用户名: 密码: 验证码:
参数化设计中的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕参数化设计中涉及到的几何约束求解、多解问题处理、自动特征识别、数字水印等问题从以下几个方面展开研究。
     (1)提出了一种新的基于剩余自由度分析的约束系统分解算法。该算法充分考虑约束系统中图形元素优先级,对分解后的子图采用规约化方法求解,能够实现约束系统的最大分解,并且可以处理欠约束系统的分解问题。
     (2)提出了一种多解问题的选择算法。将约束分成两个集合,一个是原约束系统,另一个是增加的额外约束,求解器求解出全部的解后,利用启发式算法,搜索全部解空间,使增加的约束得到最大化满足。从而将解的寻找转化为约束问题满足的寻优过程。
     (3)提出了一种基于自组织神经网络的特征识别算法。在分析特征属性邻接图的基础上,根据特征的生成过程,建立特征森林,作为启发式信息,可以快速判断出相交特征。针对识别特征的规模动态确定自组织神经网络输入神经元的维数。并给出了一种矢量化算法。
     (4)提出了一种基于图分解和改进的误差放大BP神经网络算法对特征进行识别。在特征设计阶段保留基本的边界模型信息的同时构造特征历史树,特征历史树作为启发式信息供下游应用在特征提取,相交特征多重解释算法中提供决策依据。传统使用梯度下降原则的BP学习算法,在饱和区域容易出现收敛速度趋缓的问题,针对特征识别的具体应用提出一种新的基于误差放大的快速BP学习算法以消除饱和区域对后期训练的影响。本算法通过对权值修正函数中误差项的自适应放大,使权值的修正过程不会因饱和区域的影响而趋于停滞,从而使BP学习算法能很快地收敛到期望的精度值。
     (5)提出了一种基于整数小波变换的数字水印算法,水印嵌入到由网格顶点到网格中心的距离经整数小波变换后的系数中,距离值序列通过小波变换转成频域信号,在频域上加入水印,所以可以采取较大的水印强度而不会太影响网格外形,由此可以带来更高的鲁棒性。一方面:水印的影响分散到全局使得其不易被消除并且对仿射变换等大范围的扭曲变形敏感,另一方面整数小波变换能够在距离序列分解和重构过程中简化计算并使损失减少到零。
Parameterization design technique has become an effective way of the product initial design, product model, revision and multi-scheme comparison and dynamical design in the design process with its powerful sketch design and revision on the graphs by size-driven. And it has got people's more and more attention. Some foreign advanced CAD systems have had the functions of parameterization to a certain degree. It has already become one of the important symbols in modern CAD system that has a strong parameterization design capacity. How to efficiently communicate among different CAX systems is one of the most critical issues of product lifecycle modeling. Industrial field has urgent need for it, feature recognition is considered as the key technology to solve the problem.
     In this paper, several problems concerning the parameterization design are researched, such as geometric constraints solving, multi-solutions selecting, automatic feature recognition, and three-dimensional triangular meshes digital watermarking. Geometric constraints solving method based on direct graph, multi-solutins processing based on genetic algorithm and ant algorithm combined, feature recognition algorithm combing the graph decomposition method with an improved back propagation (BP) neural network based on enlarging error and self-organized neural network, watermark algorithm for three dimensional meshes based on integer wavelet transform are proposed.
     Th geometric graph is composed of the dot, line and circle or of combining of them in the two-dimensional planar. We can deal with well some kinds of under-constraints problem, when we make dot, line, and circle with different priorities by researching the under-constraints system. The new algorithm to decomposing the constraints system based on the analyzing residual degrees of freedom is proposed. This algorithm makes full use of the priorities of the graphic elements in the constraints system. Recursive operation is a high performance method to deal with the high coupling geometric constraints system. The system can be docomposed by recursive operation, and the scope of the system can also be reduced. The decomposed sub-graph can be decomposed maximization by recursive operation, and the under-constraint resolving problems can also be processed.
