692
    [24]朱利中,陈宝梁,李铭霞,等.双阳离子有机膨润土吸附水中有机物的特征及机理研究[J].环境科学学报,1999,19(6):587-603
    [25]李桂芝,李改枝.敌百虫和敌敌畏在黄河水体沉积物上的吸附机理[J].烟台大学学报(自然科学与工程版),2004,17(4):254-259
    [26]高海英,杨仁斌,龚道新,等.三唑酮在土壤中的吸附及其机理[J].湖南农业大学学报(自然科学版),2006,32(2):203-205
    [27]李克斌,刘维屏,周瑛,等.灭草松在土壤中吸附的支配因素[J].环境科学,2003,24(1):126-130
    [28]Fontaine D D, Lehamnn R G, Miller J R. Soil adsorption of neutraland anionic forms of a sulfonamide heibicide,flumetsulam[J]. Journal of Environment Quality,1991,20:759-762
    [29]Celis R, Hermosin M C, Cox L,et al. Sorption of 2,4-dichlorophenoxyaceticacid by model particles simulating naturally occurring soil colloids [J].Environmental Science and Technology,1999,33(8)1200-1206
    [30]Northcott G L, Jones K C. Experimental approaches and analytical technique for determining organic compound bound residues in soil and sediment[J].Environmental Pollution,2000,108:19-26
    [31]Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science,1979,206(16):831-832
    [32]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学,1996,16(1):25-30
    [33]Maqueda C, Morillo E, Perez J I, et al. Adsorption of chlordime form by humic substances from different soils[J].Soil Science,1990,150(1):431-437
    [34]杨宏伟,郭博书,嘎尔迪.除草剂草甘膦在土壤中的吸附行为[J].环境科学,2004,25(5):158-162
    [35]张伟,王文琪,王进军,等.单嘧磺隆在土壤中的吸附特性研究[J].四川师范大学学报(自然科学版),2010,33(3):366-371
    [36]Chattoraj D K, Birdi K S. Adsorption and the gibbs surface excess[M]. New York:Pleum Press,1984:278
    [37]戴树桂.环境化学[M].北京:高等教育出版社,2002:220-235
    [38]金相灿.有机化合物化学[M].北京:清华大学出版社,1999:23-37
    [39]Chiou C T. In reactions and movement of organic chemicals in soils [A]//Brown B L.Soil Science Society of America.Madion,1989:Chapter 1
    [40]Calvet R. Adsorption of organic chemicals in soil[J].Environmental Health Perspectives, 1989,83:145-177
    [41]Giles C H, MacEwan T H, Nakhwa S N, et al. Studies in adsorption:partXI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and inmeasure of specific surface areas of solids[J]. Journal of the Chemical Society,1960,111(10):3973-3993
    [42]马爱军,周立详,何任红.水溶性有机物对草萘胺在土壤中吸附和迁移的影响[J].环境科学,2006,27(2):354-360
    [43]陈飞霞,魏沙平,魏世强.毒死蜱在不同土壤腐殖酸上的吸附/解吸特征[J].环境污染与防治,2006,28(11):818-821
    [44]叶常明.除草剂在土壤中的吸附行为研究[J].环境污染治理技术与设备,2002,3(5):1-6
    [45]杨炜春,王琪全,刘维屏.除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J].环境科学,2000,21(4):94-97
    [46]欧晓明,罗玲,王晓光,等.黏土矿物和腐植酸对新农药硫肟醚的吸附及其机理研究[J].农业环境科学学报,2006,25(1):211-218
    [47]马爱军,何任红,周立祥.除草剂草萘胺在土壤-水环境中的吸附行为及其机理[J].环境科学学报,2006,26(7):1159-1163
    [48]何华,徐存华,孙成,等.3种新型菊酯类卫生用药的吸附和解吸特性研究[J].东南大学学报,2004,23(3):163-166
    [49]Jana T K, Das B. Sorption of carbaryl(l-napthylN-methyl carbamate)by soil[J]. Bulletin of Environment Contamination and Toxicology,1997,59:65-71
    [50]Carter M C, Kilduff W E, Weber W J. Site energy distribution analysis of preloaded adsorbents[J]. Environmental Science and Technology,1995,29(7):1773-1780
    [51]Pionker H B, Glotfelty D E, Lucas A D. Pesticide contamination of groundwater in the Mahatango Greek watershed[J]. Journal of Environment Quality,1988,17(1):76-84
    [52]郭华,朱红梅,杨红.除草剂草萘胺在土壤中的降解与吸附行为[J].环境科学,2008,29(6):1729-1736
    [53]刘维屏,郑巍,宣日成,等.除草剂咪草烟在土壤上吸附-脱附过程及作用机理[J].土壤学报,1998,35(4):475-481
