用户名: 密码: 验证码:
多跳蜂窝混合网络基站设置和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多跳蜂窝混合网络是蜂窝网络和移动Ad hoc网络的有机融合,同时具有蜂窝网络较好的可靠性和移动Ad hoc网络动态配置的灵活性,形成局域子网,实现虚拟小区扩展和虚拟小区分裂,使网络具备了很高的自适应性和智能性。通过蜂窝网络基础设施的支持,可以改善移动Ad hoc网络的连通性,避免大量路由开销浪费网络带宽,解决网络规模受限,提高由于节点之间联系松散带来的可靠性低、通信质量缺乏保证的问题;通过移动Ad hoc网络的自组织性和多跳中继能力,可以缓解蜂窝网络基站的瓶颈效应和平衡业务流量,提高频率空间利用率和网络容量,弥补网络覆盖不足,增加网络部署的灵活性,降低网络建设投入和运营成本。多跳蜂窝混合网络作为4G或未来无线移动通信系统的一种重要形式,可以按需为用户提供多层次的服务,不仅能满足现有目标市场的需求,而且蕴含着巨大的商业价值和社会效益,具有极大的技术和市场潜力。
     多跳蜂窝混合网络涉及两种截然不同的网络架构融合,目前尚缺乏对网络性能准确有效的评价指标和定性定量的分析,其网络结构设计、通信模式选择、信道分配策略、混合路由协议设计等诸多关键技术问题的解决办法普适性差。在充分分析和论证国内外研究现状的基础上,本文对多跳蜂窝混合网络的基站设置方法和性能问题进行了深入的研究。研究内容主要包括以下几个方面:
     第一,对多跳蜂窝混合网络基站设置方法的研究。针对二维情况下多跳蜂窝混合网络基站的最优设置问题,综合考虑网络连通性和网络QoS,定义了相应的评价函数,根据网络节点的分布,提出了相应的基站设置方法,通过分析不同基站设置方法的特点,提出了基于网络统计特征的基站设置方法,仿真结果证明了其有效性。综合上述分析,提出了平衡网络连通性和网络QoS的优化基站设置方法。
     第二,对多跳蜂窝混合网络的网络容量和网络覆盖进行了理论上的定量分析。首先,在网络容量方面,提出了多跳蜂窝混合网络端到端的的容量域模型,为描述网络容量提供了一个数学框架。基于此框架,推导出了多跳蜂窝混合网络容量的解析表达式,并为最佳路由策略提供了理论支持。其次,在网络覆盖方面,通过对覆盖问题进行数学建模,推导出了基于两跳接入的多跳蜂窝混合网络的中继节点获得概率、呼叫阻塞概率、呼叫中断概率的解析表达式,分析了各种参数对系统性能的影响。仿真结果表明,多跳蜂窝混合网络有效的提高了网络容量,降低了网络的呼叫阻塞概率和呼叫中断概率,增强了网络的覆盖。
     第三,对多跳蜂窝混合网络病毒传播行为的研究。通过对现实世界中病毒传播行为的分析,以SI模型为基础,提出了3种病毒和反病毒传播模型:SIF模型、A-SI模型、A-SIM模型,较好的描述了不同的病毒和传播行为及其控制方法与功能。基于图论的基本理论,分析了多跳蜂窝混合网络节点分布规律,并以此为基础对比了不同拓扑结构网络的病毒传播行为差异。针对多跳蜂窝混合网络中节点具有移动性和多跳通信能力的特点,分析了节点移动速率和最大跳数对病毒传播行为的影响。同时,通过不同病毒传播行为模型之间的对比,也分析了病毒传播行为的不同特征。最后,通过在基站侧引入反病毒功能,分析了反病毒功能对病毒传播的控制作用。通过对病毒和反病毒传播行为模型的研究,为更清楚的认识病毒,确定其在传播过程中的弱点,更精确的预测病毒所造成的损失,提高网络安全性提供了理论依据。
     第四,对多跳蜂窝混合网络路由协议的研究。基于最佳链路状态路由(OLSR,Optimized Link State Routing)协议,采用区域路由技术,提出了一种多跳蜂窝混合网络路由协议ACMR ( Adaptive Communication Mode Routing)。ACMR协议中节点采用OLSR协议维护区域内的路由信息,通过新增控制消息实现通信模式的选择、切换和与区域外的节点通信。该协议有效的结合了蜂窝网络和移动Ad hoc网络路由技术,减少了网络路由开销,提高了路由性能,能够智能的选择通信模式和灵活的在各种通信模式间切换。并且通过该协议的注册代理机制,可以实现负载的转移和均衡。具有较好的可用性。
Hybrid multi-hop and cellular network is the combination of cellular network and mobile Ad hoc network; it has cellular network’s reliability and mobile Ad hoc network’s flexibility through dynamic configuration. Forming local sub-network, implementation of virtual cellular extension and virtual cellular splitting, these make the network has the advantage of high adaptability and intelligence. By infrastructure-based cellular network supported, it can improve the connectivity of mobile Ad hoc network, avoid lots of routing overhead and wasting bandwidth in networks, resolve the limitation of network scale, increase the reliability and quality of communication between different node; through the self-organization and multi-hop relay ability of mobile Ad hoc network, it can reduce the bottleneck effect of base station in cellular network and balance the traffic, increase spatial reuse of frequency and capacity of network, make up for the leak of network coverage, improve the flexibility of network deployment, reduce the cost of network construction and operation. Hybrid multi-hop and cellular network is an important form of 4G or future wireless mobile communication system, can provide users with on-demand multi-level services, not only to meet the needs of the existing target market, but also contains a great commercial value and social benefits with a great deal of technical and market potential.