     Th multi-solutions problem exist commonly even in the well-constraints sytem. We should choose one group of the solution in accordance with the user's intent on the basis of the accepting or rejecting rules in the multi-solutions. The intelligent swarm algorithm is proposed to deal with the multi-solutions problem. The constraints are separated to two sets, the original constraint set and the additional constraint set. First, the solver finds out multiple solutions. Then genetic algorithm and ant algorithm are combined in the process of searching optimal solution. We adopt genetic algorithm in the former process to produce the initiatory distribution of information elements, and then ant algorithm in the latter process. The random colony is adopted in genetic algorithm, which can not only accelerate the convergence process of ant algorithm but also avoid the local best solution. The heuristic searching algorithm maximizes the fitness of the additional constraint set, thereby reaches the final result that can satisfy the user's expectation. The genetic algorithm has fast global convergence ability, but it is powerless when meeting the feedback information in the system. So it may do a large amount of redundancy iteration when solving the problem to a certain limit. So the capability of getting accurate solution is low. Ant algorithm is an aolgorithm simulating the true behaviors. Ant optimization algorithm is an iteration algorithm itself, but it isn't a simple iteration. The current iteration takes use of the previous iteration information. That is to say that it simulates the information positive feedback theory. Just because of the reciprocity of the positive and heuristic algorithms, the ant optimization algorithm has a strong global convergence. The ant algorithm is convergent in the best path by the accumulation and upgrading of information elements. It has the capability of distributed parallel global searching. But the information elements are deficient in initial stage and the solving process is slow. The ant genetic algorithm merges the ant algorithm and the genetic algorithm. The basic idea of the integration (genetic algorithm-ant algorithm) of the genetic algorithm and ant algorithm is that we adopt the genetic algorithm in the initial process of the algorithm and utilize the fast, randomness, global convergence property of the genetic algorithm fully. Its result is to produce the initial information distribution of the question. We adopt ant algorithm in the following process. In the situation that we have a certain initial information distribution, we fully utilize the capability of parallel, positive feedback, the high precision of ant algorithm. The algorithm in this paper uses the stochastic colony. It can quicken the speed of ant algorithm and can avoid getting into the lobal best solution in the course of solving. Because the genetic ant algorithm reduces the parameter adjusting, it can avoid large numbers of blindfold experiments.
     Feature recognition technology is is the key technology to the integration of CAD/CAM systems, and is the core to the product feature molding. Firstly, we should have the geometric informations to the product, when we recognize the features; secondly, we analyze the topology information of the geometric model, and then recognize the features. This means avoid the fussy definition of the features, and increase the automation of the designing. Feature recognition need a predefined feature set, then the analysizing results of the geometric model and the feature model can be correspond with each other. However, the problem of feature recognition is the variety of complex features in real work. It is not possible to define the feature library including all kinds of features. And the recognition of interacting features has also been found to be hard in most of the existing feature recognition systems, for the following reasons, some of the faces that correspond to a feature may be entirely absent, partially missing, or fragmented into several regions because of interactions. For example, simple primitive features such as slots, steps, blind slots, blind steps and pockets, which are uniquely defined in a syntactic pattern recognition system, lose their patterns when they interact, and hence may not be recognized. In this paper, we proposed a new method concerning the topology of the faces in an object, features are identified in a way which is very similar to the way the human brain performs the same process. Feature forest is created as the heuristic information based on the history of feature design. The topology of the object is transformed into an Attributed Adjacency Graph and with the feature forest then into a representation pattern that will be the input of a Self-Organized Artificial Neural Network (SOANN). The input of the neural dimensions is dynamic calculated based on the scale of the feature. This paper also presents an efficient method to recognizing standard, non-standard, and interacting features. A hybrid of graph-based and neural network recognition system is developed. The part information is taken from the B-rep solid date library then broken down into sub-graph. Once the sub-graphs are generated, they are first checked to see whether they match with the predefined feature library. If so, a feature vector is assigned to them. Otherwise, base faces are obtained as heuristic information and used to restore the missing faces, meanwhile, update the sub-graphs. The sub-graphs are transformed into vectors, and these vectors are presented to the neural network, which classifies them into feature classes. The scope of instances variations of predefined feature that can be recognized is very wide. A new BP algorithm based on the enlarging error is also presented.
     With the rapid development and wide use of multimedia and network technologies, How to efficiently communicate among different CAX systems is one of the most critical issues of product lifecycle modeling. However, the copyright protection method for CAD models are far from mature as that of other kinds of media, such as digital image, audio, vedio, and text. The traditional encryption technology the CAD models with greate limitations. In this paper, a three-dimensional triangular meshes digital watermarking algorithm based on integer wavelet transform is proposed. The distance between each vertex in the mesh to the center of the mesh has global geometric feature. The distance sequence has been transformed to the frequency domain from the spatial domain using integer wavelet transform, and then we embed a watermark into the frequency domain, and then transform it back to a digital signal in spatial domain using inverse integer wavelet transform. This new spatial domain signal represent s the new values of the distances after embedding a watermark. Finally, we modify the coordinates of the vertices making their distances to the mesh center satisfy these new values. Experiments show that this algorithm is both simple to implement and fairly robust against common mesh attacks such as mesh cropping, random noise added to the vertex coordinates etc.
