用户名: 密码: 验证码:
养殖文蛤溶藻弧菌、颉颃菌的筛选与鉴定及其颉颃物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文蛤的弧菌病害,是文蛤大量致死最主要的病害之一,其具有高传染性,迅速性,难控性等特点。使用抗生素将造成文蛤养殖场及其周边环境严重污染,同时可致使文蛤体内病原菌的耐药性增加,从而不利于文蛤的健康养殖。根据文蛤健康养殖及环境友好的原则,利用生物防治方法,即从养殖生境中获取具有抑菌活性的土著微生物菌株用于防控文蛤病原菌的发生、发展过程,可取得良好的文蛤病害防治效果。本文从文蛤养殖水体中筛选到一株假交替单胞菌(暂命名为SW-1),并对该菌进行了生理生化及分子生物学鉴定、生长特征研究、抑菌效果研究,以及抑菌活性物质研究,旨在为文蛤弧菌病害的生物防治提供理论与实践基础。具体研究结果如下:
     从发病的文蛤中筛选到的菌株MP-1,根据细菌形态和生理生化特征和16S rDNA序列分析,结合系统发育树的特征,鉴定为弧茵属的溶藻弧菌,人工感染试验表明,菌株MP-1在107到109cfu/ml浓度下,在15天内文蛤的存活个数为0,死亡率为100%,其发病症状与溶藻弧菌在文蛤上的典型症状相似,即可确定菌株MP-1为文蛤的致病菌之一。菌株MP-1的最佳生长条件为:100ml/250ml的装液量,30℃的温度,pH8.0和0.5mol/L的盐度;生长曲线显示此菌滞后期较短,而且对文中所选多数抗生素表现出耐药性。
     从文蛤养殖场的水体中筛选到一株对病原溶藻弧菌MP-1有抑菌作用、且对文蛤正常生长无显著影响的菌株SW-1。采用纸片扩散法对菌株SW-1进行了体外抑菌试验,人工感染文蛤试验进一步证明该菌株SW-1的颉颃作用,菌株SW-1在109cfu/ml浓度的情况下,15天后,文蛤的存活率为100%;与致病溶藻弧菌同时感染文蛤时,文蛤的致死率仅为11%,较单独感染菌株MP-1的100%的致死率相比,文蛤成活率有显著提高,可以作为一种潜在的生物防治文蛤致病菌行之有效的方法。根据细菌形态和生理生化特征和16S rDNA序列分析,结合系统发育树的特征,鉴定菌株SW-1为假交替单胞菌属的杀鱼假交替单胞菌。菌株SW-1的最佳生长条件为:30ml/250ml的装液量,温度30℃,pH8.0和盐度0.5mol/L。菌株SW-1生长曲线与弧菌MP-1相比,具有滞后性,并且对试验中所选半数抗生素敏感。
     假交替单胞菌SW-1对试验中所选七种菌株均可以产生抑菌活性,抑菌圈大小范围在16-25mm之间;菌株SW-1在生物量最高时,其抑茵效果最强。诱导试验证明,菌株SW-1可以产生非诱导性抑菌物质对文蛤的致病弧菌MP-1产生的抑制作用。对其胞外产物进行热处理,酸碱处理以及蛋白酶K处理,结果表明热处理和蛋白酶K处理可使其活性部分失活,而且随着饱和硫酸铵沉淀粗蛋白类物质的重量增加,其抑菌作用也明显增强,表明菌株SW-1的胞外产物中含有具有抑菌成分的蛋白类物质。酸碱处理结果表明:胞外产物具有广泛的pH值适应范围,而且这部分物质经酸碱处理后,抑菌活性有增强的现象,说明菌株SW-1所产生的抑制溶藻弧菌生长的物质并非单一的蛋白类物质。
     利用饱和度为80%硫酸铵沉淀菌株SW-1的无菌上清培养液,得到对文蛤致病弧菌MP-1具有抑制作用的粗蛋白类物质,将粗蛋白类物质经10KDa的分子筛超滤后进行抑菌试验发现,大于10KDa的部分具有抑菌活性,随后粗蛋白类物质经SephadexG-75凝胶过滤层析洗脱得到三个特征吸收峰,其中第一、二个峰蛋白质含量较高,成分相对比较复杂,但是对文蛤致病弧菌MP-1没有抑菌作用;具有抑菌活性的第三个峰的蛋白质含量为6.1mg/ml,经SDS-PAGE凝胶垂直电泳可得到相对单一条带,表明其纯度较高,根据Rf值测其分子量为52.6KDa。
     收集假交替单胞菌SW-1胞外产物,利用三倍的乙酸乙脂进行浸提,经减压旋转蒸发后得到的浸提膏,在24h时,其对文蛤的致病弧菌MP-1的抑菌率达到98%以上;经有机溶剂溶解,发现为极性较大的醇溶性物质,在290、330、410nm有吸收峰;可以产生多糖类物质,红外光谱图也表明其具有糖肽吸收峰,采取硅胶柱利用不同比例的二氯甲烷和甲醇进行洗脱,得到46馏分,利用薄层层析法进行分组合并其效果不佳,故采用在不同波长下的吸收峰来区分组分,根据在320nm和440nm测其吸光值不同,合并得到十个相对比较单一的组分,其中第二个组分和第六个组分具有抑菌活性,其抑菌率分别为83.5%和92.6%。将这两个组分进行高效液相色谱检测,第六个组分仍然为混合物,第二个组分相对单一,根据高效液相色谱一电喷雾质谱联用仪分析,得知菌株SW-1代谢产生的活性物质一种是分子量为701.5Da的溴代化合物。
Disease outbreak caused by pathogenic bacteria, commonly of the genus Vibrio, is a major mortality in clam farming, with the characteristics of highly and fastly contagious, as well as difficult to be control. Recently, a variety of antibiotics have been used for the prevention of the diseases, but the abuse of antibiotics usually leads to the emergence of resistant bacteria and raises environmental problems. Based on the principle of clam farming heathly and environmentally friendly, the inhibition of the pathogenic bacterium Vibrio alginolyticus was used as a trait to select a candidate probiotic bacterial strain from the breeding habitat of clams. An ideal bacterial strain, SW-1, was isolated from seawater in a clam farm, and could inhibit the growth of Vibrio.MP-1. Thus, SW-1could be used as a probiotic to protect clams from diseases, and meanwhile reduce the effects of antibiotics on aquatic environment. The main results are described as follows:
     The selected MP-1was identified based on its physiological, morphological and biochemical characteristics, as well as its16S rDNA sequence. The results showed that the strain MP-1had a high similarity to Vibrio, alginolyticus. The mortality of clams was100%after infection with107to109cfu/ml of Vibrio. Alginolyticus.MP-1, indicating the strain MP-1is the clam pathogens. The best growth conditions of the strain MP-1:100mL/250ml of aeration,30℃of temperature, pH8.0and0.5mol/L of salinity. The growth curve of the strain MP-1not only reveals no lag phase, but more resistance to antibiotics, as compared with the strain SW-1. Therefore, disease outbreak caused by pathogenic Vibrio. Alginolyticus. MP-1was the most difficult to be control.