     Hybrid multi-hop and cellular network deal with the combination of the two distinct networks, thus, for network performance, it is still a lack of accurate and effective evaluation and quantitative analysis. Many key technology solutions is a problems of poor universal, such as network architecture design, communications mode selection, channel assignment strategy, the design of hybrid routing protocol and so on. Based on comprehensive collection of existing research solution in and beyond the country, the thesis makes an intensive study of base station layout method and network performance for hybrid multi-hop and cellular network. The work content includes four parts as follow:
     1. Research on layout of base station in hybrid multi-hop and cellular network. Aim at optimized layout of base station in 2-D hybrid multi-hop and cellular network, considerate of connectivity and QoS of network, defined the evaluation functions, and presented the methods of base station layout that based on nodes distribution in network. Through analysis of characteristics in different methods of base station layout, presented methods of base station layout that based on statistical characteristics of network, and proved the efficiency by simulation results. Finally, the optimized method of base station layout for balancing the connectivity and QoS of network is proposed.
     2. Quantitative performance analysis of network capacity and network coverage for hybrid multi-hop and cellular network. First, in network capacity respect, the thesis presented the model of hybrid multi-hop and cellular network end-to-end capacity region, this provided a mathematical framework for describing network capacity. Based on the framework, the analytical expression of hybrid multi-hop and cellular network capacity is derived, and presented theoretical support for the best routing protocol. Second, in network coverage respect, by the thesis derived the analytical expressions of relay node achieving probability, call blocking probability and call dropping probability in two-hop access hybrid multi-hop and cellular network, at the same time, the effects of parameters on the performance of system are analyzed The simulation results shows, the hybrid multi-hop and cellular network can improve the capacity of network effectively, reduce the call blocking probability and call dropping probability, enhance the coverage of network.
     3. Characteristic analysis of virus spreading behavior in hybrid multi-hop and cellular network. By means of study on virus spreading in real world, based on SI model, presented three models of virus and anti-vrius spreading: SIF model, A-SI model and A-SIM model, these models effectively depict the different behavior and control method of virus spreading. Based on the graph theory, the thesis analyzed the distribution law of nodes in hybrid multi-hop and cellular network, and compared the difference in virus spreading for different network topological structure. Aim at the characteristics of mobility and multi-hop communication which hybrid multi-hop and cellular network nodes have, the impact of the speed of node and maximum number of hops on virus spreading are analyzed. At the same time, behavior of different virus spreading model are also analyzed and compared. Finally, by involved anti-virus feature in base station, the thesis analyzed the control impact on virus spreading in this environment. These researches make a better idea of virus, find out the weakness of virus spreading, accurately predicts the loss that made by virus and improves network security.
     4. Study on routing protocol for hybrid multi-hop and cellular network. Based on optimized link State routing protocol (OLSR), a new adaptive communication mode routing protocol ACMR for hybrid multi-hop and cellular network is proposed. By the proactive property of OLSR, node maintenance routing information in its zone through OLSR protocol, and communicates with another node within its zone directly. By use of adding new control message, node communicates with another node beyond its zone, and realizes the selection and switching of communication model. The protocol effectively reduces the overhead of network routing, improves the performance of routing, selects and switches communication model flexibly and intellectually. Besides, transfer and balance traffic are realized by registration agent mechanism. The simulation results shows, this protocol has a good usability in many aspects.