    [54]孔德洋,石利利,单正军,等.除草剂甲基磺草酮在土壤中的吸附及淋溶特性[J].中国环境科学,2008,28(8):753-757
    [55]Bailey G W, White J L. Factors influencing the adsorption,desorption and movement of pesticides in soil[J]. Residue Reviews,1970,32:29-92
    [56]司友斌,周静,王兴祥,等.除草剂苄嘧磺隆在土壤中的吸附[J].环境科学,2003,24(3):122-125
    [57]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工技术与开发,2004,33(1):12-16
    [58]刘松长,李继睿,何文.农药在土壤环境中的吸附-解吸作用[J].广东化工,2007,34(11):101-103,117
    [59]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97
    [60]李克斌,王琪全,刘维屏.除草剂苯达松与腐植酸作用机理的研究[J].上海环境科学,1998,17(5):18-20
    [61]马立新,陈吉平,郭荣波,等.农药保棉磷、敌草隆、莠去津和扑草净在土壤中的不可逆吸附研究[J].精细化工,2004,21(6):456-460
    [62]郑巍,刘维屏.除草剂普杀特在土壤-水两相中的吸附-脱附和光解[J].中国环境科学1998,18(5):476-480
    [63]宣日成,王琪全,郑巍,等.吡虫啉在土壤中的吸附及作用机理研究[J].环境科学学报,2000,20(2):198-201
    [64]卢颖,韩朔睽.除草剂苯噻草胺在土壤中的吸附[J].环境化学,2000,19(6):513-517
    [65]Pusino A, Liu W, Gessa C. Dimepiperate adsorption and hydrolysis on A13+、Fe3+、Ca2+and Na+ montmorillonite[J] Journal of Agricultural and Food Chemistry,1993,41(3):502
    [66]逯忠斌,侯志广,王秀梅.新农药HW-02在土壤中的吸附[J].环境科学研究,2009,22(7):851-855
    [67]刘维屏,Gessa C利谷隆在土壤中的吸附过程与机理[J].环境科学,1995,16(1):16-18
    [68]高海英,杨仁斌,龚道新.三唑酮在湘南第四纪红壤上的吸附行为[J].农业环境科学学报,2006,25(增刊):54-57
    [69]Kozak J, Weber J B, Sheets J. Adsorption of prometryn and metolachlor by selected soil organic matter fractions[J].Soil Science,1983,136(2):94-101
    [70]石辉,孙亚平.萘在土壤上的吸附行为及温度影响的研究[J].土壤通报,2010,41(2):308-313
    [71]徐法虹.植物化学保护[M](第四版).北京:中国农业出版社,2007:325-327
    [72]罗玲.硫肟醚菊酯在土壤中的吸附行为及机理研究[D].湖南:湖南农业大学硕士论文,2004
    [73]Haigh S D. Areview of the interaction of surfactants with organic contaminants in soil[J]. Science of the Total Environment,1996,185:161-170
    [74]杨景辉.土壤污染与防治[M].北京:科学出版社,1995:294-295
    [75]蒋新明,蔡道基.化学农药对生态环境安全评价研究ⅩⅢ.农药在土壤中的吸附与解吸[J]. 农村生态环境,1987,4:11-14
    [76]单正军,朱忠林,华晓梅,等.除草剂索拉对地下水影响研究[J].环境科学学报,1994,14(1):72-78
    [77]石利利,林玉锁,徐亦钢,等.毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73-74
    [78]赵华,李康,徐浩,等.甲氰菊酯农药环境行为研究[J].浙江农业学报,2004,16(5):299-304
    [79]Laabs V, Amelung W, Pinto A, et al. Leaching and degradation of corn and soybean pesticides in an oxisol of the brazilian cerrados[J].Chemosphere,2000,41(9):1441-1449
    [80]乔雄梧.农药在土壤中的环境行为[J].农药科学与管理,1999,20(增刊):12-20,28
    [81]Riederer M, Burghardt M, Mayer S, et al. Sorption of monodisperse alcoholethoxylates and their effects on mobility of 2,4-D in isolated plant cuticles [J]. Journal of Agricultural and Food Chemistry,1995,43(4):1067-1075
    [82]安凤春,莫汉宏,杨克武,等.农药在土壤中迁移的研究方法[J].环境化学,1994,13(5):214-217
    [83]Sharom M S, Stephenson G R. Behavior and fate of metribuzin[J].Weed Science,1976, 24:153-160
    [84]Helling C S, Turner B C. Pesticide mobility:determination by soil thin-layer chromato-graphy[J].Science,1968,162:562-563
    [85]单正军,朱忠林,蔡道基.吡虫啉的环境行为研究[J].农药科学与管理,1998,19(4):11-15
    [86]Bonde E K. Plant toxicants in underground water in adams county[J].Colorado Soil Science, 1962,93(5):353-356
    [87]Zaki M H, Moran D, Harris D, et al. Pesticide in groundwater:the aldicarb story in suffolk county[J].Public Health,1982,72:1391-1395
    [88]Asterios P, Euphemia P M. Occurrence and spatial and temporal distribution of pesticide residues in groundwater of major corn-growing areas of greece(1996-1997) [J].Environmental Science and Technology,2000,35(1):63-69
