用户名: 密码: 验证码:
番茄花柄脱落相关基因LelDL和LeHAESA克隆功能验证及LeMKKs和LeMPKs的钙素调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
器官脱落(abscission)是植物细胞、组织或器官脱离母体的生理过程,器官脱落发生的特定的区域叫做离区(abscission zone)。拟南芥中,大多数影响花器官脱落的基因会不同程度的提前或延迟脱落,目前已经明确的花器官脱落的信号转导途径是BOP1/BOP2→AtIDA→AtHAESA→AtMKKK?→AtMKK4/MKK5→AtMPK3/MPK6→花器官脱落。虽然目前已经分离得到一些与离区发育相关的基因,但对番茄花柄脱落的信号转导途径的研究较少。为了阐明番茄花柄脱落的信号转导机制,本研究主要结果如下:
     1分别利用LeIDL和LeHAESA中的保守区域设计简并引物。通过同源扩增的方法分别获得400bp和700bp左右的的与其他植物IDA和HAESA相似的核心序列,再用RACE(cDNA末端快速扩增技术)得到3’端和5’端序列,进行序列拼接,最终获得两条长度为510bp和3035bp的序列。分别将其命名为LeIDL和LeHAESA.生物信息学表明:它们分别具有510bp和2667bp的ORF框,与已报道的多个的IDA、IDL(IDA-LIKE)和HAESA、HSL(HAESA-LIKE)具有较高的相似度。推断其编码101个和888个氨基酸,分子量分别为11456.3和97874.1,等电点分别为9.56和6.35。qRT-PCR分析在花的不同发育阶段,这两个基因在花柄离区具有表达,不同的是LeIDL在整个花发育过程中表达较为稳定。随着花发育进程的进行,LeHAESA呈现出明显的规律性:在花瓣未打开前,其表达量与花发育呈正相关。在开花后(果实不同发育阶段),LeHAESA在坐果初期表达量较高,随后下降,直至过程晚熟,表达量再次上升。在花的不同组织中,LeIDL在花瓣表达很高其次是雄蕊,LeHAESA在雌蕊的表达量最高,其次是雄蕊。这说明不仅参与了番茄花柄的脱落同时也参与的番茄花的发育。
     2本试验以“中蔬六号”番茄作为试材,研究了生长素IAA与细胞分裂素6-BA对其愈伤组织的产生和不定芽的诱导,细胞分裂素NAA对不定根的诱导。经研究认为,“中蔬六号”最佳诱导分化培养基为MS+0.2mg·L-1IAA+1.0mg·L-16-BA,最佳诱导生根培养基配方为MS+0.05mg·L-1NAA。同时以p MDC141为过表达载体,研究了转化细胞对Hyp抗性进行了0mgL-1、5mgL-1、7mgL-1、9mgL-1、11mgL-1、13mgL-1等6个梯度试验,浓度达到9mgL-1外植体伤口处褐化,直至完全死亡。因此后续试验不定芽抗性筛选浓度均采用7mgL-1。并获得8株阴性对照。以PB7GWIWG(II)为RNAi表达载体,研究了转化细胞对PPT抗性,初次筛选选用0mgL-1、0.5mgL-1、1.0mgL-1、1.5mgL-1、2.0mgL-12.5mgL-1等6个梯度,再次筛选在浓度为0mgL-1,0.6mgL-1、0.8mgL-1、1.0mgL-1、1.2mgL-1、1.4mgL-1PPT,当PPT浓度为1.0mgL-1时,极少有芽分化,并且分化出的芽逐渐变黄至白化。本试验以后的不定芽抗性筛选浓度均采用0.8mgL-1
     3利用Gateway技术构建分别构建LeIDL和LeHAESA基因过表达和RNAi表达载体,并成功转化到番茄中,得到的转基因植株进行PCR验证,结果发现:转基因植株中过表达技术提高了转基因植株中LeIDL和LeHAESA的转录水平,RNAi技术降低了LeIDL和LeHAESA基因的表达。35S: LeIDL植株的花序数目增多;RNAi:LeIDL转基因果实发育异常、心室异常增多;35S:LeHAESA株系中花器官、果实异常,同时叶色发生改变。
     4系统系统发生树表明LeMKK2与AtMKK4/AtMKK5, LeMPK1、 LeMPK2与AtMPK6,LeMPK3与AtMPK6均具有较近的亲缘关系,进而推测它们具有相似的的功能。qRT-PCR结果说明LeMKK2、LeMPK1、LeMPK2正调控花柄脱落,钙在脱落初期就完成对MAP级联途径的信号的放大作用。钙和W7共同处理Ca+W7恢复或部分恢复了Ca对LeMKK1,3,4基因表达的抑制作用,但却加剧了对LeMKK2的抑制作用,完全恢复了Ca对LeMPK1的抑制作用。
Abscission is a physiological process that plant cell, tissue or organ separate from thematernal. The specific region abscission occurred at is called abscission zone. In tomatoproduction, especially in the facilities tomato cultivation in winter and spring, it easily causesflower and fruit dropping. Although some genes related to the abscission development havebeen isolated, less study about the signal transduction pathways of tomato pedicel abscissionhave been done. In this article, tomato pedicels were taken as test materials, cDNA sequencewas gained by RACE and the application of reverse genetics made detailed analysis on them.The main results were as follows:
     1. The primers were designed according to IDA and HAESA conserved regions. About400bp and700bp core sequence similar with other plants were obtained by homologousamplification. Then we gained the3'and5' terminal by using RACE(cDNA ends rapidamplification technology). Finally510bp and3035bp were obtained by splice, named themLeIDL and LeHAESA Respectively. Bioinformatics analysis explain that: They have510bpand2667bp ORF respectively, appear high similarity with IDA, IDL(IDA-LIKE), HAESA,HSL(HAESA-LIKE) as reported. Infering they encording101and888amino acids, withmolecular weights of11456.3and97874.1, isoelectric point of9.56and6.35repectively. Thetwo genes have expressed at pedicel abscission zone in