引文
[1]Sutherland.Sketchpad.A Man-Machine Graphical Communication System.Proc.Of the Spring Joint Comp.Conference[C],1963,p.329-345.
    [2]M.Mantyla,D.Nau,J.Shah.Challenges in feature-based manufacturing research.Commun.ACM[J],1996,39(2),77-85.
    [3]J.Shah,M.Mantyla.Parametric and Feature-Based CAD/CAM.Wiley and Sons Inc.[R],New York,1995.
    [4]Kyprianou L K.Shape classification in computer aided design[D].Kings College,University of Cambridge,UK,1980.
    [5]J.J.Shah,M.Mantyla,D.Nau.Advances in Feature Based Manufacturing.Elsevier/North-Holland[R].Amsterdam.1994:33-45.
    [6]J.J.Shah.Assessment of Feature Technology.Computer Aided Design[J].1991,23(5):331-343
    [7]高署明 自动特征识别技术综述计算机学报[J]1998 21(3):281-288.
    [8]Henderson,M.R.and Anderson,D.C.,Computer recognition and extraction of form features:a CAD/CAM link.Computers in Industry[C],1984,5,329-339.
    [9]Joshi,S.and Chang,T.C.,Graph-based heuristics for recognition of machined features from a 3D solid model.Computer-Aided Design[J],1988,20(2),58-86.
    [10]Venuvinod,P.K.and Wong,S.Y.,A graph-based expert system approach to geometric feature recognition.Journal of Intelligent Manufacturing[J],1995,6,155-162.
    [11]GAO SM,Shah J J.Automatic Recognition of Interacting Machining Features Based on Minimal Condition Subgraph.Computer - Aided Design[J],1998,30(9):727-739.
    [12]Keyvan Rahrnani and Behrooz Arezoo,Boundary analysis and geometric completion for recognition of interacting machining features.Computer-Aided Design[J],2006,38(8):845-856.
    [13]Regli WC,Gupta SK,Nau DS.Extracting alternative machining features:An algorithmic approach.Res Eng Des[J]1995,7(3):173-92.
    [14]Kim Y,Wang E.Recognition of machining features for cast then machined pans.Comput Aided Design[J]2002,34:71-87.
    [15]Woo Y,Sakurai S.Recognition of maximal features by volume decomposition.Comput Aided Design [J]2002,34:195-207.
    [16]S Prabhakar,M R Henderson.Automatic form feature recognition using neural network based techniques on boundary representations of solid models[J].Computer-Aided Design,1992,24(7):381-393.
    [17]胡小平,杨世锡,谭建荣基于人工神经网络识别的特征自组织技术[J]计算机辅助设计与图形学学报,1999,11(4):335-339.
    [18]Ohbuchi R,Masuda H,Aono M.Watermarking three dimensional polygonal models through geometric and topological modifications[J]IEEE Journal on Selected Areas in Communications,1998,16(4):551-560.
    [19]Wagner M.Robust watermarking of polygonal meshes[A].In Proceedings of Geometric Modeling and Processing,Hong Kong,2000,201-208.
    [20]Aspert N,Drelie E,Maret Y,Steganography for three dimensional polygonal meshes Lecture Notes in Computer Science(Proceedings of Computer Graphics International 2006)[C],Vol.4035,510-517.
    [21]Praun Emil,Hoppe Hugues,Finkelstein Adam.Robust mesh watermarking[A].In Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,1999,49-56.
    [22]Ichikawa S,Chiyama H,Akabane K.Redundancy in 3D polygon models and its application to digital signature[J]International Journal of Algorithms,Data Structures and Techniques for Computer Graphics and Visualization,2002,10(1):225-232.
    [23]Ohbuchi R,et al.Watermarking 3D polygonal meshes in the mesh spectral domain[A].In:Proceedings of Graphics Interface 2001[C].Ontario,Canada,San Francisco:Morgan Kaufrnann Publisher,20011 9-17.