    [89]US Environmental Protection Agency. Protection Agency National survey of Pesticides in drinking water wells Phase Ⅰ Report[M]. Washington,DC:USEPA,1990
    [90]US Environmental Protection Agency. Protection Agency National survey of Pesticides in drinking water wells Phase Ⅱ Report[M]. Washington,DC:USEPA,1992
    [91]Stockmarr J, Editor, EEA. Groundwater monitoring 2000, geological survey of denmark and greenland, copenhagen(indanish)[M]//European Environment Agency.Sustasinable use of europe's waterstate,prospects and issues[M].Copenhagen,2000
    [92]Cohen D B.Groundwater contamination by toxic substances,a california assessment[J]. Evaluation.1986,499-529
    [93]Williams W M, Holden P W, Parsons D W, et al. Pesticides in groundwater data base 1998 interim report[R].Washington,DC:Office Pesticide Programs,USEPA,1998:37
    [94]林玉锁,龚瑞忠,朱忠林.农药与生态环境保护[M].北京:化学工业出版社,2000:32
    [95]Lichtinstein E P. Movement of insecticides in soils under leaching and non-leaching condition[J]. Journal of Economic Entomology,1958,51:380-383
    [96]远铁疆.丙烷脒在土壤中的吸附、迁移和水解动力学研究[D].陕西:西北农林科技大学硕士论文,2007
    [97]李彦文,郭正元,杨仁斌.恶唑菌酮在土壤中淋溶迁移影响因子研究[J].土壤,2007,39(2):270-273
    [98]何利文,石利利,孔德洋,等.呋喃丹和阿特拉津在土柱中的淋溶及其影响因素[J].生态与农村环境学报,2006,22(2):71-74
    [99]郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性[J].环境科学,2001,22(5):117-121
    [100]吴春先,慕立义,吕潇,等.灭线磷在三种土壤中移动性的研究[J].农药科学与管理,2003,24(4):9-13
    [101]Castaneda A R, Bhuiyan S I. Groundwater contamination by ricefield pesticides and some influencing factors[J] Journal of Environment Science and Health,1996, A 31(1):83-99
    [102]文春波,张从良,王岩.磺胺嘧啶在土壤中的降解与迁移研究[J].农业环境科学学报,2007,26(5):1677-1680
    [103]单正军,朱忠林,华小梅,等.涕灭威等三种农药在土壤中的移动性[J].农村生态环境,1994,10(4):30-35
    [104]石利利,朱忠林,单正军,等.氯唑磷在土壤中的降解性能与移动性研究[J].环境科学学报,1999,19(4):456-458
    [105]Lynch M R. Procedures for assessing the environmental fate and ecotoxicity of pesticides[M].Brussels,Belgium:Society of Environmental Toxicology and Chemistry, 1995
    [106]杨仁斌,李彦文,郭正元,等.恶唑菌酮在土壤中的移动性研究[J].农业环境科学学报,2005,24(4):708-711
    [107]Christiansen J S, Thorsenm, Clausen T,et al. Model-ling of macropore flow and transport processes at catchment scale[J]. Journal of Contaminant Hydrology,2004,299(1/2):136-158
    [108]Allaire-leung S E, Gupta S C, Moncrief JF. Water and solute movement in soil as influenced by macropore characteris-tics(I.macropore continuity) [J]. Journal of Contaminant Hydrology,2000,41(3):283-301
    [109]Madoud G, Michaelc Y, Jason C. Characterization of macropore flow mechanisms in soil by means of a split macropore column[J]. Soil Science Society of America Journal,1999,63(2): 1093-1101
    [110]Amonette J, G A O, Connor. Nonionic surfactant effects on adsorption and dagradation of 2,4-D[J]. Soil Science Society of America Journal,1980,44:540-544
    [111]Kile D E, Chiou C T, Helburn R S. Effect of some petroleum sulfonate surfactant on the apparent water solubility of organic compounds[J].Environmental Science and Technology, 1990,24:205-208
    [112]Lee J F, Crum J R, Boyd S A. Enhanced retention of organic contaminants by soils exchanged with organic cations[J]. Environmental Science and Technology,1989,23:1365-1372