different developmental stages of theflower by qRT-PCR analysis, but LeIDL was more stablely expressed during the wholeprocess. With the process of flower development, LeHAESA showed obvious regularity:while the petals had not open, its expression was positively correlated with its development.After flowering, it showed high expression level at early fruit set and then decreased until latematuring, it rose again. In different tissues of the flower, LeIDL expressed highest in petalsand stamens second. While LeHAESA expressed highest in pistil and followed by stamens.The results shows that they involved in both tomato pedicel abscission and flowersdevelopment.
     2. In this study,“Chinese vegetables6th” was taken as the test material to Investigate theinduced role of IAA and6-BA in callus and adventitious buds and NAA in adventitious roots.The results showed the best induced differentiation medium formula for “Chinese vegetables6th” is MS+0.2mg·L-1IAA+1.0mg·L-16-BA, and the best induced rooting medium formulais MS+0.05mg·L-1NAA.In this study, pMDC141was taken as overexpression vector. Inorder to find the transformed cells resistance against Hyp, we set six-gradient test as0mgL-1,5mgL-1,7mgL-1,9mgL-1,11mgL-1,13mgL-1. Once it reached9mgL-1, explant woundappeared brown until it completely dead. As a result,7mgL-1was used in the follow-up testsof adventitious buds resistance screening concentration, and eight negative control were
     obtained. At the same time, PB7GWIWG(II) was taken as RNAi expression vector toinvestigate the transformed cells resistance against PPT. In initial screening, we setsix-gradient as0mgL-1,0.5mgL-1,1.0mgL-1,1.5mgL-1,2.0mgL-1,2.5mgL-1and inlater screening, we set six-gradient as0mgL-1,0.6mgL-1,0.8mgL-1,1.0mgL-1,1.2mgL-11.4mgL-1PPT. When the concentration of PPT was1.0mgL-1, there was few budsdifferentiation, and moreover the buds turned yellow to bleaching gradually. Therefore,0.8mgL-1was used in the follow-up tests of adventitious buds resistance screeningconcentration.
     3Buliding expression vector of LeIDL and LeHAESA using Gateway technology. Thetransgenic plants were tested by PCR.The results found that the transcription was improvedby technology of overexpression, the transcription; was inhibited by RNAi. Plantinflorescence are added in35S: LeIDL; the development of fruit was anomaly in RNAi:LeIDL; floral organs anf fruit was unnormal in35S:LeHAESA
     4System phylogenetic tree showed that LeMKK2and AtMKK4/AtMKK5,LeMPK1,LeMPK2and AtMPK6, LeMPK3and AtMPK6are close relatives, suggesting that they havesimilar function. qRT-PCR analysis showed LeMKK2, LeMPK1, LeMPK2positively regulatepedicel abscission. Ca play an amplification role of the signal cascades of MAP in the earlytime of abscission. The treatment of Ca+W7restored or partly restored the inhibitory effect ofCa on LeMKK1,3,4gene expression, but exacerbated the inhibitory effect on LeMKK2andthe treatment completely restored the inhibition effect of Ca on LeMPK1.
引文
1.陈丽萍,张丽华,程智慧.2007.加工番茄离体再生体系的建立.西北农业学报,16(1):162-167.
    2.陈鑫阳,梁厚果,王丽萍.1985.汞对小麦萌发、生长和某些生理过程的影响.兰州大学学报(自然科学版),生物学专辑,21:22-29.
    3.曹天旭,朴炫春,廉美.2009.满天星试管苗玻璃化苗与正常苗的比较研究.黑龙江农业科学,(5):86-88.
    4.何秀霞,陆一鸣,白杰英.2003.番茄组织培养体系的建立及其影响因素的研究.内蒙古民族大学学报(自然科学版).18(1):30-33.
    5.蒋素华,顾东亚,崔波.2009.番茄真叶愈伤组织诱导及植株再生研究.北方园艺,(10):113-114.