     The selected SW-1was also identified to have, and showed a high similarity to Pseudoalteromonas. piscicida. It could inhibit the growth of Vibrio, alginolyticus (Vibrio.MP-1) and improve the survival of clams following challenge with the pathogenic Vibrio MP-1. The mortality of clams was100%after infection with108CFU/ml of Vibrio, alginolyticus, whereas mortality was only11%when clams were infected with108CFU/ml of Vibrio. MP-1while simultaneously exposed to the same concentration of Pseudoalteromonas. SW-1. The strain SW-1can inhibit seven strains, which were used in this study. The best growth conditions of strains MP-1:30mL/250ml of aeration,30℃of temperature, pH8.0and0.5mol/L of salinity. The growth curve of strain SW-1not only reveals o lag phase, but more susceptible with antibiotics, as compared with the clams pathogens of Vibrio. MP-1.
     The inhibition activity of the strain SW-1was the strongest in its highest biomass, and could produce antimicrobial activity for seven strains. The inhitition zone ranged from16to25mm. The best inhibition effect was obtained when the cell-free supernatant (CFS) of the strain SW-1was joined in log phase and stability phase of Vibrio. MP-1. The induction test proved that the strain SW-1could produce antimicrobial substances to inhibit the growth of the clam pathogenic Vibrio. MP-1. The inhibitory activities of the strain SW-1CFS showed differently after treating by heat, acid, alkali, and proteinase K. The CFS of the strain SW-1inhibitory activities was decreased after treating by heat, but the inhibitory activities were still effective after treating by proteinase K in24h. The acid and alkali could increase the inhibitory activities of the strain SW-1CFS, could produce some active compounds to antagonize the pathogenic Vibrio. MP-1.
     The crude protein substances obtained from the CFS by the means of ammonium sulphate precipitation could produce inhibition activities.The crude protein substance was cut off by10KDa molecular sieves, and the components more than10KDa molecular weight could inhibit the growth of the strain Vibrio. MP-1. Then the crude protein substance was separated with SephadexG-75gel filtration chromatography and eluted three characteristic absorption peaks. Although the first peak and the second peak had higher protein concentration, there were no antibacterial activities. Protein concentration of the third peak was6.1mg/ml and these fractions could inhibit the growth of the strain Vibrio. MP-1. SDS-PAGE gel electrophoresis test could show a single stripe, according to the RF value logging its molecular weight was52.6KDa.
     The cell-free supernatant of the strain SW-1was collected, and then the CFS was extracted three times with ethyl acetate. The ethyl acetate extracts were combined and concentrated under reduced pressure on a rotary evaporator. Antimicrobial activity of the extracts obtained was monitored by the disk diffusion method assay with Vibrio. MP-1as susceptible strain.The inhibition rate reached95%within24hours. According to organic solvent dissolved test, it was found that the crude extracts could be dissolved by Alcohol. The absorbance wave ranged from290nm to440nm. The crude extracts were eluted by silicone column using different proportion Methylene Dichloride and Methanol, then the46tubes were obtained. The methode of thin-layer chromatography couldn't separate and combine these fractions, so the different wavelength (320nm and440nm) absorbance value was used to separate and combine these fractions. Thus, ten fractions were obtained. The inhibition test by using Microdilution broth assay showed the second and sixth fractions had inhibititon activety, and the inhibition rate reached to83.5%and92.6%, respectively. The HPLC results indicated that the sixth fraction had complex compounds, but the second fraction showed two single peaks, depend on the analysis of HPLC-ESI-MS/MS, the active component of strain SW-1was a bromine compound with701.5Da molecular weight.