    [113]Sheng G, X wang, S Wu, et al. Organic chemicals in the environment:enhanced sorption of organic contaminants by smectitic soils modified with a cationic surfactant[J].Joumal of Environment Quality,1998,27:806-814
    [114]薛南冬,杨仁斌.丙硫克百威在几种土壤中的迁移和降解研究[J].土壤学报,2003,40(1):130-135
    [115]周世萍,段昌群,余泽芬,等.毒死蜱在土壤中的残留和淋溶动态[J].生态环境,2008,17(2):619-62
    [116]张宗炳,樊德方,钱传范,等.杀虫药剂的环境毒理学[M].北京:中国农业出版社,1989:8-25
    [117]开美玲,丁先锋,等.pH对氟磺胺草醚水解的影响[J].业环境科学学报,2007,26(增刊):204-206
    [118]李界秋,黎晓峰,沈方科,等.毒死蜱在土壤中的环境行为研究[J].中国农学通报,2007,23(2):168-171
    [119]张爱云,杨佩芝,蔡道基.克百威等三种农药的水解测定[A].农药环境毒理学研究[M].北京:中国环境科学出版社,1999:59-63
    [120]孔德洋,石利利,单正军,等.烯效唑的光解、水解及在土壤中的降解特性研究[J].农业环境科学学报,2008,27(3):1190-1193
    [121]杨克武,莫汉宏,安凤春,等.有机物水解的研究方法[J].环境化学,1994,13(3):206-209
    [122]熊雅琴,杨仁斌,郑丽英,等.pH和温度对除草剂双草醚钠盐水解的影响[J].农业环境科 学学报,2006,25(2):494-496
    [123]郑巍.新农药毗虫啉的环境物理化学与生物化学行为研究[D].杭州:浙江大学博士论文,2000
    [124]肖曲,郝冬亮,刘毅华,等.农药水环境化学行为研究进展[J].中国环境管理干部学院学报,2008,18(3):58-61
    [125]单正军,朱忠林,蔡道基.吡虫啉的环境行为研究(二)-吸附性、移动性、挥发性及土壤降解、水解、光降解[J].农药科学与管理,1999,20(1):17-18
    [126]郑立庆,刘国光,孙德智,等.农药在环境中的水解研究进展[J].安徽农业科学,2006,3(414):3410-3412
    [127]Zeinalt M, Torrents A. Mercury promoted hydrolysis of parathion methyl:effect of chloride and hydrated species[J].Environmental Science and Technology,1998,3(215):2338-2342
    [128]Huang C H, Stibe A T. Hydrolysis of naptalam and structurally related amides:inhibition by dissolved metal ions and metal (hydr) oxide surfaces[J].Journal of Agricultural and Food Chemistry 1999,4(710):4425-4434
    [129]戴树桂,承雪琨,刘广良,等SDBS及腐殖酸对涕灭威及其氧化物水解的影响[J].中国环境科学,2002,2(23):193-197
    [130]杨仁斌,熊雅琴.双草醚钠盐水解的影响因素研究[J].农业环境科学学报,2006,25(5):1299-1302
    [131]USEPA. Fate,transport and transformation test guidelines,OPPTS835.2130:Hydrolysis as a function of pH and temperature[S].1998, EPA712-C-98-059
    [132]林智信,安从俊,刘义,等.物理化学[M].武汉:武汉大学出版社,2003,1-85
    [133]杨克武,莫汉宏.有机化合物水解研究方法[J].环境化学,1994,13(3):206-209
    [134]周楷博,刘胜辉,罗正刚,等.苯醚甲环唑的水解研究[J].现代农药,2010,9(2):27-32
    [135]欧晓明,雷满香,裴晖,等.新农药硫肟醚的水解研究[J].农业环境科学学报,2007,26(6):2309-2315
    [136]牛立志,桂文君,朱国念.草钱膦在水中的降解特性及对水生生物的毒性[J].浙江农业学报,2010,22(4):485-490
    [137]戴树桂.环境化学[M].北京:高等教育出版社,2001:170-171
    [138]郑巍,宣日成,刘维屏.新农药吡虫啉水解动力学和机理研究[J].环境科学学报,1999,9(1):101-104
    [139]施晨辉,陆小磊,朱国念,等.丙炔恶草酮在水环境中的降解行为研究[J].农药学学报,2008,10(3):349-353
    [140]石洁,徐亮,姜辉,等.二氰蒽醌的水解、光解和挥发性[J].农药,2010,49(1):23-25
    [141]金铨.新型杀菌剂二氰蒽醌残留与光解研究[D].杭州:浙江大学硕士论文,2007
    [142]陈宗懋.国外农药环境毒理学研究进展[J].农药,1985(2):45-46
    [143]Whetzel N K, Creeger S M. Hazard evaluation division standard evaluation procedure soil photolusis studies[R].1985,EPA-540/9-85-016
    [144]Kovacs M F. EPA guidelines on environment fate[J].Residue Reviews,1983,85:4-16
    [145]Turner E. An assessment of test methods of photodegradation of chemical in the environment[M].Brussels,Belgiunm:Ecology and Toxicology center.European Chemical Industry.1981
    [146]李克斌,季谨.苯达松在单离子蒙脱石上的吸附机理研究[J].环境科学与技术,1998(3):5-7
    [147]龚道新,杨仁斌,赵卫星,等.气相色谱氮磷检测器法测定大米和面粉中22种有机磷和有机氮农药多残留[J].农业环境科学学报,2005,24(6):1243-1248
    [148]Mathene R, Khan S U. Photodegradation of metolachlor in water in thepresence of soil mineral and organic constituents [J] Joumal of Agricultural and Food Chemistry,1996, 44(12):3996-4000