    6.郭艳,杨海玲.2009.植物组织培养中的褐化现象及解决途径.山西农业科学.3(7):14-16,31.
    7.高秀云,王纪方,金波.1980.番茄花药离体获得植株.园艺学报.7(4):37-41.
    8.李志友,张兴国,苏成刚.2007.番茄高效再生体系的优化.南方农业.1(2):15-17.
    9.李明山,宋秀英,赵晓明.1993.温光条件和激素配比对番茄叶组织培养的影响[J].山西农业大学学报.13(4):337-338.
    10.李铁松,王关林.番茄外植体诱导直接分化不定芽建立高频再生系统[J].辽宁师范大学学报,2003,20(2):178-182.
    11.李艳,李毅,陈章良等.1999.转基因植物内源基因与外源基因共抑制问题研究进展,生物工程学报,15(l):1-5.
    12.罗素兰,田嘉珺,孙东亭.2003.番茄高效再生体系的建立[J].海南大学报(自然科学版),20(4):314-516,323.
    13.刘淑玉,祁东文,冯文伟.2001.如何克服植物组织培养中试管苗玻璃化问题.新疆林业.(1):15.
    14.陆瑞菊,黄剑华,孙月芳.1997.番茄下胚轴愈伤组织高频率诱导与植株再生.上海农业学报,13(2):16-18.
    15.陆云华,张新,马立新.2005.番茄叶片再生系统建立的研究.江西农业学报.17(4):40-43.
    16.乐锦华,Read P E,杨国臣.1991.BA和激素对试管苗番茄愈伤组织形态发生的影响.园艺学报.18(1):44-68
    17.欧阳波,李汉霞,叶志彪.2003.玉米素和IAA对番茄子叶再生的影响.植物生理学通讯,39(3):217-218
    18.欧阳波,李汉霞,张俊红.2002.番茄下胚轴转化获得转基因植株.华中农业大学学报.21(3):206-209.
    19.彭细桥,戴良英,刘红艳.2004.番茄离体再生体系优化研究.湖南农业大学学报(自然科学版).30(6):506-509.
    20.孙立平,章林,王晓娜.2009.组培快繁应重点解决的几个问题.吉林林业科技.7,38(4):46-47,53.
    21.孙同虎,孙秀玲,薄鹏飞.2006.番茄高效离体再生体系的建立.安徽农业科学.34(24):6467,6487.
    22.孙大业等.1997.TFP对番茄CaM、乙烯及呼吸强度的影响.植物学通报,(1):46-48
    23.师较欣,陈四维.1990.苹果砧木离体培养中玻璃化问题的研究.河北农业大学学报,13(3):12-16
    24.唐琳,刘建国,马欣荣.两种灭菌方法对番茄种子灭菌效果的评价.种子,2008,27(9):17-18.
    25.申琳,生吉萍,罗云波.番茄外源基因转化系统的研究[J].中国农业大学学报,1998,3:101-105.
    26.吴康,2007,中国野生葡萄抗白粉病新基因遗传转化及检测方法研究田.西北农林科技大学.
    27.王翔,2009,植物器官脱落分子生物学研究进展作物学报,35:160-165
    28.王彦昌,李天来,侯建平,2003,乙烯处理对番茄离体小花柄脱落的影响园艺学报,30(5):554-558
    29.王红等.1994.低温胁迫下水稻幼叶细胞内Ca2+水平的变化.植物学报,36(8):587-591.
    30.王伟,朱平.2002.植物赤霉素生物合成和信号传导的分子生物学.植物学通报,19(2):37-149.
    31.王彦昌,李天来等.2003.乙烯处理对番茄离体小花柄脱落的影响.园艺学报,30(5):554-558.
    32.王彦昌,李天来等.2002.园艺植物花器官脱落研究进展.园艺学报,29(增刊):613-618.
    33.王幼群,韩静等.2001.紫丁香叶柄离区IAA的免疫组织化学定位.植物学报,43(2):213-216.
    34.王全华,葛晨辉,曹守军,等.番茄组织再生及其遗传转化体系的优化[J].青岛农业大学学报,2007,24(1):24-67.
    35.王首锋,梁海曼.1996.升汞和次氯酸钠对黄瓜种子萌发及幼苗生长的影响(简报).植物生理学通讯,32(2):117-120.
    36.王金杰,王志英,徐香玲.2009.影响番茄离体培养再生的主要因素探讨.东北农业大学学报,40(11):28-32.
    37.王桂荣.2010.植物组织培养中的常见问题与对策.宿州学院学报.25(11):54-57.
    38.许德威,徐马娣.1980.上海:植物生理学通讯,(4):46-48.
    39.许煌泉,史益敏,尹协.1992.番茄离体子叶培养的形态发生及过氧化物酶的动态.上海农学院学报,10(2):121-126.
    40.于惠敏,石竹,杨俊杰.2007.番茄的不同基因型对组培植株再生能力的影响.山东师范大学学报(自然科学版).22(4):120-121.