引文
[1]张安国,李太武,苏秀榕,等.文蛤养殖现状及展望[J].水产科学,2005,24(2):31-33.
    [2]宋晓村,万夕和,姚国兴,等.江苏文蛤暴发病的发生机理与综合防治对策分析[J].水产养殖,2007,28(3):38-4].
    [3]吴斌,彭张记.文蛤在对虾蓄水河中的生长情况[J].科学养鱼,1996,2:12.
    [4]骆文宗.文蛤的养殖技术之二文蛤高产养殖技术[J].中国水产,2002,(003):61.
    [5]李树国,朱善央,陆锦天.之五:文蛤大范围死亡原因探讨[J].中国水产,2005,(12):62-63.
    [6]王如才,王昭萍.海水贝类养殖学[M].中国海洋大学出版社,2008.
    [7]朱文渊,王国良,徐益军,等.池塘养殖文蛤死亡原因分析及防控对策[J].中国水产,2007,(9):60-61.
    [8]王广和,沈艳云,沙培荣,等.文蛤弗尼斯弧菌病研究[J].微生物学通报,1992,19(4):222-225.
    [9]郑国兴,李何,黄宁宇,等.文蛤病原菌(溶藻弧菌)的分离与性状及病文蛤组织的电镜观察[J].水产学报,1991,15(2):85-95.
    [10]杨美桂.新竹区养殖文蛤病原菌vibrao paraheamolyticus之分离[M].农发会鱼病研究集(二),1978:59-67.
    [11]沈亚林,于业绍.副溶血弧菌对文蛤的致病性及其防治[J].水产学报,1993,17(3):249-252.
    [12]阎冰,洪家明,刘军义,等.文蛤副溶血弧菌病的研究[J].微生物学杂志,1996,16(4):1-5.
    [13]Sindermann C J, Lightner D V. Disease diagnosis and control in North American marine aquaculture.[M]. Elsevier Science Publishers,1988.
    [14]刘杰.浅谈养殖文蛤死亡原因及其防治方法[J].中国水产,2003,12:36.
    [15]张锡佳,杨建敏,房淑珍,等.浅海滩涂文蛤病害防治技术[J].齐鲁渔业,2007,24(11):34-35.
    [16]林克文.文蛤病害防治经验谈[J].科学养鱼,2002,(001):42.
    [17]Zolgharnein J, Shahmoradi A, Ghasemi J. Pesticides Removal Using Conventional and Low-Cost Adsorbents:A Review[J]. CLEAN-Soil, Air, Water,2011, (39):1105-1119.
    [18]Ivanova E P, Shevchenko L S, Sawabe T, et al. Pseudoalteromonas maricaloris sp. nov., isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia] NCIMB 2033 as Pseudoalteromonas flavipulchra sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology,2002,52(1):263-271.
    [19]权太淑,李薇,杨喜玲.自腹泻患者中分离溶藻性弧菌及其病原性的探讨[J].中国公共卫生,1985.5:10.
    [20]纪舒萍,王旭明.溶藻弧菌引起食物中毒的病原学研究[J].中华预防医学杂志,1989,23(002):71-73.
    [21]Aggarwal P, Singh M, Kumari S. Isolation of Vibrio alginolyticus from two patients of acute gastroenteritis.[J]. Journal of Diarrhoeal Diseases Research,1986,4(1):30.
    [22]李文科,吕玉林,吴顺娥.一起由溶藻弧菌引起的食物中毒[J].中华流行病学杂志,1990,11(8):99-102.
    [23]封会茹,游京蓉,刘玉堂,等.溶藻弧菌引起暴发型食物中毒的病原学研究[J].中国食品卫生杂志,2003,15(4):331-334.
    [24]Ripabelli G, Sammarco M L, Grasso G M, et al. Occurrence of Vibrio and other pathogenic bacteria in Mytilus galloprovincialis (mussels) harvested from Adriatic Sea, Italy[J]. International Journal of Food Microbiology,1999,49(1):43-48.
    [25]刘连生,闫茂仓,赵海泉,等.哈氏弧菌文蛤分离株WG1702培养条件优化研究[J].水产科学,2010,29(002):79-82.
    [26]彭喜春,张宁,冉艳红,等.海产品中溶藻弧菌的筛选及其致病因子的研究[J].现代食品科技,2008,24(4):312-315.
    [27]Fuller R. Probiotics in man and animals.[J]. The Journal of Applied Bacteriology,1989, 66(5):365-378.
    [28]Gatesoupe F J. The use of probiotics in aquaculture[J]. Aquaculture,1999,180(1):147-165.