引文
1 M. Inoue, K. Mahmud, H. Murakami, et al. Novel out-of-band Signaling for Seamless Internetworking between Heterogeneous Networks. IEEE Wireless Communications. 2004, 11(2): 56~63
    2 Zhao Dongmei, T. D. Todo. Real-time Traffic Support in Relayed Wireless Access Networks Using IEEE 802.11. IEEE Wireless Communications. 2004, 11(2): 32~39
    3 J. McNair, Fang Zhu. Vertical Handoffs in Fourth-Generation MultiNetwork Environments. IEEE Wireless Communications. 2004, 11(3): 8~15
    4 I. Gruber, Li Hui. A Novel Ad hoc Routing Algorithm for Cellular Coverage Extension. 11th International Telecommunications Network Strategy and Planning Symposium, June 2004: 163~168
    5 Zhu Danyu, M. W. Mutka, Cen Zhiwei. QOS Aware Wireless Bandwidth Aggregation (QAWBA) by Integrating Cellular and Ad hoc Networks. Proceedings of First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, 2004: 156~163
    6刘韵洁.下一代网络的发展趋势—融合与开放.电信科学. 2005, 21(2): 1~6
    7 Wu Xiaoxin, B. Mukherjee, D. Ghosal. Hierarchial Architectures in the Third-Generation Cellular Network. IEEE Wireless Communications. 2004, 11(3): 62~71
    8 Z. J. Hass. Wireless Ad Hoc Networks. Encyclopedia of Telecommunications. John Wiley, 2002: 221~256
    9曹常义. Ad hoc技术.电信工程技术与标准化. 2002, 8: 13~19
    10赵志峰,郑少仁. Ad hoc网络.中国数据通信. 2002, 9: 1~5
    11赵志峰,郑少仁. Ad hoc网络技术讲座第1讲Ad hoc网络的体系结构和信道接入协议.中国数据通信. 2002, 12: 84~90
    12 Z. J. Hass. Wireless Ad Hoc Networks. IEEE Selected Areas in Communications. 1999, 17(8): 1329~1330
    13 Jie Wu, Hailan Li. Domination and its Applications in Ad Hoc Wireless Networks with Unidirectional Links. Proceedings of International Conference on Parallel Processing, 2000: 189~197
    14 R. E. Van Dyck, L.E. Miller. Distributed Sensor Processing over an Ad Hoc Wireless Network: Simulation Framework and Performance Criteria. Military Communications Conference, 2001, 2: 894~898
    15 D. L. Gu, H. Ly, Xiaoyan Hong. C-ICAMA, a Centralized Intelligent Channel Assigned Multiple Access for Multi-layer Ad-hoc Wireless Networks with UAVs. IEEE Wireless Communications and Networking Confernce, 2000, 2: 879~884
    16 A. B. McDonald, T. Znati. A Path Availability Model for Wireless Ad-hoc Networks. Wireless IEEE Communications and Networking Conference, 1999, 1: 35~40
    17刘俊平,贺玉寅.美军演示新型通信系统-MOSAIC.外军电信动态. 2001, (4): 19~22
    18金万甲,张强.美军为“未来战斗系统”开发通信技术.外军电信动态. 2001, (3): 7
    19 S. Giordan, C. Rosenberg. Topics in Ad Hoc and Sensor Networks. IEEE Communications Magazine. 2005, 43(10): 92
    20 M. Katz, S. Shamai. Transmitting to Colocated Users in Wireless Ad Hoc and Sensor Networks. IEEE Transactions on Information Theory. 2005, 51(10): 3540~3563
    21 S. Giordano, C. Rosenberg. Ad Hoc and Sensor Networks. IEEE Communications Magazine. 2005, 43(7): 108
    22 S. H. Bae, S. J. Lee, M. Gerla. Multicast Protocol Implementation and Validation in an Ad Hoc Network Testbed. IEEE International Conference on Communications, 2001, 10: 3196~3200
    23 F. Meyer aufder Heide, U. Ruckert. Session 12: Mobile Ad Hoc Networks. Proceedings of 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002: 393
    24 Y. Mohamed, M. K. Gurcan, L. F. Turner. A Novel Resource Allocation Scheme for Ad Hoc Radio Local Area Networks. IEEE Vehicular Technology Conference, 4-7 May 1997, 2: 1301~1305
    25 M. R. Elizabeth, C. K. Toh. A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks. IEEE Personal Communications Magazine. 1999, 6(2): 46~55
    26 N. Asokan, P. Ginzboorg. Key Agreement in Ad Hoc Networks. Computer Communications. 2000, 23(17): 1627~1637
    27 A. Iwata, Ching-Chuan Chiang. Scalable Routing Strategies for Ad Hoc WirelessNetworks. IEEE Journal on Selected Areas in Communications. 1999, 17(8): 1369~1379
    28 J. Rabaey, M. J. Ammer, J. L. da Silva Jr, et al. PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. IEEE Computer. 2000,33(7):42~48
    29英春,史美林.自组网体系结构研究.通信学报. 1999, 20(9): 47~54
    30 M. R. Thoppian, R. Prakash, A Distributed Protocol for Dynamic Address Assignment in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing. 2006, 5(1): 4~19
    31 A. Yousef, H. Al-mahdi, A. Mitschele-Thiel. Analytical Model of the Address Auto-Configuration Protocol LHA in Ad hoc Networks. 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, 2008: 30~34