    [149]褚明杰,岳永德,花日茂,等.苯噻草胺在不同水质中的光化学降解研究[J].环境科学学报,2005,25(12):1647-1652
    [150]徐宝才,岳永德,胡颍蕙,等.多菌灵的光化学降解研究[J].环境科学学报,2000,20(5):616-620
    [151]王一茹,刘长武,蔡罗保,等.光诱导下农药的化学转化及其环境意义[J].环境科学,1991,12(2):68-73
    [152]杨仁斌,刘毅华,邱建霞,等.农药在水中的环境化学行为及对水生生物的影响[J].湖南农业大学学报(自然科学版),2007,3(1):96-100
    [153]王连生.有机污染物化学(上册)[M].北京:科学出版社,1990
    [154]中国农业百科全书总编委会.中国农业百科全书.农药卷[M].北京:农业出版社,1993
    [155]郑立庆,方娜,刘国光,等.农药在环境中的光化学降解研究进展[J].安徽农业科学,2006,34(19):5012-5014
    [156]于金莲,石登荣,任丽萍.水体中农药降解研究的进展[J].农业环境科学学报,2005,24(增刊):367-370
    [157]Lykken L. Role of photosensitizers in alteration of pesticid residues in sunlight[M]//Mat-sumur A F, Boush G M, Misato T. Environmental toxicology of pesticides.NewYork: Academic Press,1972:447-470
    [158]花日茂,岳永德,邢建国,等.腐殖质对乙草胺的光猝灭降解作用的效应[J].安徽农业大 学学报,2000,27(2):108-111
    [159]Azzouzi M, Ferhat M, Chovelon J M, et al. Influence of humic acids and oxides(Fe2O3 and TiO2)on tribenuron-methyl herbicide photolysis in water[J].Toxicological and Environmental Chemistry,2001,80(1-2):31-39
    [160]欧晓明,王晓光,柳爱平,等.3种化学物质对新农药硫肟醚光解的影响[J].农药,2007,46(1):43-45
    [161]花日茂,岳永德,汤锋,等.4种农药对3种拟菊酯杀虫剂在不同光源下的光解效应[J].中国环境科学,1997,17(1):72-75
    [162]龚道新,邹雅竹,赵卫星,等.4种农药对水中咪鲜胺光降解的影响[J].农业环境科学学报,2005,24(4):712-715
    [163]花日茂,程燕.3种农药对异菌脲的光解影响及相互作用研究[J].安徽农业大学学报,2003,30(4):353-357
    [164]花日茂,汤锋,岳永德.五种农药对三唑酮光解的影响[J].环境化学,1995,14(1):21-24
    [165]岳永德,汤锋,花日茂.混合农药及表面活性剂对毒死蜱光解影响的研究[J].安徽农业大学学报,2000,27(1):458-462
    [166]吴锋,李学德,花日茂.胺菊酯在水中的光化学降解研究[J].安徽农业科学,2008,36(5):1944-1945,1948
    [167]李学德,岳永德,花日茂,等.表面活性剂对水中百菌清光解的影响[J].农业环境科学学报,2007,26(5):1729-1732
    [168]Brezonik P L, Fulkerson-Brekken J. Nitrate-induced photolysis in natural waters:controls on concentrations of hydroxyl radical photo-in-termediates by naturalscavenging agents [J]. Environmental Science and Technology,1998,32(19):3004-3010
    [169]邬立伍,李学德,邹广迅,等.稻瘟酰胺在水溶液中的光解研究[J].安徽农学通报,2009,15(13):68-70
    [170]王丹军,岳永德,汤锋,等.阴离子对氯苯嘧啶醇光化学降解的影响[J].农业环境科学学报,2008,27(5):2023-2027
    [171]Beer R, Davis K M C, Hosdgson R.Formation of exited charge-transfer complexes in the quenching of entharacene fluorescence by anions[J]. Journal of the Chemical Society, Chemical Communications,1970,840-841
    [172]刘军,吴坚,花日茂,等.阴离子对戊唑醇在水溶液中光化学降解的影响[J].安徽农业科学,2006,34(20):5344-5345,5430
    [173]陈容,杨桂朋,周立敏,等.三唑磷在水体系中的光化学降解研究[J].中国海洋大学学报,2010,40:185-190
    [174]杨会荣,李学德,罗水明,等.阿维菌素在水溶液中的光化学降解[J].安徽农业科学,2009,37(26):12686-12688
    [175]Choudhry G G, Roof A A M, Hutzinger O. Mechanisms insensitized photochemistry of environmental chemicals[J].Toxicological and Environmental Chemistry,1979,2:259
    [176]褚明杰,岳永德,花日茂,等.苯噻草胺在液相中的光化学降解研究[J].安徽农业大学学报,2006,33(1):9-11
    [177]于淑琴,张祖满,岳永德,等.恶草酮在液相中的光化学降解研究[J].农药学学报,2002,4(2):71-74
    [178]Lykken L. Photosensitizer's situation and action during photochemical degradation of pesticides[J].Environmental Toxicology of Pesticides,1978,5:449-453
    [179]陈其勇,朱国念,吴慧明,等.新型杀螨剂F1050的光化学降解研究[J].农业环境科学学报,2007,26(增刊):207-210
    [180]汤锋,岳永德,花日茂,等.增效磷在液相中的光化学降解研究[J].农药学学报,2000,2(2):71-76
    [181]胡春,王怡中,汤鸿霄.TiO2光催化氧化苯酚动力学研究[J].环境科学,1997,18(4):14
    [182]王怡中,胡春,汤鸿霄.在TiO2催化剂上苯酚光催化氧化反应研究[J].环境科学学报,1998,18(3):260-263
    [183]张卫,林匡飞,韩小波,等.阿维菌素在土壤中的光解研究[J].农业环境科学学报,2006,25(3):741-744