    [29]Gram L, Melchiorsen J, Spanggaard B, et al. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish[J]. Applied and Environmental Microbiology,1999,65(3):969-973.
    [30]Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum)[J]. Journal of Fish Diseases,2002,25(6):333-342.
    [31]Vine N G, Leukes W D, Kaiser H. Probiotics in marine larviculture[J]. FEMS Microbiology Reviews,2006,30(3):404-427.
    [32]Nogami K, Maeda M. Bacteria as biocontrol agents for rearing larvae of the crab Portunns trituberculatus[J]. Canadian Journal of Fisheries and Aquatic Sciences,1992,49(11):2373-2376.
    [33]Douillet P A, Langdon C J. Use of a probiotic for the culture of larvae of the Pacific oyster.(Crassostrea gigas Thunberg)[J]. Aquaculture,1994,119(1):25-40.
    [34]李继秋,谭北平,麦康森,等.一株水产益生菌的鉴定[J].中国海洋大学学报:自然科学版,2006,36(003):434-438.
    [35]Maeda M, Nogami K, Kanematsu M, et al. The concept of biological control methods in aquaculture[J]. Hydrobiologia,1997,358(1):285-290.
    [36]Pizzutto M, Hirst R G. Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M 13 DNA fingerprinting[J]. Diseases of Aquatic Organisms,1995,21(1):61-68.
    [37]Burkholder P R, Pfister R M, Leitz F H. Production of a pyrrole antibiotic by a marine bacterium[J]. Jourmal of Applied Microbiology,1966,14(4):649-653.
    [38]Messi P, Guerrieri E, Bondi M. Bacteriocin-like substance (BLS) production in Aeromonas hydrophila water isolates[J]. FEMS Microbiology Letters,2003,220(1):121-125.
    [39]王祥红,李筠.有益细菌A18在海湾扇贝(Argopecten irradians)育苗中的应用[J].高技术通讯,2002,12(008):84-88.
    [40]Smith P, Davey S. Evidence for the competitive exclusion of Aeromonas salmonicida from fish with stress-inducible furunculosis by a fluorescent pseudomonad[J].Journal of Fish Diseases, 1993,16(5):521-524.
    [41]Van Landschoot A, De Ley J. Intra-and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other Gram-negative bacteria[J]. Journal of General Microbiology,1983,129(10):3057-3074.
    [42]Sugita H, Hirose Y, Matsuo N, et al. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish[J]. Aquaculture,1998, 165(3):269-280.
    [43]田黎,李光友.海洋生境芽孢杆菌(Bacillus spp.)的培养条件及产生的胞外抗菌蛋白[J].海洋学报,2001,23(4):87-92.
    [44]Planas M, Perez-Lorenzo M, Hjelm M, et al. Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio(Listonella) anguillarum infections in turbot(Scophthalmus maximus L.) larvae[J]. Aquaculture,2006,255(1):323-333.
    [45]宛立,王吉桥,杨世勇,等.健康养殖南美白对虾肠道细菌的抗菌活性[J].水产科学,2006,25(2):61-64.
    [46]Duffes F, Corre C, Leroi F, et al. Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins of Carnobacterium spp. on vacuum-packed, refrigerated cold-smoked salmon[J]. Journal of Food Protection,1999,62(12):1394-1403.
    [47]Chythanya R, Karunasagar I, Karunasagar I. Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas 1-2 strain[J]. Aquaculture,2002,208(1):1-10.
    [48]Olsson J C, Westerdahl A, Conway P L, et al. Intestinal colonization potential of turbot {Scophthalmus maximus)-and dab (Limanda limanda)-associa.ted bacteria with inhibitory effects against Vibrio anguillarum.[J]. Applied and Environmental Microbiology,1992,58(2):551-556.
    [49]Watanabe T, Kitajima C, Fujita S. Nutritional values of live organisms used in Japan for mass propagation of fish:a review[J]. Aquaculture,1983,34(1):115-143.
    [50]Xianghong W, Huirong L, Xiaohua Z, et al. Microbial flora in the digestive tract of adult penaeid shrimp(Penaeus chinensis)[J]. Journal of Ocean University of Qingdao,2000,30(3):493-498.
    [51]Gupta A, Roy I, Khare S K, et al. Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA[J]. Journal of Chromatography A,2005,1069(2):155-161.
    [52]Sharma O P, Bhukar S. Effect of Aquazyn-TM-1000, a probiotic on the water quality and growth of Cyprinus carpio var. communis (L.)[J]. Indian Journal of Fisheries,2000,47(3):209-213.
    [53]Kozasa M. Toyocerin(Bacillus toyoi) as growth promoter for animal feeding[J]. Microbiology Aliments Nutrition,1986,4(1):121-135.
    [54]Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, et al. Immunity enhancement in black tiger shrimp(Penaeus monodon) by a probiont bacterium(Bacillus S11)[J]. Aquaculture,2000, 191(4):271-288.
    [55]Balcazar J L, Rojas-Luna T. Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp(Litopenaeus vannamei)[J]. Current Microbiology,2007,55(5):409-412.