    32张治,戴冠中,陈旿等.移动自组网的动态编址问题.计算机应用. 2005, 25(7): 1502~1508
    33 S. Eidenbenz, G. Resta, P. Santi. The COMMIT Protocol for Truthful and Cost-Efficient Routing in Ad Hoc Networks with Selfish Nodes. IEEE Transactions on Mobile Computing. 2008, 7(1): 19~33
    34 H. Gharavi. Multichannel Mobile Ad Hoc Links for Multimedia Communications. Proceedings of the IEEE. 2008, 96(1): 77~96
    35 N. Wisitpongphan, Fan Bai, P. Mudalige, et al. Routing in Sparse Vehicular Ad Hoc Wireless Networks. IEEE Journal on Selected Areas in Communications. 2007, 25(8): 1538~1556
    36 M. Carvalho. Security in Mobile Ad Hoc Networks. IEEE Security & Privacy. 2008, 6(2): 72~75
    37 Jie Liu; F. R. Yu, Chung-Horng Lung, et al. Optimal Combined Intrusion Detection and Biometric-based Continuous Authentication in High Security Mobile Ad hoc Networks. IEEE Transactions on Wireless Communications. 2009, 8(2): 806~815
    38 Du Xiaojiang; M. Guizani, Xiao, Yang, et al. Transactions Papers a Routing-Driven Elliptic Curve Cryptography based Key Management Scheme for Heterogeneous Sensor Networks. IEEE Transactions on Wireless Communications. 2009, 8(3): 1223~1229
    39 A. Abdrabou, Zhuang Weihua. Statistical QoS Routing for IEEE 802.11 Multihop Ad Hoc Networks. IEEE Transactions on Wireless Communications. 2009, 8(3):1542~1552
    40 Qing Chen, Qian Zhang, Zhisheng Niu. QoS-Aware Cooperative and Opportunistic Scheduling Exploiting Multiuser Diversity for Rate-Adaptive Ad Hoc Networks. IEEE Transactions on Vehicular Technology. 2008, 57(2): 1113~1125
    41 ZhengMing Shen, J. P. Thomas. Security and QoS Self-Optimization in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing. 2008, 7(9): 1138~1151
    42 H. Zhai, X. Chen, Y. Fang. Improving Transport Layer Performance in Multihop Ad Hoc Networks by Exploiting MAC Layer Information. IEEE Transactions on Wireless Communications. 2007, 6(5): 1692~1701
    43 A. H. Mohsenian-Rad, Jianwei Huang, Mung Chiang, et al. Utility-Optimal Random Access: Reduced Complexity, Fast Convergence, and Robust Performance. IEEE Transactions on Wireless Communications. 2009, 8(2): 898~911
    44 Hangguan Shan, Weihua Zhuang, Zongxin Wang. Distributed Cooperative MAC for Multihop Wireless Networks. IEEE Communications Magazine. 2009, 47(2): 126~133
    45陈年生,李腊元,孙强.基于分层结构的Ad Hoc多播路由算法.计算机工程. 2005, 31(16): 110~112
    46 R. Gandhi, A. Mishra, S. Parthasarathy. Minimizing Broadcast Latency and Redundancy in Ad Hoc Networks. IEEE/ACM Transactions on Networking. 2008, 16(4): 840~851
    47 Ge-Ming Chiu, Cheng-Ru Young. Exploiting In-Zone Broadcasts for Cache Sharing in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing. 2009, 8(3): 384~397
    48 Chao Liang, K. R. Dandekar. Power Management in MIMO Ad Hoc Networks: A Game-Theoretic Approach. IEEE Transactions on Wireless Communications. 2007, 6(4): 1164~1170
    49 Kim Jong-Kook, Siegel Howard Jay, Maciejewski Anthony A, et al. Dynamic Resource Management in Energy Constrained Heterogeneous Computing Systems Using Voltage Scaling. IEEE Transactions on Parallel and Distributed Systems. 2008, 9(11): 1445~1457
    50 Song Guo, Oliver Yang, Localized Operations for Distributed Minimum Energy Multicast Algorithm in Mobile Ad Hoc Networks. IEEE Transactions on Paralleland Distributed Systems. 2007, 18(2): 186~198
    51杨涛,吴树兴,吴伟陵.矩形多跳蜂窝结构及其容量分析.电子测量技术. 2006, 29(1): 69~70
    52 M. ROSSI, L. BADIA, P. GIACON. On the Effectiveness of Logical Device Aggregation in Multi-radio Multi-hop Networks. 2005 International Conference on Wireless Networks, Communications and Mobile Computing, 2005: 354~361
    53 J. Gomez, A. T. Campbell, M. Naghshineh, et al. PARO: Supporting Dynamic Power Controlled Routing in Wireless Ad hoc Networks. Wireless Networks. 2003, 9(5): 443~460
    54 S. Weber, X. Yang, J. G. Andrews, G. de Veciana. Transmission Capacity of Ad Hoc Networks with Outage Constraints. IEEE Transaction on Information Theory. 2005, 51(12): 4091~4102
    55 S. P. Weber, J. G. Andrews, X. Yang, G. de Veciana. Transmission Capacity of Wireless Ad Hoc Networks with Successive Interference Concellation. IEEE Transactions on Information Throy. 2007, 53(8): 2799~2814
    56 3GPP. Opportunity Driven Multiple Access (ODMA). Tech. Rep. 3G TR25.924, 1999