    41.许涛,李天来,齐明芳,陈伟之.2008.番茄花柄脱落过程中超微结构及亚细胞钙分布的变化.园艺学报,35(2):233-238.
    42.徐光硕,饶勇强,陈雁,2004,用inplanta方法转化甘蓝型油菜.作物学报,30(l):1-5.
    43.尹明安,郭立,刘华群.2002.番茄ZF遗传转化再生体系的研究[J].西北农林科技大学学报,30(5):27-30.
    44.叶志彪,李汉霞,周国林.番茄子叶离体培养与再生成株.华中农业大学学报,13(3):291-295.
    45.叶添谋.1991.植物组织培养过程中的常见技术难题研究进展.韶关学院学报(自然科学版)2010,31(3):84-90.
    46.曾镭,刘燕.2007.植物组织培养中褐化问题的研究进展.安徽农学通报.13(14):49-50.
    47.周俊辉,周家容,曾浩森.(2000)园艺植物组织培养中的褐化现象及抗褐化研究进展.园艺学报,27(增刊):481-486.
    48.赵福宽,张鹤龄,李天然等.1999.病毒外壳蛋白基因在马铃薯基因组中的整合与转录表达北京农学院学报,14(3):7-10.
    49. Adamczyk B.J.,Fernandez D.E.2009.MIKC*MADS domain heterodimers are required for
    50. pollen maturation and tube growth in Arabidopsis.Plant Physiol149:1713-23.Science121:644-5.
    51. Aukerman M..,Sakai H.2003.Regulation of flowering time and floral organ identity by amicroRNA and its APETALA2-like target genes.The Plant Cell Online15:2730.
    52. Abeles FB,Morgan PW.1992.Salt veit ME.Ethylene in Plant Biology. NewYork:AcademicPress,135-159
    53. Armitage AM,Heins R,Dean S,Carlson W.1980.Factors influeneing flower petal abscissionin seed propagated geranium.J.Am.Soc.Hortic.Sci.105:562-564
    54. Bleecker A B,Patterson S E.1997.Last exit:Senescence,abscission, and meristem arrest inrabidopsis.Plant Cell,9:1169-1179
    55. Brady CJ,SPeirs J.1991.Ethylene in fruit ontogeny and abscission.In thePlant hormoneethylene.Mattoo AK and Suttle JC,eds.CRC Press.235-258
    56. Burdon J,Sexton R.1993.Furit abscission and ethylene production of4blackberycultivars(Rubusspp.).Ann.APPI.Biol.123:121-132
    57. Bartel D..2004.MicroRNAs::Genomics,Biogenesis,Mechanism,and Function.Cel116:281-297.
    58. Becker A.,Theissen G..2003.The major clades of MADS-box genes and their role in thdevelopment and evolution of flowering plants.Mol Phylogenet Evol29:464-89.
    59. Bleecker A.B.,Kende H.2000.Ethylene:a gaseous signal molecule in plants.Annu Rev Cell
    60. Budiman M.A.,Chang S.B.,Lee S.,Yang T.J.,Zhang H.B.,de Jong H.,Wing R.A.2004.Localization of jointless-2gene in the centromeric region of tomato chromosome12based on high resolution genetic and physical mapping.Theor Appl Genet108:190-6.
    61. Butenko M.A.,Patterson S.E.,Grini P.E.,Stenvik G.E.,Amundsen S.S.,Mandal A.,Aalen R.B.2003.Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifiesa novel family of putative ligands in plants.Plant Cell15:2296-307
    62. Cao J.1992.Regeneration of herbicide resistant transgenic rice plants following microprojectilemediated transformation of suspension culture cells.Plant cell report.11:586~5911
    63. Cai S,Lashbrook CC.2008.Stamen abscission zone transcriptome profiling reveals newcandidates for abscission control:enhanced retention of floral organs in transgenic plantsoverexpressing Arabidopsis ZINC FINGER PROTEIN2.Plant Physiology,146(3):1305-1321.
    64. Colombo L.,Franken J.,Koetje E.,van Went J.,Dons H.J.,Angenent G.C.,van Tunen A.J.1995.The petunia MADS box gene FBP11determines ovule identity.Plant Cell7:1859-68.
    65. Clough s J.2005.Floraldip:agrobacterium-mediated gennline transformation[J」.Methods MolBiol,286:91-102.
    66. Curtis I S,Nam H G.2001.Transgenic radish (RaPHANS sativus L.longiponnatus Bailey)byfloral dip method-plant development and surfactant are important in optimizing transformationefficiency Transgeule Res,10:363-371.
    67. Cheon BY,Kim H J Oh K H,et al.2004.Overexpression of human erythropoietin(EPO)affeets pLant morphologies:retarded vegetative growth in tobaeeo and made sterility in tobacco andArabidopsis.Transgenic Research,13:541-549.
    68. De Bodt S.,Raes J.,Florquin K.,Rombauts S.,Rouze P.,Theissen G.,Van de Peer Y.2003.Genomewide structural annotation and evolutionary analysis of the type I MADS-boxgenes in plants.J Mol Evol56:573-86.