    [56]Yasuda F. The types of food habits of fishes assured by stomach contents examination[J]. Bulletin of the Japanese Society Scientific Fisheries,1960,26:653-662.
    [57]石军,陈安国,邵明丽.益生菌在水产养殖中应用的研究进展[J].粮食与饲料工业,2002,4:29-31.
    [58]Gildberg A, Mikkelsen H, Sandaker E, et al. Probiotic effect of lactic acid bacteria in the feed on growth and survival of fry of Atlantic cod (Gadus morhua)[J]. Hydrobiologia,1997,352 (1): 279-285.
    [59]吕军仪,李秉记.有益微生物在大海马健康养殖中的应用研究[J].中国水产科学,2003,10(001):46-50.
    [60]Riquelme C, Hayashida G, Araya R, et al. Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios[J]. Journal of Shellfish Research,1996,15(2):369-374.
    [61]Ruiz C M, Roman G, Sanchez J L. A marine bacterial strain effective in producing antagonisms of other bacteria[J]. Aquaculture International,1996,4(3):289-291.
    [62]Naviner M, Berge J P, Durand P, et al. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens[J]. Aquaculture,1999,174(1):15-24.
    [63]Longeon A, Peduzzi J, Barthelemy M, et al. Purification and partial identification of novel antimicrobial protein from marine bacterium Pseudoalteromonas species strain X153[J]. Marine Biotechnology,2004,6(6):633-641.
    [64]席宇,朱大恒,刘红涛,等.假交替单胞菌及其胞外生物活性物质研究进展[J].微生物学通报,2005,32(3):108-112.
    [65]Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations[J]. International Journal of Systematic and Evolutionary Microbiology,1995,45(4):755-761.
    [66]Lovejoy C, Bowman J P, Hallegraeff G M. Algicidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma[J]. Applied and Environmental Microbiology,1998, 64(8):2806-2813.
    [67]Skovhus T L, Ramsing N B, Holmstrom C, et al. Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples[J]. Applied and Environmental Microbiology,2004,70(4):2373-2382.
    [68]Gauthier M J, Breittmayer V A. A New Antibiotic-Producing Bacterium from Seawater Alteromonas aurantia sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology,1979,29(4):366-372.
    [69]Gauthier M J, Flatau G N. Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds[J]. Canadian Journal of Microbiology,1976,22(11):1612-1619.
    [70]Gauthier M J. Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology,1976,26(4):459-466.
    [71]Ivanova E P, Kiprianova E A, Mikhailov V V, et al. Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description[J]. International Journal of Systematic and Evolutionary Microbiology,1998,48(1):247-256.
    [72]Gauthier M J. Alteromonas citrea, a new Gram-negative, yellow-pigmented species from seawater[J]. International Journal of Systematic and Evolutionary Microbiology,1977,27(4): 349-354.
    [73]Yoshikawa K, Takadera T, Adachi K, et al. Korormicin, a Novel Antibiotic Specifically Active Against Marine Gram-Negative Bacteria, Produced by a Marine Bacterium.[J]. The Journal of Antibiotics,1997, (50):949-953.
    [74]Vera J, Alvarez R, Murano E, et al. Identification of a Marine Agarolytic Pseudoalteromonas Isolate and Characterization of Its Extracellular Agarase[J]. Applied and Environmental Microbiology,1998,64(11):4378-4383.
    [75]Akagawa-Matsushita M, Matsuo M, Koga Y, et al. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides[J]. International Journal of Systematic and Evolutionary Microbiology,1992,42(4):621-627.
    [76]Sawabe T, Makino H, Tatsumi M, et al. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica[J]. International Journal of Systematic and Evolutionary Microbiology,1998,48(3):769-774.
    [77]Odagami T, Suzuki S, Takama K, et al. Characterization of extracellular protease produced by the marine putrefactive bacteria, Alteromonas haloplanktis S 5 B[J]. Journal of Marine Biotechnology, 1993, 1(1):55-58.
    [78]Bein S J. A study of certain chromogenic bacteria isolated from'red tide' water with a description of a new species[J]. Bulletin of Marine Science,1954,4(2):110-119.
    [79]Simidu U, Kita-Tsukamoto K, Yyasumoto T, et al. Taxonomy of four marine bacterial strains that produce tetrodotoxin[J]. International Journal of Systematic and Evolutionary Microbiology,1990, 40(4):331-336.
    [80]Enger O, Nygaard H, Solberg M, et al. Characterization of Alteromonas denitrificsns sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology,1987,37(4):416-421.
    [81]Szewzyk U, Holmstrom C, Wrangstadh M, et al. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S 9 for the attachment of Ciona intestinalis larvae.[J]. Marine ecology progress series. Oldendorf,1991,75(2):259-265.
    [82]Weiner R M, Segall A M, Colwell R R. Characterization of a marine bacterium associated with Crassostrea virginica (the eastern oyster)[J]. Applied and Environmental Microbiology,1985, 49(1):83-90.
    [83]Uchida M, Nakata K, Maeda M. Conversion of Ulva fronds to a hatchery diet for Artemia nauplii utilizing the degrading and attaching abilities of Pseudoalteromonas espejiana[J]. Journal of Applied Phycology,1997,9(6):541-549.