    57 N. George, T. Rahim. On the Relaying Capability of Next-Generation GSM Cellular Networks. IEEE Personal Communications. 2001, 8(1): 40~47
    58 Hongyi Wu, Chunming Qiao, Swades De, et al. Integrated Cellular and Ad Hoc Relaying Systems: iCAR. IEEE Journal on Selected Areas in Communications. 2001, 10(19): 2105~2115
    59 H. Wu, C. Qiao, O. Tonguz. Performance Analysis of iCAR (Integrated Cellar and Ad-hoc Relay System). IEEE International Communications Conference, 2001, 2: 450~455
    60 Swades De, Ozan Tonguz, Hongyi Wu, Chunming Qiao. Integrated Cellular and Ad Hoc Relay (iCAR) Systems Pushing the Performance Limits of Conventional Wireless Networks. IEEE Proceedings of HICSS, 2002, 6: 3899~3906
    61 Haiyun Luo, R. Ramjee, P. Sinha, et al. UCAN: A Unified Cellular and Ad Hoc Network Architecture. Proceedings of MOBICOM’03, San Diego, CA. 2003, 9: 353~367
    62 Haiyun Luo, Xiaqiao Meng, Ram Ramjee, et al. The Design and Evaluation of Unified Cellular and Ad Hoc Networks. IEEE Transactions on Mobile Comuputing. 2007, 6(9): 1060~1074
    63 A. N. Zadeh, B. Jabbari, R. Pickholtz, et al. Self-organizing Packet Radio AdHoc Networks with Overlay (SOPRANO). IEEE Communications Magazine. 2002, 40: 149~157
    64 H. Y. Hsieh, R. Sivakumar. A Hybrid Network Model for Cellular Wireless Packet Data Networks. IEEE proceedings of GLOBECOM2002, Taipei, 2002: 971~975
    65 J. Zhou, R. Yang. PARCelS: Pervasive Ad-hoc Relaying for Cellular Systems. Proceedings of Med-Hoc-Net, Sardegna, 2002
    66 X. Wu, S. H. G. Chan, B. Mukherjee. MADF: A Novel Approach to Add an Ad Hoc Overlay on a Fixed Cellular Infrastructure. Proceedings of IEEE WCNC, 2000: 23~28
    67 H. Y. Hsieh, R. Sivakumar. Performance Comparison of Cellular and Multi Hop Wireless Network: A Quantitative Study. Proceedings of ACM SIGMETRICS, 2001: 113~122
    68 K. J. Kumar, B. S. Manoj, C. Siva Ram Murthy. MuPAC: Multi-Power Architecture for Packet Data Cellular Networks. Proceedings of IEEE PIMRC, 2002: 1670~1674
    69 B. S. Manoj, D. C. Frank, C. Siva Ram Murthy. Throughput Enhanced Wireless in Local Loop (TWiLL) - The Architecture, Protocols, and Pricing Schemes. ACM Mobile Computing and Communication Review. 2003: 95~116
    70 Y. D. Lin, Y. C. Hsu. MultiHop Cellular: A New Architecture for Wireless Communications. Proceedings of IEEE INFOCOM, 2000: 1273~1282
    71尤肖虎.我国未来移动通信研究发展展望.通讯世界. 2003, 8(12): 57~58
    72 S. Paolo, M. Douglas, F. V. Blough. A Probabilistic Analysis for the Range Assignment Problem in Ad Hoc Networks. Proceedings of ACM MobiHoc, 2001: 212~220
    73 Dan Yu, Hui Li. On the Definition of Ad Hoc Network Connectivity. Proceedings of ICCT, 2003: 990~994
    74盛敏,史琰,田野等.移动Ad Hoc网络的k连通性研究.电子学报. 2008, 36(10): 1857~1861
    75 S. Narayanaswamy, V. Kawadia, R.S. Sreenivas, et al. Power Control in Ad Hoc Networks: Theory, Architecture, Algorithm and Implementation of the COMPOW Protocol. Proceedings of European Wireless Conference, 2002: 156~162
    76 P. Gupta, P. R. Kumar. Critical Power for Asymptotic Connectivity in Wireless Networks. Proceedings of the 37th IEEE Conference on Decision and Control,Dec. 1998, 1: 1106~1110
    77 Peng-Jun Wan, Chih-Wei Yi. Asymptotic Critical Transmission Radius and Critical Neighbor Number for k-Connectivity in Wireless Ad Hoc Networks. Proceedings of ACM MobiHoc, 2004: 1~8
    78 S. Paolo. The Critical Transmitting Range for Connectivity in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing. 2005, 3(4): 310~317
    79 K. Watanabe, K. Nakano, H. Tamura, et al. The Issue of Locating Repeaters in a Mobile Communication Network with Multi-Hop Type. Proceedings of the 1997 IEICE General Conference, B-5-231, Mar. 1997 (in Japanese)
    80 O. Dousse, P. Thiran, M. Hasler. Connectivity in Ad-hoc and Hybrid Networks. IEEE INFOCOM, 2002, 2: 1079~1088
    81 S. Maruyama, K. Nakano, K. Meguro, et al. On Location of Relay Facilities to Improve Connectivity of Multi-hop Wireless Networks. Proceedings of 10th IEEE Conference on APCC/MDMC, 2004, 2: 749~753
    82 K. Nakano, Y. Shirai, M. Sengoku, et al. On Connectivity and Mobility in Mobile Multi-hop Wireless Networks. Proceedings of IEEE VTC, Jeju, Korea, 2003, 4: 2271~2275
    83 P. Gupta, P. R. Kumar. The Capacity of Wireless Networks. IEEE Transaction on Information Theory. 2000, 46(2): 388~404