    69. Deneke C,Evensen K,Carig R.1990.Regulation of petal abscission inPelargonium×domesticumHortiScience.25:937-940
    70. Evensen E.1991.Ethylene responsiveness changes in Pelargonium domesticumreporets.Physiol.Plant.82:409-412
    71. Fernandez D.E.,Heck G.R.,Perry S.E.,Patterson S.E.,Bleecker A.B.,Fang S.C.(2000)Theembryo MADS domain factor AGL15acts postembryonically.Inhibition of perianthsenescence and abscission via constitutive expression.Plant Cell12:183-98.
    72. Ferrandiz C.,Liljegren S.J.,Yanofsky M.F.2000.Negative regulation of theSHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development.Science289:436-8.
    73. Ferrario S.,Immink R.G.,Shchennikova A.,Busscher-Lange J.,Angenent G.C.2003.TheMADS box gene FBP2is required for SEPALLATA function in petunia.Plant Cell
    74.15:914-65.
    75. Gandikota M.,Birkenbihl R.,H hmann S.,Cardon G.,Saedler H.,Huijser P.2007.ThemiRNA156/157recognition element in the3'UTR of the Arabidopsis SBP box geneSPL3prevents early flowering by translational inhibition in seedlings.The PlantJournal49:683-693.
    76. Guo H.,Xie Q.,Fei J.,Chua N.2005.MicroRNA directs mRNA cleavage of the transcriptionfactor NAC1to downregulate auxin signals for Arabidopsis lateral root development.The Plant Cell Online17:1376.
    77. Grethe-Elisabeth Stenvik, Melinka A. Butenko.2006.Overexpression of INFLORESCENCE
    78. DEFICIENT IN ABSCISSION Activates Cell Separation in Vestigial Abscission Zones inArabidopsis The Plant Cell18,1467–1476
    79. Grethe-Elisabeth Stenvik, Nora M. Tandstad,a Yongfeng Guo.2008.The EPIP Peptide ofINFLORESCENCE DEFICIENT IN ABSCISSION Is Sufficient to Induce Abscission inArabidopsis through the Receptor-Like Kinases HAESA and HAESA-LIKE2The Plant Cell,20:1805–1817,
    80. He Y.,Michaels S.D.,Amasino R.M.2003.Regulation of flowering time by histone acetylationin Arabidopsis.Science302:1751-4.
    81. Halevy AH,Whiteheda CS,Koarfnet AM.1984.Does Pollination induce cororlla abscissionof cyclamen flowers by promoting ethylene production?Plant Physiol.75:1090-109
    82. Jani D,Meena LS and Rizwan QM.2002..l.Expression of cholera toxin B subunit in
    83. Transgenic tomato Plant.TransgenieResearch,11:447-454.
    84. Jack T.,Brockman L.L.,Meyerowitz E.M.1992.The homeotic gene APETALA3ofArabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.Cell68:683-97.
    85. Ji H.S.,Chu S.H.,Jiang W.,Cho Y.I.,Hahn J.H.,Eun M.Y.,McCouch S.R.,Koh H.J.2006.Characterization and mapping of a shattering mutant in rice that corresponds to a blockof domestication genes.Genetics173:995-1005.
    86. KIEBER J J,ROTHENBERG M,ROMAN G,FELDMANN K A,ECKER J R.CTR1.1993,a.negative regulator of the ethylene response pathway in Arabidopsis,encodes a memberof the raf family of protein kinase.Cel l,72:427-441.
    87. KondoS,HayataY.1995,Effects of AVG and2.4-D on preharvest drop and fruit quality ofTsugaru apples J.Jpn.soc,Hortic.Hortic.Sci,64:275-281
    88. Kalaitzis P,Solomos T,Tu cker ML.1997.Three different Polygalacturonases are expressedin tomato leaf and flower abscission.each with a different temporal expression pattern.Plant Physiol.,13:1303-1308
    89. Kandasamy MK,McKinney EC,Deal RB,Meagher RB.2005.Arabidopsis ARP7is anessential actin-related protein required for normal embryogenesis,plant architecture,andfloral organ abscission.Plant Physiology,138(4):2019-2032
    90. Kandasamy M.K.,McKinney E.C.,Deal R.B.,Meagher R.B.2005.Arabidopsis ARP7is anessential actin-related protein required for normal embryogenesis,plant architecture,and floral organ abscission.Plant Physiol138:2019-32.
    91. Kidner C.,Martienssen R.2004.Spatially restricted microRNA directs leaf polarity throughARGONAUTE1.Nature428:81-84.
    92. Kim J.,Patterson S.E.2006.Expression divergence and functional redundancy ofpolygalacturonases in floral organ abscission.Plant Signal Behav1:281-3.