    [84]Leitz T, Wagner T. The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinata[J]. Marine Biology,1993,115(2):173-178.
    [85]Holmstrom C, James S, Neilan B A, et al. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents[J]. International Journal of Systematic and Evolutionary Microbiology,1998,48(4):1205-1212.
    [86]Holmstrom C, Kjelleberg S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents[J]. FEMS Microbiology Ecology, 1999,30(4):285-293.
    [87]曾胤新,俞勇,李会荣,等.北极海洋细菌BSw20353的胞外蛋白酶性质[J].极地研究,2006,18(3):206-214.
    [88]陈吉刚,李文晨,罗楠,等.产蛋白酶北极海洋耐冷菌ArcB82306的筛选及其蛋白酶性质 [J].应用与环境生物学报,2010,16(006):858-862.
    [89]刘天华,乔梦,李乐乐,等.海洋细菌0417产胞外多糖发酵条件的优化[J].中国酿造,2011,(6):107-110.
    [90]Bowman J P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas[J]. Marine Drugs,2007,5(4):220-241.
    [91]张柯,丁翠玲.一株海洋颉颃菌的分离鉴定及其培养特性研究[J].海洋湖沼通报,2011,(2):79-85.
    [92]李会荣,俞勇.海洋有益菌的筛选与鉴定[J].高技术通讯,2001,11(9):18-22.
    [93]Isnansetyo A, Kamei Y. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against Methicillin-Resistant Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy,2003,47(2):480-488.
    [94]曾润颖,赵晶.深海细菌的分子鉴定分类[J].微生物学通报,2002,29(6):12-16.
    [95]Austin B. Novel pharmaceutical compounds from marine bacteria:a review[J]. Journal of Applied Microbiology,1989,67(5):461-470.
    [96]Hoyoux A, Jennes I, Dubois P, et al. Cold-adapted (3-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis[J]. Applied and Environmental Microbiology,2001,67(4): 1529-1535.
    [97]吕明生,王淑军,李华钟,等.海洋细菌Pseudoalteromonas flavipulchra HH407产低温碱性蛋白酶的发酵条件和酶学性质研究[J].食品科学,2010,31(21):298-303.
    [98]Fernandes S, Geueke B, Delgado O, et al. β-Galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis[J]. Applied Microbiology and Biotechnology,2002,58(3):313-321.
    [99]Tutino M L, Parrilli E, Giaquinto L, et al. Secretion of a-amylase from Pseudoalteromonas haloplanktis TAB23:two different pathways in different hosts[J]. Journal of Bacteriology,2002, 184(20):5814-5817.
    [100]Van Truong L, Tuyen H, Helmke E, et al. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes[J]. Extremophiles,2001,5(1):35-44.
    [101]Sanchez-Porro C, Mellado E, Bertoldo C, et al. Screening and characterization of the protease CP1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain CP76[J]. Extremophiles,2003,7(3):221-228.
    [102]Chen X L, Zhang Y Z, Gao P J, et al. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913[J]. Marine Biology,2003,143(5): 989-993.
    [103]熊鹏钧,文建军.交替假单胞菌(Pseudoalteromonas sp.) DY3菌株产内切葡聚糖酶的性质研究及基因克隆[J].生物工程学报,2004,20(2):233-237.
    [104]Lee S, Kato J, Takiguchi N, et al. Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonassp. Strain A28[J]. Applied and Environmental Microbiology,2000,66(10):4334-4339.
    [105]Krembs C, Engel A. Abundance and variability of microorganisms and transparent exopolymer particles across the ice-water interface of melting first-year sea ice in the Laptev Sea (Arctic)[J]. Marine Biology,2001,138(1):173-185.
    [106]Krembs C, Eicken H, Junge K, et al. High concentrations of exopolymeric substances in Arctic winter sea ice:implications for the polar ocean carbon cycle and cryoprotection of diatoms[J]. Deep Sea Research Part I:Oceanographic Research Papers,2002,49(12):2163-2181.
    [107]Selbmann L, Onofri S, Fenice M, et al. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080[J]. Research in Microbiology,2002,153, (9):585-592.
    [108]Corsaro M M, Lanzetta R, Parrilli E, et al. Influence of growth temperature on lipid and phosphate contents of surface polysaccharides from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125[J]. Journal of Bacteriology,2004,186(1):29-34.
    [109]Mancuso Nichols C A, Garon S, Bowman J P, et al. Production of exopolysaccharides by Antarctic marine bacterial isolates[J]. Journal of Applied Microbiology,2004,96(5):1057-1066.
    [110]Egan S, Holmstrom C, Kjelleberg S. Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga.[J]. International Journal of Systematic and Evolutionary Microbiology,2001,51(4):1499-1504.
    [111]Dopazo C P, Lemos M L, Lodeiros C, et al. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens[J]. Journal of Applied Microbiology,2008,65(2):97-101.
    [112]Kelecom A. Chemistry of marine natural products:yesterday, today and tomorrow[J]. Anais da Academia Brasileira de Ciencias,1999,71(2):249-263.