    84 B. Liu, Z. Liu, D. Towsley. On the Capacity of Hybrid Wireless Networks. Proceedings of the IEEE INFOCOM’03, 2003, 2: 1543~1552
    85 S. Toumpis. Capacity Bounds for Three Classes of Wireless Networks: Asymmetric, Cluster, and Hybrid. Proceedings of the ACM MobiHoc, 2004: 133~144
    86 A. Zemlianov, G. de Veciana. Capacity of Ad Hoc Wireless Networks with Infrastructure Support. IEEE Journal on Selected Areas of Communications. 2005, 23(3): 657~667
    87 U. C. Kozat, L. Tassiulas. Throughput Capacity of Random Ad Hoc Networks with Infrastructure Support. ACM MobiCom’03, San Diego, 2003: 55~65
    88 A. Agarwal, P. Kumar. Capacity Bounds for Ad Hoc and Hybrid Wireless Networks. ACM Computer Communications Review. 2004, 34(3): 71~81
    89 Benyuan Liu, Patrick Thiran, Don Towsley. Capacity of a Wireless Ad Hoc Network with Infrastructure. Proceedings of the 8th ACM international symposium on Mobile Ad hoc Networking and Computing, 2007: 239~246
    90 M. Franceschetti, O. Dousse, D. Tse, et al. Closing the Gap in the Capacity ofRandom Wireless Networks via Percolation Theory. IEEE Transactions on Information Theory, 2007, 53(3): 1009~1018
    91 S. Toumpis, A. J. Goldsmith. Capacity Regions for Wireless Ad Hoc Networks. IEEE Transactions on Wireless Communications. 2003, 2(4): 736~748
    92涂来,王芙蓉,张剑等.基于多跳蜂窝网的合群网络模型网络容量效能分析.通信学报. 2008, 29(2): 45~51
    93 A. Radwan, H. S. Hassanein. Capacity Enhancement in CDMA Cellular Networks Using Multi-hop Communication. Proceedings of the 11th IEEE Symposium on Computers and Communications, 2006: 832~837
    94 A. Radwan, H. S. Hassanein. On the Capacity of Multi-hop CDMA Cellular Networks. Proceedings of the 12th IEEE Symposium on Computers and Communications, 2007: 409~414
    95刘莉,冯玉珉,付立.分层蜂窝Ad hoc混合网络的建模与性能分析.铁道学报. 2008, 30(4): 108~111
    96 S. Feizi-Khankandi, F. Ashtiani. Lower and Upper Bounds for Throughput Capacity of a Cognitive Ad Hoc Network Overlaid on a Cellular Network. Wireless Communications and Networking Conference, 2008: 2759~2764
    97 K. R. Jacobson, W. A. Krzymien. Multi-Hop Relaying and MIMO Techniques in Cellular Systems - Throughput Achievable on Rayleigh/Ricean Channels. Proceedings of the Global Communications Conference, IEEE GLOBECOM, 2008: 3996~4000
    98 H. Wu, S. De, C. QIAO, et al. Hand-off Performance of the Integrated Cellular and Ad Hoc Relaying (iCAR) System. Wireless Networks. 2005, 11(6): 775~785
    99 Xu Zhaoji, Hu Nan, He Zhiqiang. Call Dropping and Blocking Probability of the Integrated Cellular Ad hoc Relaying System. Proceedings of Global Telecommunications Conference, IEEE GLOBECOM, 2008: 1~6
    100 A. Tanaka, K. Nakano, M. Sengoku, et al. Analysis of Communication Traffic Characteristics of a Cellular System with Ad Hoc Networking. IEICE Transactions on Communications. 2002, J85-B(12): 2063~2072
    101 J. Yap, X. Yang, S. Ghaheri-niri, et al. Position Assisted Relaying and Handover in Hybrid Ad Hoc WCDMA Cellular Systems. Proceedings of IEEE PIMRC, Lisbon, 2002: 2194~2198
    102 P. Khadivi, T. D. Todd, S. Samavi, et al. Mobile Ad Hoc Relaying in Hybrid WLAN/Cellular Systems for Dropping Probability Reduction. Proceedings of the9th CDMA International Conference, Korea, 2004: 25~28
    103 M. He, T. D. Todd, D. Zhao, et al. Ad Hoc Assisted Handoff for Real-time Voice in IEEE 802.11 Infrastructure WLAN. Proceedings of the IEEE WCNC, 2004: 201~206
    104 H. C. Chao, C. Y. Huang. Micro-mobility Mechanism for Smooth Handoffs in an Integrated Ad-hoc and Cellular IPv6 Network under High-speed Movement. IEEE Transactions on Vehicular Technology. 2003, 52(6): l576~1593
    105鲁蔚锋,吴蒙.盲区环境下集成移动蜂窝和ad hoc网络的系统性能分析.通信学报. 2008, 28(7): 70~79
    106 Wei-feng Lu, Meng Wu. Analysis of Communication Traffic Characteristics of Two-hop-relay Cellular System in the Dead Spots. 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007, 2: 540~545
    107陈曦.自组织蜂窝通信系统若干关键技术研究.解放军信息工程大学博士论文. 2007, 6
    108 R. Verdone, V. Corvino, J. Orriss. A Hierarchical Hybrid Network Model. 6th IEE International Conference on 3G and Beyond, 2005: 429~433
    109鲁蔚锋,吴蒙.两跳中继WCDMA蜂窝系统的性能分析.电子与信息学报. 2008, 30(11): 2552~2555