    93. Klee H.J.2004.Ethylene signal transduction.Moving beyond Arabidopsis.Plant Physiol135:660-7.DOI:10.1104/pp.104.040998135/2/660
    94. Leecker A.B.,Patterson S.E.1997.Last exit:senescence,abscission,and meristem arrest inArabidopsis.Plant Cell9:1169-79.
    95. Lannenpaa M.,Janonen I.,Holtta-Vuori M.,Gardemeister M.,Porali I.,Sopanen T(2004)Anew SBP-box gene BpSPL1in silver birch(Betula pendula).Physiol Plant120:491-500.
    96. Lashbrook C.C.,Tieman D.M.,Klee H.J.1998.Differential regulation of the tomato ETRgene family throughout plant development.Plant15:243-52.
    97. Lauter N.,Kampani A.,Carlson S.,Goebel M.,Moose S.2005.microRNA172down-regulatesglossy15to promote vegetative phase change in maize.Proceedings of the National Academy ofSciences of the United States of America102:9412.
    98. Lee J.,Oh M.,Park H.,Lee I.2008.SOC1translocated to the nucleus by interaction withAGL24directly regulates leafy.Plant J55:832-43.
    99. Lee J.,Park J.,Kim S.,Yim J.,An G.2007a.Mutations in the rice liguleless gene result in acomplete loss of the auricle,ligule,and laminar joint.Plant Molecular Biology65:487-499.
    100. Lee J.,Park J.J.,Kim S.L.,Yim J.,An G.2007b.Mutations in the rice liguleless gene result ina complete loss of the auricle,ligule,and laminar joint.Plant Mol Biol65:487-99.
    101. Li C.,Zhou A.,Sang T.2006.Rice domestication by reducing shattering.Science311:1936-9.
    102. Liu C.,Chen H.,Er H.L.,Soo H.M.,Kumar P.P.,Han J.H.,Liou Y.C.,Yu H.2008.Directinteraction of AGL24and SOC1integrates flowering signals in Arabidopsis.Development135:1481-91.
    103. Liu C.,Zhang J.,Zhang N.,Shan H.,Su K.,Zhang J.,Meng Z.,Kong H.,Chen Z.Interactionsamong proteins of floral MADS-box genes in basal eudicots:Implications for evolutionof the regulatory network for flower development.Mol Biol Evol.
    104. Logemann E,Birkenbihl R P,UlkerB.2006a.An improved method for preparingAgrobaeterioum cells that simplifies the Arabidopsis transformation protoeol.PlantMethods,(16):l-5.
    105. Leseberg C H,Eissler C L,Wang X,Johns M A.2008.Duvall M R,Mao L.Interaction studyof MADS-domain proteins in tomato.J Exp Bot,59:2253-2265
    106. LIU Y,ZHANG S.2004.Phosphorylation of1-aminocyclopropane-1-carboxylic acid synthaseby MPK6,a stressresponsive mitogen-activatedprotein kinase,induces ethylene biosynthesis inArabidopsisPlant Cel l,16:3386-3399.
    107. Mogran PW,He CJ and Drew MC.1992.Intact leaves exhibit a climacterie一like rise inethyleneproduction before abscission.Plant Physiology,100:1587-1590
    108. MOCKAITIS K,HOWELL S H.2000. Auxin induces mitogenic activated protein kinase(MAPK) activation in root s of Arabidopsis seedlings. Plant J,24:785-796.
    109. Melinka A. Butenko,Sara E. Patterson..2003.INFLORESCENCE DEFICIENT INABSCISSION Controls Floral Organ Abscission in Arabidopsis and Identifies a Novel Family ofPutative Ligands in Plants.The Plant Cell,15:2296-2307
    110. Mallory A.,Bartel D.,Bartel B.2005.MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expressionof early auxin response genes.The Plant Cell Online17:1360.
    111. Manning K.,Tor M.,Poole M.,Hong Y.,Thompson A.J.,King G.J.,Giovannoni J.J.,SeymourG.B.2006.A naturally occurring epigenetic mutation in a gene encoding an SBP-boxtranscription factor inhibits tomato fruit ripening.Nat Genet38:948-52.
    112. Mao L.,Begum D.,Chuang H.W.,Budiman M.A.,Szymkowiak E.J.,Irish E.E.,Wing R.A.
    2000.JOINTLESS is a MADS-box gene controlling tomato flower abscission zonedevelopment.Nature406:910-3.
    113. McKim S.M.,Stenvik G.E.,Butenko M.A.,Kristiansen W.,Cho S.K.,Hepworth S.R.,AalenR.B.,Haughn G.W.2008.The BLADE-ON-PETIOLE genes are essential for abscissionzone formation in Arabidopsis.Development135:1537-46.
    114. Messenguy F.,Dubois E.2003.Role of MADS box proteins and their cofactors incombinatorial control of gene expression and cell development.Gene316:1-21.
    115. Millar A.,Gubler F.2005.The Arabidopsis GAMYB-like genes,MYB33and MYB65,aremicroRNA-regulated genes that redundantly facilitate anther development.The PlantCell Online17:705.