    [184]岳永德,刘根凤.农药的环境光化学及其应用[J].安徽农业大学学报,1995,22(4):94-97
    [185]张仁熙,朱承驻,侯惠奇.环境光化学的研究进展[J].上海化工,2001,8:18-21
    [186]Zafiriou O C, Joussot-Dubien J, et al. Photochemistry of natural waters[J]. Environmental Science and Technology,1984,18:358A
    [187]徐正生,程燕.H202对丙草胺在水体中光解的影响[J].安徽农业科学,2006,34(23):6297-6298,6301
    [188]吴祥为,花日茂,汤锋,等.水中毒死蜱的光催化降解研究[J].农业环境科学学报,2006,25(2):486-489
    [189]李学德,岳永德,花日茂,等.水中2,4-二氯苯酚的光催化降解研究[J].农业环境保护,2002,21(2):156-158,168
    [190]国家环境保护局有毒化学品管理办公室.有毒化学品研究与管理技术[M].上海:上海科学普及出版社,1992
    [191]张文雨,丁万见,刘若庄.噻吩光解反应机理的理论研究[J].化学学报,2008,66(5):497-504
    [192]曹光群,陈忠良,宋启军.三氯生的光降解产物分析及相关日化产品的安全性研究[J].分析实验室,2008,27(8):58-61
    [193]张晓清,石利利,单正军,等.三唑磷的光解特性及其影响因素[J].农药,2008,47(4):279-281
    [194]邓大鹏,岳永德,花日茂,等.乙烯菌核利在环境中的降解与转化研究进展[J].安徽农业大学学报,2003,30(3):255-258
    [195]Burrows H D, Canle L M, Santaballa J A, et al. Reaction pathways and mechanisms of photodegradation of pesticides[J].Journal of Photochemistry and Photobiology B:Biology, 2002,67(2):71-108
    [196]万海滨.有机磷农药在环境中的光稳定性及其分子结构的关系[J].环境科学学报,1991,11(4):468-474
    [197]邹雅竹,龚道新,汪传刚.顺式氯氰菊酯在不同pH值下的光化学降解[J].湖南农业大学学报(自然科学版),2006,32(3):333-335
    [198]花日茂,岳永德,樊德方,等.不同光波长对水中乙草胺光分解的影响[J].农药学学报,2006,8(1):61-64
    [199]姚曦,岳永德,汤锋,等.恶唑菌酮在液相中的光化学降解研究[J].安徽农业大学学报,2008,35(4):555-558
    [200]李学德,花日茂,岳永德,等.百菌清(chlorothalonil)在水中的光化学降解[J].应用生态学报,2006,17(6):1091-1094
    [201]花日茂,岳永德,樊德方.乙草胺在水中的光化学降解[J].农药学学报,2000,2(1):71-74
    [202]郑丽英,杨仁斌.双草醚在不同pH溶液及三种水体中的光解[J].广州化工,2009,37(9):149-151
    [203]钟明洁,陈勇,胡春.水溶液中嗪草酮的光化学行为研究[J].环境科学学报,2009,29(7):1470-1474
    [204]葛利云,张吉,吴峰,等.水溶液中2,4-二氯苯酚的光降解研究[J].环境科学与技术,2004,27(1):27-29
    [205]邹雅竹,龚道新.咪鲜胺在水中的光化学降解研究[J].农药科学与管理,2006,27(2):27-30
    [206]郑和辉,叶常明.乙草胺在水中的光化学降解动态研究[J].农药科学与管理,2001,22(6):12-14
    [207]Sakkas V A, Lambropoulou D A, Albanis T A. Study of chlorothalonil photodegradation in natural waters and in the presence of humic substances[J]. Chemosphere,2002,48:939-945
    [208]王健,钱晓钟,花日茂,等.胺苯磺隆在环境水体中的光化学降解[J].安徽农业科学,2009,37(32):15952-15953
    [209]杨仁斌,刘毅华,郭正元.三唑酮的光化学降解研究[J].农业环境科学学报,2005,24(3):494-497
    [210]Nag S K,Dureja P. Photodegradation of azole fungicide triadimefon[J]. Journal of Agricultural and Food Chemistry,1997,45:294-298
    [211]Schwack W, Andlauer W, Armbruster W. Photochemistry of parathion in the plant cuticle environment:model reactions in the 12-hydroxylstearate [J].Pesticide Science,1994,40:279-284
    [212]欧晓明,任竞,雷满香,等.新农药硫肟醚在有机溶剂中的光解[J].环境科学学报,2005,25(10):1378-1384
    [213]任丽萍,田芹,周志强,等.己唑醇在溶液中的光化学降解[J].农药学报,2004,6(4):73-77
    [214]韩耀宗,廖晓兰,刘毅华,等.氰霜唑的光降解研究[J].农业环境科学学报,2009,28(1):151-155
    [215]吴祥为,花日茂,汤锋,等.毒死蜱在水溶液中的光化学降解[J].应用生态学报,2006,17(7):1301-1304
    [216]汪枞生,刘多森,张水铭.土壤中农药的降解动力学模型研究进展[J].土壤,1997(3):125-129
    [217]吴慧明,朱金文,张晶,等.新型杀螨剂F1050在不同类型土壤中的降解研究[J].土壤学报,2004,41(6):978-982
    [218]李莲芳,李国学,杨仁斌,等.水稻土中广灭灵残留动态及降解影响因子的研究[J].中国生态农业学报,2004,12(3):112-115
    [219]王学东,周红斌,王慧利,等.咪唑烟酸在不同土壤中的降解动态及其影响因子[J].农药学学报,2004,6(1):53-57
    [220]李彦文,杨仁斌,郭正元.恶唑菌酮土壤降解影响因子研究[J].土壤,2007,39(3):474-478
    [221]郭东梅,郑永权,焦必宁,等.吡虫啉在土壤中的降解动力学研究[J].现代科学仪器,2007(1):55-57
    [222]徐珍,郭正元,黄帆,等.氟铃脲的土壤降解动力学研究[J].土壤,2008,40(1):125-129
    [223]蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999:75-76