    110 Li Xujie, Shen Lianfeng. Improving TD-SCDMA System Performance Using Ad Hoc Relaying. International Conference on Microwave and Millimeter Wave Technology, 21-24 April 2008, 4: 1964~1967
    111 B. Bhargava, Wu Xiaoxin, Lu Yi, et al. Integrating Heterogeneous Wireless Technologies: A Cellular Aided Mobile Ad Hoc Network (CAMA). Mobile Networks and Applications. 2004, 9(4): 393~408
    112 Kun Wang, Meng Wu, Pengrui Xia, et al. A Sceure Authentication Scheme for Integration of Cellular Networks and MANETs. IEEE International Conference Neural Networks & Signal Processing, 2008: 315~319
    113 B. Carbunar, I. Ioannidis, C. Nita-Rotaru. JANUS: Towards Robust and Malicious Resilient Routing in Hybrid Wireless Networks. Proceedings of the ACM Workshop on Wireless Security, 1 Oct. 2004: 11~20
    114 O. Kachirski, R. Guha. Intrusion Detection Using Mobile Agents in Wireless Ad Hoc Networks. Proceedings of IEEE Worhshop on Knowledge Media Networking, 10-12 Jul. 2002: 153~158
    115 S. Marti, T. J. Giuli, K. Lai, et al. Mitigating Routing Misbehavior in Mobile Ad Hoc Networks. Proceedings of 6th Annual International Conference on Mobile Computing and Networking, 6-11 Aug. 2000: 255~265
    116 W. O. Kermack, A. G. McKendrick. Contributions to the Mathematical Theory of Epidemics. Proc. Roy. Soc., 1927, A115: 700~721
    117 J. Kephart, S. White. Directed-graph Epidemiological Models of Computer Viruses. Proceedings of the IEEE Computer Symposium on Research in Security and Privacy, May 1991: 343~359
    118 C. Zou, W. Gong, D. Towsley. Code Red Worm Propagation Modeling and Analysis. ACM Conference on Computer and Communications Security, Nov. 2002: 138~147
    119 C. Zou, W. Gong, D. Towsley. Worm Propagation Modeling and Analysis under Dynamic Quarantine Defense. ACM Workshop on Rapid Malcode, Oct. 2003: 51~60
    120 R. Pastor-Satorras, A. Vespignani. Epidemic Spreading in Scale-Free Networks. Physical Review Letters. 2001, 86(14): 3200~3203
    121 Qiang Hu, Xi Zhang, D. Saha. Modeling Virus and Anti-Virus Dynamics in Topology-Aware Networks. IEEE GLOBECOM, 2004, 4: 2077~2081
    122 Xi Zhang, D. Saha, H. H. Chen. Analysis of Virus and Anti-Virus Spreading Dynamics. IEEE GLOBECOM, 2005, 3: 1822~1826
    123 Xi Zhang, K. C. Tadi. Modeling Virus and Antivirus Spreading Over Hybrid Wireless Ad Hoc and Wired Networks. IEEE GLOBECOM, 2007: 951~955
    124 J. W. Mickens, B. D. Noble. Modeling Epidemic Spreading in Mobile Enbironments. Proceedings of the 4th ACM workshop on Wireless Security, 2005: 77~86
    125 Sunho Lim, Chansu Yu, C. R. Das. Clustered Mobility Model for Scale-Free Wireless Networks. Proceedings of 31st IEEE Conference on Local Computer Networks, 2006: 231~238
    126夏玮,李朝晖,陈增强等.带有预防接种的手机蓝牙病毒传播模型.天津大学学报. 2007, 40(12): 1426~1430
    127夏玮,李朝晖,陈增强等.基于速度分段的手机蓝牙病毒传播模型.计算机工程. 2008, 34(9): 10~12
    128温罗生,钟将.移动电话病毒的传播模型研究.计算机应用. 2008, 28(11): 2814~2816
    129陈晓江,赵跃辉,吴传生.手机病毒传播模型仿真研究.武汉理工大学学报. 2009, 31(1): 8~11
    130 Hung-Yun Hsieh, R. Sivakumar. Towards a Hybrid Network Model for Wireless Packet Data Networks. Proceedings of the 7th IEEE ISCC, 2002, 7: 264~271
    131 Y. Park, E. S. Jung. Resource-Aware Routing Algorithms for Multi-hop Cellular Networks. IEEE International Conference on Multimedia and Ubiquitous Engineering, 2007: 1164~1167
    132 Y. D. Lin, Y. C. Hsu, K. W. Oyang, et al. Multihop Wireless IEEE 802.11 LANs: A Prototype Implementation. Journal of Communications and Networks. 2000, 2(4): 59~65
    133 R. Ananthapadmanabha, B. S. Manoj, C. S. R. Murthy. Multihop Cellular Networks: The Architecture and Routing Protocol for Best-Effort and Real-Time Communication. Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Conference. San Diego, 2001, 2: 78~82
    134 V. Sekar, B. S. Manoj, C. S. R. Murthy. Routing for a Single Interface MCN Architecture and Pricing Schemes for Data Traffic in Multihop Cellular Networks. Proceedings of the IEEE International Conference on Communications, 2003, 2:969~973
    135 E. H. K. Wu, Y. Z. Huang, J. H. Chiang. Dynamic Adaptive Routing for Heterogeneous Wireless Network. IEEE Conference on Global Telecommunications, Nov. 2001: 3608~3612
    136 E. H. K. Wu, Y. Z. Huang. Dynamic Adaptive Routing for a Heterogeneous Wireless Network. Mobile Networks and Applications. 2004, 9(3): 219~233