    [113]Nicholas G M, Eckman L L, Newton G L, et al. Inhibition and kinetics of mycobacterium tuberculosis and mycobacterium smegmatis mycothiol-S-conjugate amidase by natural product inhibitors[J]. Bioorganic and Medicinal Chemistry,2003,11(4):601-608.
    [114]张奕婷,迟海洋,张丽霞,等.海洋微生物活性物质分离提取方法研究进展[J].大庆师范学院学报,2010,30(006):121-124.
    [115]王黎,郑龙熙.富产多烯不饱和脂肪酸(PUFA)细菌的分离[J].东北大学学报:自然科学版,1999,20(005):529-532.
    [116]Cygnarowicz M L, Maxwell R J, Seider W D. Equilibrium solubilities ofβ-carotene in supercritical carbon dioxide[J]. Fluid Phase Equilibria,1990,59(1):57-71.
    [117]张宪武,韩静淑,林佩真,等.高温嫌气纤维素分解细菌发酵纤维素的研究[J].微生物学报,1981,21(2):27-44.
    [118]熊双丽,李安林.酸性多糖的最新研究进展[J].食品科技,2010,(005):80-83.
    [119]Feistner G J. Profiling of bacterial metabolites by liquid chromatography-electrospray mass spectrometry:a perspective[J]. American Laboratory,1994,26(14):32L.
    [120]Smedsgaard J, Frisvad J C. Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts[J]. Journal of Microbiological Methods, 1996,25(1):5-17.
    [121]Julian R K, Higgs R E, Guggi J D, et al. A method for quantitatively differentiating crude natural extracts using high-performance liquid chromatography-electrospray mass spectrometry[J]. Analytical Chemistry,1998,70(15):3249-3254.
    [122]Potterat O, Wagner K, Haag H. Liquid chromatography-electrospray time-of-flight mass spectrometry for on-line accurate mass determination and identification of cyclodepsipeptides in a crude extract of the fungus Metarrhizium anisopliae [J]. Journal of Chromatography A,2000, 872(1):85-90.
    [123]Higgs R E, Zahn J A, Gygi E D, et al. Rapid method to estimate the presence of secondary metabolites in microbial extracts[J]. Applied and Environmental Microbiology,2001,67(1): 371-376.
    [124]李国,闫茂仓,孙杰,等.文蛤病原菌——需钠弧菌的鉴定和生物学特性分析[J].渔业科学进展,2009,(006):103-109.
    [125]Henshilwood K, Green J, Lees D N. Monitoring the marine environment for small round structured viruses (SRSVs):a new approach to combating the transmission of these viruses by molluscan shellfish[J]. Water Science and Technology,1998,38(12):51-56.
    [126]暴增海,孔德平,王增池,等.抗弧菌海洋细菌的分离筛选及其抗菌作用测定[J].水产科学,2009,28(1):24-27.
    [127]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].科学出版社,2001.
    [128]龚永兴,杨怀文,刘峥,等.嗜线虫致病杆菌北京变种的抗生素抗性及质粒pLA2917的转化[J].中国生物防治,2007,23(1):23-27.
    [129]Boyd C E, Massaut L. Risks associated with the use of chemicals in pond aquaculture[J]. Aquacultural Engineering,1999,20(2):113-132.
    [130]裘先前,蔡彩霞.一起溶藻弧菌引起食物中毒的病原学检验与分析[J].海峡预防医学杂志,2008,14(4):44-45.
    [131]Yen C H, Chen K F, Sheu Y T, et al. Pollution source investigation and water quality management in the carp lake watershed, Taiwan[J]. CLEAN-Soil, Air, Water,2012, (40):24-33.
    [132]Weston D P. Environmental considerations in the use of antibacterial drugs in aquaculture[J]. Aquaculture and Water Resource Management,1996,140-165.
    [133]Karunasagar I, Pai R, Malathi G R, et al. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection[J]. Aquaculture,1994,128(3):203-209.
    [134]Caylak E. Health Risk Assessment for Arsenic in Water Sources of Cankiri Province of Turkey[J]. CLEAN-Soil, Air, Water,2012, (40):728-734.
    [135]Tanasomwang V, Nakai T, Nishimura Y, et al. Vibrio-inhibiting marine bacteria isolated from black tiger shrimp hatchery[J]. Fish Pathology,1998,33(5):459-466.
    [136]Hjelm M, Bergh O, Riaza A, et al. Selection and identification of autochthonous potential probiotic bacteria from Turbot Larvae(Scophthalmus maximus) rearing units[J]. Systematic and Applied Microbiology,2004,27(3):360-371.
    [137]莫照兰,俞勇.弧菌颉颃菌的筛选[J].青岛海洋大学学报:自然科学版,2001,31(2):225-231.
    [138]Robertson P, O'Dowd C, Burrells C, et al. Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum)[J]. Aquaculture, 2000,185(3):235-243.
    [139]Moriarty D. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture, 1998,164(1):351-358.
    [140]Gomez-Gil B, Roque A, Turnbull J F. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms[J]. Aquaculture,2000,191(1):259-270.