    [24]孙家广,陈玉健,辜凯宁.计算机辅助几何造型技术[M].北京:清华大学出版社,1999.
    [25]Sakurai H and Gossard D C.Shape feature recognition from 3D solid models.In:ASME Proc.Computers in Engineering[C],San Francisco,USA,1988,515-519.
    [26]Meeran S and Pratt M J.Automated feature recognition from 2D drawings[J].CAD,1993,25(1):7-17.
    [27]Pratt M J.Synthesis of an optimal approach to form feature modeling.In:ASME Proc.Computers in Engineering,San Francisco[C],USA,1988,263-274.
    [28]Rosen D W,Dixon J R and Finger S.Conversion of feature-based design representations using graph grammar parsing.Journal of Mechanical Design[J],ASME,1994,116(3):785-792.
    [29]Ludy S C,Dixon J R AND Simmons M K.Design with features:creating and using a feature data base.In:Proc[C].Computers in Mechanical Engineering Conference,Chicago,USA,1986,285-292.
    [30]Duffy M R and Dixon J R.Automating extrusion design:a case study in geometric and topological reasoning for mechanical design[J].CAD,1988,20(10):589-596.
    [31]Cunningham J and Dixon J R.Designing with features:the origin of features.In:ASME Pro.Computers in Engineering[J],San Francisco,USA,1988,237-243.
    [32]Shah J and Rogers M T.Feature based modeling shell:design and implementation.In:ASME Proc.Computers in engineering[J],San Francisco,USA,1988,255-261.
    [33]Shah J and Rogers M.Expert form feature modeling shell[J].CAD,1988,20(9):515-524.
    [34]Shah j.Assessment of features technology[J].CAD,1991,23(5):331-343.
    [35]Roy U,Liu C R and Woo T C.Review of dimensioning and tolerancing:representation and processing [J].CAD,1991,23(7):466-483.
    [36]段卫垠.特征造型的理论研究与实践[D].华中理工大学博士论文,1990.
    [37]刘鹤坤.基于特征产品定义的研究与实践[D].华中理王大学博士论文,1992.
    [38]向文.参数化特征造型系统的研究[D].华中理王大学博士论文,1992.
    [39]Duan W Y,Zhou J and Lai K.FSMT:A feature solid-modeling tool for feature-based design and manufacture.[J]CAD,1993,25(1):29-38.
    [40]张文祖.适应智能制造环境的机械产品模型研究.[D]华中理工大学博士论文,1993.
    [41]郭群.基于约束的产品特征设计及CAD/CAM集成的研究[D].华中理工大学博士论文,1998.
    [42]王波兴.几何约束系统若干关键问题的研究与实践.[D]华中理工大学博士论文,2001.
    [43]杨海成.面向对象的CAD/CAM系统开发与集成[D].西北工业大学博士论文,1990.
    [44]张定华.多轴数编程系统的理论、方法和接口研究.[D]西北工业大学博士论文,1989.
    [45]曾定文.集成化工艺过程设计图象编程智能系统研究.[D]西北工业大学博士论文,1989.
    [46]徐邵宇.基于特征的CAD/CAM集成化研究[D].西北工业大学博士论文,1990.
    [47]江平宁.CAD指导的坐标测量机智能检测规划集成环境的研究[D].西安交通大学博士论文,1991.
    [48]焦国方.产品造型CAD环境的研究与开发[D].中科院计算所博士论文,1990.
    [49]蒋鲲.几何约束求解的新方法[D].中科院数学与系统科学研究院博士论文,2001.
    [50]袁波.几何约束求解技术研究与实现[D].清华大学博士论文,1999.
    [51]李彦涛.基于图规约的几何约束求解技术研究[D].清华大学博士论文,2001.
    [52]张彦平.CIMS中产品信息建模及数据管理[D].北京航空航天大学博士论文,1992.
    [53]赵新力.信息建模技术和产品数据交换标准的研究与实施[D].北京航空航天大学博士论文,1992.
    [54]张应中.机械零件计算机辅助几何造型及特征造型技术的研究[D].大连理工大学博士论文,1993.
    [55]黎华.几何约束系统建模和求解技术研究[D].大连理工大学博士论文,2001.
    [56]万华根.面向特征的实时实体显示与线框信息重建[D].浙江大学硕士论文,1993.