    [224]USEPA. OPPTS835.1220 Sediment and soiladsorption/desorptionisotherm[EB/OL]. 1998 http://www.epa.gov/epahome/research.htm
    [225]Jones R J, Norris F R.Factors affecting degradation of aldicarb and ethoprop [J].Journal of nematology,1998,30(5):45-55
    [226]Mallawatantri A P, Macconkey B G, Mulla D J. Characterization of pesticide sorption and degradation in macropore linings and soil horizons of thatuna silt loam[J]. Journal of Environment Quality,1996,25:227-235
    [227]何华,徐存华,孙成,等.高效氯氰菊酯在土壤中的降解动态[J].中国环境科学,2003,23(5):490-492
    [228]秦曙,乔雄梧,朱九生,等.在实验室条件下氯氰菊酯在土壤中的降解[J].农药学报,2000,2(3):68-73
    [229]苏允兰,莫汉宏,安凤春.土壤中苯氧羧酸类除草剂的降解动态[J].环境科学,2000,21(6):92-94
    [230]张丽,倪汉文,张文吉,等.环境条件对除草剂莎稗磷降解的影响[J].农药学学报,2000,2(3):74-79
    [231]逯州,侯志广,王岩,等.吡喃草酮在不同类型土壤环境中降解行为[J].农药,2010,49(5):353-355
    [232]蔡玉琪,石利利,单正军.哒螨灵农药在土壤中的降解吸附和移动特性[J].农业环境科学学报,2009,28(9):1948-1951
    [233]吴慧明,朱国念.毒死蜱在灭菌和未灭菌土壤中的降解研究[J].农药学学报,2003,5(4):65-69
    [234]郭正元,唐美珍,袁敏,等.碘甲磺隆钠盐在土壤中的降解[J].生态与农村环境学报,2006,22(3):76-79
    [235]林郁.农药应用大全[M].北京:农业出版社,1989
    [236]Crosby D G, Tutass H O. Photodecomposition of 2,4-dichlorophenoxyacetic acid [J]. Journal of Agricultural and Food Chemistry,1966,14:596-599
    [237]Hermosin M C, Comejo J. Soil adsorption of 2,4-D as affected by the clay minerology [J]. Toxicology and Environmental Chemistry,1991,31:69-77
    [238]Grover R. Mobility of dicamba, picloram, and 2,4-D in soil columns[J]. Weed Science,1977, 25:159-162
    [239]Environmental fate of 2,4-dichlorophenoxyacetic acid:[EB/OL]. California:Environmental Monitoring and Pest Management Department of Pesticide Regulation Sacramento,1999 http://cdpr.ca.gov/docs/emon/pubs/fatememo/24-d.pdf
    [240]Ghassemi M L, Fargo L, Painter P. et al. Environmental fates and impacts of major forest use pesticides[R].1981
    [241]Richard G Z, Wolfe N L, John A G, et al. Dynamics of 2,4-D esters in surface waters hydrolysis, photolysis, and vaporization[J].Environmental Science and Technology,1975,9:1144-1150
    [1]吕建军,吴婉莉.55%2,4-滴丁酯·咪唑乙烟酸·异丙草胺乳油的液相色谱分析[J].农药,2006,45(8):550-551
    [2]邹静,侯志广,王思威,等.气相色谱法同时测定玉米中辛酰溴苯腈和2,4-滴丁酯的残留[J].农药,2009,48(11):831-832
    [3]曹艳平,解力,杨剑影.气相色谱-质谱法测定韭菜中2,4-D丁酯[J].质谱学报,2006,27(1):33-35
    [4]周艳明,李冬烨,胡睿.气相色谱法测定2,4-D丁酯在水果中的残留[J].农药,2010,49(1):39-40
    [5]渠锋,莫汉宏,安凤春.水、土壤中2,4-D丁酯的检测方法[J].农药,1999,38(2):17-18
    [6]农业部农药检定所.NY/T788-2004.农药残留试验准则[S].北京:中国农业出版社,2004
    [7]中华人民共和国卫生部中国国家标准化管理委员会.GB/T 5009.165-2003.粮食中2,4-滴丁酯残留量的测定[S].北京:中国标准出版社,2003
    [1]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2000:418-449
    [2]Zheng W, Liu W P. Kinetics and mechanism of the hydrolysis of imidacloprid[J]. Pesticide Science, 1999,55:482-485
    [3]欧晓明,雷满香,裴晖,等.新农药硫肟醚的水解研究[J].农业环境科学学报,2007,26(6):2309-2315
    [4]Morrica P, Barbato F, Iacova R D, et al. Kinetics and mechanism of imazosulfuron hydrolysis[J]. Journal of Agricultural and Food Chemistry,2001,49:3816-3820
    [5]林智信,安从俊,刘义,等.物理化学[M].武汉:武汉大学出版社,2003:1-85
    [6]Zhang Q, Pehkonen S O. Oxidation of diazinon by aqueous chlorine:kinetics,mechanisms,and product studies[J]. Journal of Agricultural and Food Chemistry,1999,47:1760-1766
    [1]蔡道基.化学农药环境安全评价试验准则[S].北京:国家环保总局,1989
    [2]欧晓明,雷满香,裴晖,等.新农药硫肟醚的水解研究[J].农业环境科学学报,2007,26(6):2309-2315