    [141]Gullian M, Thompson F, Rodriguez J. Selection of probiotic bacteria and study of their immuno stimulatory effect in Penaeus vannamei [J]. Aquaculture,2004,233(1):1-14.
    [142]Lemos M L, Toranzo A E, Barja J L. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds[J]. Microbial Ecology,1985,11(2):149-163.
    [143]Engel S, Jensen P R, Fenical W. Chemical ecology of marine microbial defense[J], Journal of Chemical Ecology,2002,28(10):1971-1985.
    [144]Gil-Turnes M S, Hay M E, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus.[J]. Science (New York, NY),1989,246 (4926):116-118.
    [145]Kalinovskaya N I, Ivanova E P, Alexeeva Y V, et al. Low-molecular-weight, biologically active compounds from marine Pseudoalteromonas species[J]. Current Microbiology,2004,48(6): 441-446.
    [146]De Rosa S, Milone A, Kujumgiev A, et al. Metabolites from a marine bacterium Pseudomonas/Alter omonas, associated with the sponge Dysidea fragilis[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2000,126(3): 391-396.
    [147]Isnansetyo A, Cui L, Hiramatsu K, et al. Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus [J]. International Journal of Antimicrobial Agents,2003,22(5):545-547.
    [148]Line J E, Svetoch E A, Eruslanov B V, et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria[J]. Antimicrobial Agents and Chemotherapy,2008,52(3):1094-1100.
    [149]Grinstead D A, Barefoot S F, G J. A heat-stable bacteriocin produced by Propioni bacterium Jensenii P126.[J]. Applied and Environmental Microbiology,1992,58(1):215-220.
    [150]Austin B, Stuckey L F, Robertson P, et al. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii[J]. Journal of Fish Diseases,2006,18(1):93-96.
    [151]Crupper S S, Iandolo J J. Purification and partial characterization of a novel antibacterial agent (Bac1829) Produced by Staphylococcus aureus KSI1829.[J]. Applied and Environmental Microbiology,1996,62(9):3171-3175.
    [152]Stoffels G, Nissen-Meyer J, Gudmundsdottir A, et al. Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp.[J]. Applied and Environmental Microbiology, 1992,58(5):1417-1422.
    [153]Crupper S S, Gies A J, Iandolo J J. Purification and characterization of staphylococcin BacRl, a broad-spectrum bacteriocin.[J]. Applied and Environmental Microbiology,1997,63(11): 4185-4190.
    [154]Aslam M, Shahid M, Rehman F U, et al. Purification and characterization of bacteriocin isolated from Streptococcus thermophilus[J]. African Journal of Microbiology Research,2011,5(18): 2642-2648.
    [155]Batdorj B, Dalgalarrondo M, Choiset Y, et al. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag[J]. Journal of Applied Microbiology,2006,101(4):837-848.
    [156]Gilbreth S E, Somkuti G A. Thermophilin 110:a bacteriocin of Streptococcus thermophilus ST110[J]. Current Microbiology,2005,51(3):175-182.
    [157]刘静,王军,姚建铭,等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报,2004,44(4):511-514.
    [158]Sobolevskaya M P, Fotso S, Havash U, et al. Metabolites of the sea isolate of bacteria Streptomyces SP.6167[J]. Chemistry of Natural Compounds,2004,40(3):282-285.
    [159]刘艳,张宝俊,韩巨才,等.苹果树内生细菌G23的鉴定及其抑菌活性的研究[J].中国农学通报,2012,28(04):163-166.
    [160]谢栋,胡剑.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(001):13-19.
    [161]James S G, Holmstrom C, Kjelleberg S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2.[J]. Applied and Environmental Microbiology,1996, 62(8):2783-2788.
    [162]刘莲娜,孙伟明,郭巍,等.一株新的颉颃细菌SL19及其抑菌活性物质[J].微生物学通报,2011,38(8):1199-1206.
    [163]孙海红,毛文君,钱叶苗,等.海洋微生物活性胞外多糖的研究进展[J].海洋科学,2011,35(11).
    [164]李越中,陈琦.海洋微生物资源及其产生生物活性代谢产物的研究[J].生物工程进展,2000,20(5):28-31.
    [165]李大志,韩宝芹.海洋细菌活性代谢产物的研究进展[J].中国海洋药物杂志,2006,25(5):51-55.
    [166]Liu P V. Survey of hemolysin production among species of pseudomonas[J]. Journal of Bacteriology,1957,74(6):718-727.
    [167]Zapata M, Silva F, Luza Y, et al. The inhibitory effect of biofilms produced by wild bacterial isolates to the larval settlement of the fouling ascidia Ciona intestinalis and Pyura praeputialis[J]. Electronic Journal of Biotechnology,2007,10(1):149-159.
    [168]Yoshikawa K, Nakayama Y, Hayashi M, et al. Korormicin, an Antibiotic Specific for Gram-Negative Marine Bacteria, Strongly Inhibits the Respiratory Chain-Linked Na+-Translocating NADH:Quinone Reductase from the Marine Vibrio alginolyticus.[J]. The Journal of Antibiotics,1999,30(52):182-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700