    137 C. Qiao, H. Wu, O. K. Tonguz. Load Balancing via Relay in Next Generation Wireless Systems. IEEE Workshop on Mobile Ad Hoc Networking and Computing, 2000: 149~150
    138 E. Yanmaz, O. K. Tonguz. Efficient Dynamic Load Balancing Algorithms Using iCAR Systems: A Generalized Framework. Proceedings of IEEE Vehicular Technology Conference, 2002, 1: 586~590
    139 Yumin Wu, Kun Yang, Jie Zhang. An Adaptive Routing Protocol for an Integrated Cellular and Ad-hoc Network with Flexible Access. Proceedings of ACM IWCMC, 2006: 263~268
    140 C. S. Wijting, R. Prasad. Evaluation of Mobile Ad-hoc Network Techniques in a Cellular Network. Proceedings of IEEE Vehicular Technology Conference, 2000, 3: 1025~1029
    141朱峥,安珊珊.多跳蜂窝网互连性研究.信息技术. 2007, (10):17~19
    142杨晋宁,王文延.一种Ad Hoc和蜂窝混合网络路由算法的改进.网络安全技术与应用. 2008, (5): 37~38
    143 I. Ioannidis, B. Carbunar. Scalable Routing in Hybrid Cellular and Ad-Hoc Networks. IEEE International Conference on Mobile Ad-hoc and Sensor Systems, 2004: 522~524
    144戴劲,邱玲.一种快速蜂窝多跳网路由算法.无线通信技术. 2008, (1): 37~41
    145 I. Gruber, G. Bandouch, H. Li. Ad Hoc Routing for Cellular Coverage Extension. Proceedings of IEEE Vehicular Technology Conference, 2003, 3: 1816~1820
    146 Ze Li, Haiying Shen. An Efficient Routing Protocol to Increase the Communacation Reliability of Multi-hop Cellular Networks. IEEE MILCOM, 2008: 1~7
    147 Rui Zhou, Hoang Nam Nguyen, I. Sasase. Packet Scheduling for Cellular Networks with Relaying to Support User QoS and Fairness. Proceedings of IEEE WCNC, 2007: 3899~3903
    148 Jiajia Wang, Mei Song, Xiaosu Zhan, et al. An Adaptive Mode Select Mechanism between Multi-hop and Cellular Networks. IEEE ICPCA, 2008: 812~815
    149 R. S. Chang, W. Y. Chen, Y. F. Wen. Hybrid Wireless Network Protocols. IEEE Transactions on Vehicular Technology. 2003, 52(4): 1099~1108
    150 R. Zoican, D. Galatchi. Mobility in Hybrid Networks Architectures. 7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, 2005, 1: 273~276
    151 Yu Wang, Weizhao Wang, T. A. Dahlberg. Truthful Routing for Wireless Hybrid Networks. Proceedings of IEEE GLOBECOM, 2005: 3461~3465
    152 N. Ben Salem, L. Buttyan, J. P. Hubaux, et al. Node Cooperation in Hybrid Ad Hoc Networks. IEEE Transactions on Mobile Computing. 2006, 4(5): 365~376
    153 H. Y. Wei, R. Gitlin. Two-hop-relay Architecture for Next-Generation WWAN/WLAN Integration. IEEE Wireless Communications. 2004, 11(2): 24~30
    154 N. Leavitt. Mobile Phones: The Next Frontier for Hackers. IEEE Computer. 2005, 38(4): 20~23
    155 R. Albert, A. L. Barabási. Statistical Mechanics of Complex Networks. Reviews of Modern Physics. 2002, 74: 47~97
    156 M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Review. 2003, 45(2): 167~256
    157 D. J. Watts, S. H. Strogatz. Collective Dynamics of‘Small-World’Networks. Nature. 1998, 393(6684): 440~442
    158 M. E. J. Newman, D. J. Watts. Renormalization Group Analysis of the Small-World Network Model. Physics Letters A. 1999, 263: 341~346
    159 M. E. J. Newman, D. J. Watts. Scaling and Percolation in the Small-World Networks Model. Physics Reviews E. 1999, 60(6): 7332~7342
    160 M. E. J. Newman, C. Moore, D. J. Watts. Mean Field Solution of the Small-World Network Model. Physics Reviews Letters. 2000, 84(14): 3201~3204
    161 A. L. Barabási, R. Albert. Emergence of Scaling in Random Networks. Science. 1999, 286: 509~512
    162 L. A. N. Amaral, A. Scala, M. Barthélémy, et al. Classes of Small-World Networks. PNAS. 2000, 97(21): 11149~11152
    163 A. Fronczak, P. Fronczak, J. A. Holyst. Mean-field Theory for Clustering Coefficients in Barabási-Albert Networks. Physics Reviews Letters E. 2003, 68(4): 046126
    164 A. L. Barabási, R. Albert, H. Jeong. Mean-field Theory for Scale-Free Random Networks. Physica A: Statistical Mechanics and its Applications. 1999, 272(1-2): 173~187
    165 A. P. Jardosh, E. M. Belding-Royer, K. C. Almeroth, et al. Real-world Environment Models for Mobile Network Evaluation. IEEE Journal on Selected Areas in Communications. 2005, 23(3): 622~632
    166时锐,杨孝宗.自组网Random Waypoint移动模型节点空间概率分布的研究.计算机研究与发展. 2005, 42(12): 2056~2062
    167涂来,王芙蓉,张帆等.随机路点运动模型合群特性研究.华中科技大学学报. 2008, 36(1): 8~11
    168 J. M. Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000: 163~170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700