    116. Moreno M.A.,Harper L.C.,Krueger R.W.,Dellaporta S.L.,Freeling M.1997.iguleless1encodes a nuclear-localized protein required for induction of ligules and auricles duringmaize leaf organogenesis.Genes Dev11:616-28.
    117. Mao L,Begum D,Chuang HW,Budiman MA,Szymkowiak EJ,Irish EE,WingR.2000.JOINTLESS is a MADS-box gene controlling tomato flower abscission zonedevelopment.Nature,406:910-913
    118. Nam J.,Kim J.,Lee S.,An G.,Ma H.,Nei M.2004.Type I MADS-box genes haveexperienced faster birth-and-death evolution than type II MADS-box genes inangiosperms.Proc Natl Acad Sci U S A101:1910-5.
    119. Ouoaken F,ROZHON W,L ECOURIEUX D,HIRT H.2003., A MAPK pathway mediatesethylene signaling in plants. EMBO J.,22:1282-1288.
    120. Patterson S E, Bleecker A B.2004.Ethylene-dependent and-independent processes associatedwith floral organ abscission in Arabidopsis. Plant Physiol,134:194–203
    121. Poovaiah B.W., Leopold A.C.1973.Inhibition of abscission by calsium. Plant Physiology,51:848-851
    122. Paksasorn A,Hayasaka,T Matsui.1995. Relationship of polyamine content to ACC contentand ethylene evoluationin in Japanese apricot fuit.Jpn.Soc.Hortie.Sci.63:761-766
    123. Pedl EY K F.2004..MAPKKKαis a positive regulator of cell death associated with bothplant immunity and disease. EMBO J,23:3072-3082.
    124. Ren D, Yang H, Zhang S.2002. Cell death mediated by MAPK is associated with hydrogenperoxide production in Arabidopsis. J Biol Chem277:559–565.
    125. Roberts J A, Elliott K A, Gonzalez-Carranza Z H.2002.Abscission, dehiscence,and other cellseparation processes. Annu Rev Plant Biol,53:131–158
    126. Rhoades M.,Reinhart B.,Lim L.,Burge C.,Bartel B.,Bartel D.2002.Prediction of plantmicroRNA targets.Cell110:513-520.
    127. Roberts J.A.,Elliott K.A.,Gonzalez-Carranza Z.H.2002.Abscission,dehiscence,and othercell separation processes.Annu Rev Plant Biol53:131-58.
    128. Sauel M A,Ellis B E,,Double J.2002.Both overexpression and suppression of a redoxactivated plant mitogen2activated protein kinase render tobacco plant s ozone sensitive[J]. Plant Cell,14(9):2059-2069.
    129. Sung Ki Cho, Clayton T. Larue.2008.Regulation of floral organ abscission in Arabidopsisthaliana PNAS,105:15629–15634.
    130. Sarah M.McKim,Grethe-Elisabeth Stenvik,Melinka A,Butenko.2008.TheBLADE-ON-PETIOLEgene are essential for abscission zone formation in Arabidopsis.Development135:1537-1546
    131. Szymkowiak EJ,Irish EE.1999.Interactions between jointless and wild-type tomato tissuesDuring development of the pedicel abscission zone and the inflorescence meristem.The Plant Cell,11(2):159-175.
    132. Schumacher K,Schmitt T,Rossberg M,Schmitz G,Theres K.1999..The lateral suppressor(LS)genn of tomato encodes a new member of the VHIID protein family.Proc Natl Acad Sci USA,96:290-295
    133. Seymkowiak E J,Sussex I M.1992.The internal meristem layer(L3) floral meristem size andcarpel number in tomato periclinal chimeras.Plant Cell,4:1089-1100
    134. Sexton R,Lewis LN,Trewavas AJ,Kelly P.1985.,Ethylene and abscission.In.‘Ethylene andPlant Development.’..Eds,JA Roberts,GA Tucker,Butterworths:London,173-196
    135. Searle I.,He Y.,Turck F.,Vincent C.,Fornara F.,Krober S.,Amasino R.A.,Coupland G.2006.The transcription factor FLC confers a flowering response to vernalization by repressingmeristem competence and systemic signaling in Arabidopsis.Genes Dev20:898-912.
    136. Shikata M.,Koyama T.,Mitsuda N.,Ohme-Takagi M.2009.Arabidopsis SBP-Box GenesSPL10,SPL11and SPL2Control Morphological Change in Association with ShootMaturation in the Reproductive Phase.Plant and Cell Physiology50:2133.
    137. Sagee O, Goren R, Riov J.1980, Abscission of citrus leaf explants: Interrelationships ofabscisic acid, ethylene, and hydrolytic enzymes.Plant Physiol,66:750–753
    138. Stul Emeih ER I J E.2007.Tomato mitogen-activated protein kinases LeMPK1,LeMPK2andLeMPK3are activated during the Cf24/Avr42induced hypersensitive response and have distinctphosphorylation specificities. Plant Physiol144:1481-1494.