    [3]徐宝才,岳永德,胡颍蕙,等.多菌灵的光化学降解研究[J].环境科学学报,2000,20(5):616-620
    [4]蒲宇,杨曦,丁立,等.哒螨酮在甲醇中的光解[J].南京大学学报:自然科学版,2002,38(2):211-215
    [5]Sahara T, Bhattacharyya A. Photolysis of hloralin inaqueous methanol[J]. Pest Management Science, 2001,58(2):179-182
    [6]Schwack W, Lauer W. Photochemistry of para-thion in theplant cuticle environment:model reaction in the 12-hydroxylstearate[J]. Pesticide Science,1994,40(3):279-284
    [7]Nag S K., Dureja P. Photodegradation of azole fungicide triadimefon[J]. Journal of gricultu-ral and Food Chemistry,1997,45:294-298
    [8]王连生.有机污染化学[M].北京:科学出版社,1900:208-255
    [9]汤锋,岳永德,花日茂,等.增效磷在液相中的光化学降解研究[J].农药学学报,2000,2(2):71-76
    [10]葛利云,张喆,吴峰,等.水溶液中2,-二氯苯酚的光降解研究[J].环境科学与技术,2004,27(1):27-29
    [11]杨会荣,李学德,罗水明,等.阿维菌素在水溶液中的光化学降解[J].安徽农业科学,2009,37(26):12686-12688
    [1]刘维屏.农药环境化学[M].北京:化学工业出版社,2006
    [2]罗玲.硫肟醚菊酯在土壤中的吸附行为及机理研究[D].湖南:湖南农业大学硕士论文,2004
    [3]Senesi N. Binding mechanisms of pesticides to soil humic substances[J].Science of the Total Environment,1992,123/124:63-76
    [4]蔡道基.化学农药环境安全评价试验准则[S].北京:国家环保总局,1989
    [5]杨宏伟,贾长宽,乌地,等.敌敌畏在土壤中吸附特性的研究[J].环境科学研究,2006,19(2):35-38
    [6]张伟,王进军,张忠明,等.烟嘧磺隆在土壤中的吸附及土壤性质的相关性研究[J].农药学学报,2006,8(3):265-271
    [7]Giles CH, MacEwan TH, Nakhwa SN, et al. Studies in adsorption: partⅪ. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorptionmechanisms and inmeasure of specific surface areas of solids[J]. Journal of the Chemical Society,1960,111 (10):3973-3993
    [8]Calvet R. Adsorption of organic chemicals in soil[J]. Environmental Health Perspectives,1989, 83:145-177
    [9]郑巍,刘维屏.除草剂普杀特在土壤-水两相中的吸附-脱附和光解[J].中国环境科学,1998,18(5):476-480
    [10]杨克武,安凤春,莫汉宏.单甲脒在土壤中的吸附[J].环境化学,1995,14(5):431-435
    [11]Pionker H B, Glotfelty D E, Lucas A D. Pesticide contamination of groundwater in the mahatango greek watershed[J]. Journal of Environment Quality,1988,17(1):76-84
    [12]Von Oepen B, Kordel W, Kleln W. Sorption of non-polar and polar compounds to siols:pro-cess,measurements and experience with the applicability of the modified OECD guidelines [J].Chemosphere,1991,22(2):285-304
    [1]王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版),2002,23(1):91-96
    [2]Zzkim H, Moran D, Harris D. Pesticide in groundwatenthe aldicarb story in suffolk county[J].Public Health,1982,72(6):1391-1395
    [3]COHEN D B. Groundwater contamination by toxic substances:a california assessment [M].Washington,DC:American chemical publication,1986:499-529
    [4]FRED W, TM B. The vulnerability of groundwater to pesticide contamination estimated directly from observations of presence or absence in wells[J].Hydrology,2005,303 (1):92-10
    [5]孔德洋,朱忠林,石利利,等.中国北方甘薯地农药使用对地下水水质的影响[J].农业环境科学学报,2004,23(5):1017-1020
    [6]张秋菊,程晓华,魏昭荣,等.新疆地下水中农药污染水平调查[J].干旱与环境监测,2001,15(3):159-161
    [7]何利文,石利利,孔德洋,等.呋喃丹和阿特拉津在土柱中的淋溶及其影响因素[J].生态与农村环境学报,2006,22(2):71-74
    [8]石健,熊倩,刘泉,等.丁草胺在土壤中吸附特性研究[J].环境科学与技术,2009,32(9):52-54
    [9]Lynch MR. Procedures for assessing the environmental fate and ecotoxicity of pesticides[M]. Brussels,Belgium:Society of Environmental Toxicology and Chemistry,1995
    [10]蔡玉琪,石利利,单正军.哒螨灵农药在土壤中的降解吸附和移动特性[J].农业环境科学学报,2009,28(9):1948-1951

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700