    139. Tabuchi T.,Arai N.2000.Formation of the secondary cell division zone in tomato pedicelsdifferent fruit growing stages.JOURNAL-JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE69:156-160.
    140. Trevaskis B.,Tadege M.,Hemming M.N.,Peacock W.J.,Dennis E.S.,Sheldon C.2007.Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barleyPlant Physiol143:225-35.
    141. Trobner W.,Ramirez L.,Motte P.,Hue I.,Huijser P.,Lonnig W.E.,Saedler H.,Sommer H.Schwarz-Sommer Z..1992.GLOBOSA:a homeotic gene which interacts withDEFICIENS in the control of Antirrhinum floral organogenesis.Embo J11:4693-704
    142. Tirlapur U.K., Costa G.1995..Scanning electron microscopy, vidieo-image analysis, andconfocal imaging of changes occurring during peach fruit abscission. Journal of the American Societyof Horticultural Science,120(2):203-210.
    143. Tsung-Luo Julie M.Stone.2004.HAESA,an Arabidopsis leucine-rich repeat receptorkinase,contrils floral organ abscission.Plant Physiology,146(3):1305-1321.
    144. Uheda E.,Nakamura S.2000.Abscission of Azolla branches induced by ethylene and sodiumazide.Plant Cell Physiol41:1365-72.
    145. Unte U.S.,Sorensen A.M.,Pesaresi P.,Gandikota M.,Leister D.,Saedler H.,Huijser P.2003.SPL8,an SBP-box gene that affects pollen sac development in Arabidopsis.Plant Cel15:1009-19
    146. Wang H.,Nussbaum-Wagler T.,Li B.,Zhao Q.,Vigouroux Y.,Faller M.,Bomblies K.,LukensL.,Doebley J.2005.The origin of the naked grains of maize.Nature436:714-719.
    147. Wang J.,Wang L.,Mao Y.,Cai W.,Xue H.,Chen X.2005.Control of root cap formation bymicroRNA-targeted auxin response factors in Arabidopsis.The Plant Cell Online17:2204.
    148. Wang J.W.,Czech B.,Weigel D.2009.miR156-regulated SPL transcription factors define anendogenous flowering pathway in Arabidopsis thaliana.Cell138:738-49.
    149. Wang J.W.,Schwab R.,Czech B.,Mica E.,Weigel D.2008.Dual effects of miR156-targetedSPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsisthaliana.Plant Cell20:1231-43.
    150. Wang Y.,Hu Z.,Yang Y.,Chen X.,Chen G.2009.Function Annotation of an SBP-box Genein Arabidopsis Based on Analysis of Co-expression Networks and Promoters.Int J MolSci10:116-32
    151. Wohlleben W, Amold W, Broer I.1988.,Nucleotide sequence of the PhosphinothricinN-acetyltransferase gene from the Streptomyces hygroscopicus Tu494and its expression in Nicotianatobacum. Gene,70:25~37
    152. Whitehead CS,Halevy AH,Reid MS(1984)Control of ethylene synthesis duringdevelopment and senescence of carnation petals.J.Am.Soe.Hortie.Sci.109:473-475
    153. Wing R.A., Zhang H.B., et al.1994. Map-based cloning in crop plants. tomato as a modelsystem:Ⅰ. Genetic and physical mapping of jointless. Plant Molecular Biology,242:681-688.
    154. Wang X Q,XU W H,Ma L G,Fu Z M,Deng X W,Li J Y,Wang Y H.2006.Requirement ofKNAT1/BP for the Development of Abscission Zones in Arabidopsis thaliana Journal of IntegrativePlant Biology,48:15-26.
    155. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang Z.2007.Stomatal development andpatterning are regulated by environmentally responsive mitogen-activated protein kinases inArabidopsis. Plant Cell19:63–73.
    156. Xu YY,Wang XM,Li J,Li JH,Wu JS,Walker JC,Xu ZH.2005.Chong K.Activation of theWUS gene I nduces ectopic initiation of floral meristems on mature stem surface inArabidopsis thaliana.Plant Molecular Biology,57(6):773-78
    157. Yang T Y,Lee S, Chang S B,Yu Y,de Jong H,W R A.2005..In-depeth sequence analysis ofThe tomato chromosome centromeric region:Identificationofalarge CAA block and characterization ofpericentromere retrotranpoaons.Chromosoma,114:103-117
    158. Zhang Y.,Schwarz S.,Saedler H.,Huijser P.2007.SPL8,a local regulator in a subset ofgibberellin-mediated developmental processes in Arabidopsis.Plant Mol Biol63:429-39.
    159. Zhao Y,Pokutta S,Maurer Pet al.1994. Caleium一binding properties of a calcium-dependentProtein kinases from Plasmodium faleiparum and the significance of individual calcium-binding iteskinase activation.Biochemistry.33:3714-5721
    160. Zhang M, Yuan T.1998. Molecular mechanisms of calmodulins functional versatility.Biochem.Cell Biol,76:313-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700