    [57]Chung J.C.H.,and M.D.Shussel.Comparison of variational and parametric design.In Proceedings of Antofact[C],1989,27-44.
    [58]唐荣锡.CAD/CAM技术[M].北京:北京航空航天大学出版社,1994.
    [59]Roller D,Schonck F and Verroust A.Dimension-driven geometry in CAD:a survey.In Strauper(eds).Geometric Modeling Methods and Applications[C].Springer-Verlag,1989,509-523.
    [60]Roller D.Advanced methods for parametric design.In Hagen H And Rooler D(eds).Geometric Modeling Methods and Applications.Springer-Verlag[C],1991,251-266.
    [61]Roller D.An approach to computer-aided design[J].CAD,1991,23(5):385-391.
    [62]Solano L and Brunet P.Constructive constraint-based model for parametric CAD systems[J].CAD,1994,26(8):614-622.
    [63]孟翔旭.参数化设计模型的研究与实现[D].中科院计算研究技术所博士论文,1998.
    [64]Sutherland I.Sketchpad,a man-machine graphical communication system.PhD thesis[D],MIT,1963.
    [65]Borning A H.The programming language aspects of ThingLab,a constraint oriented simulation laboratoryV[J].ACM TOPLAS,1981,3(4):353-387.
    [66]Lin V,Gossard D C and Light R.Variational geometry in computer-aided design[C].In ACM SIGGRAPH, August 1981,171-179.
    
    [67] Serrano D and Gossard D. Combining mathematical models and geometric models in CAE systems [C].In Proceedings of ASME Computers in Engineering Conference, 1986,277-284.
    
    [68] 潘云鹤.智能CAD方法与模型[M].北京:科学出版社, 1997.
    
    [69] Hower W and Graf W H.A bibliographical survey of constraint based approaches to CAD, graphics,layout, visualization, and related topics. Kowledge-Based Systems [C], 1996,9:49-464.
    [70] Wu Wen-Tsun. Automatic geometric theorem-proving and automatic geometry problem-solving. In Gao X S and Wang D M(eds). Automated Deduction in Geomtry [C], Springer LNCS1669, Beijing,China, 1998,1-13.
    [71] RXight and D. Gossard. Modification of geometric models through variational geometry. Geometric Aided Design [J], July 1982, vol.14,208-214.
    [72] Hoffmann C M and Vermeer P J. Geometric constraint solving in R2 and R3. In Computing in Euclidean Geometry. World Scientific Publishing [R], 2nd edition, 1994.
    [73] Lee J Y and Kim K. Geometric reasoning for knowledge-based parametric design using graph representation [J], CAD, 1996,28(10): 831-841.
    [74] Hillyard R and Braid I. Analysis of dimension and tolerances in computer-aided mechanical design [J].CAD, 1978,10(3):161-166.
    [75] Gossard D, Zuffante R P, Hiroshl, Sakurai. Representing Dimension, Tolerances and Features in MCAE systems, IEEE CG & A [R], 1988: 51-59.
    [76] Lin V C, Gossard D. Variational Geometry Modification in Computer-Aided Design, Computer Graphics [J], 1981,15(3): 171-177.
    [77] Light R, Gossard D. Variational Geometry: A new method for modifying part geometry for Finite Element Analysis, Computer and Structures [M], 1983:903-909.
    [78] Lee K, Gossard D. A Hierarchal Data Structure for Representing Assemblies: Part 1, Computer-Aided Design [J], 1985,17(1): 15-19.
    [79] Serrano D, Gossard D. Combining Mathematical Models with Geometric Models in CAE Systems,Chincago: Proceedings of 1986 Computer in Engineering Conference and Exhibit [M], 1986.
    [80] Serrano D, Gossard D. Constraint Management in Conceptual Design, Artificial Intelligence in Engineering Design [M], ed. Gero J S, Computational mechanics publications, 1988.
    [81] J. Ortega & W.Rheinboldt. Iterative Solution of Nolinear Equations in Several Variable. Academic Press[M],New York, 1970.
    [82] J. Stoer & R.Bulirsch. Introduction to Numerical Analysis [M]. Springer-Verlag, New York, 2nd edition, 1993.
    [83] G. Nelson & Juno. A Constraint-Based Graphics System. Computer Graphics[R], 1985, vol.19,235-243.
    [84] J.E.Dennis and R.B.Schnabel. Numerical Methods for Unconstrained Optimization and Nolinear Equations [M]. Prentice-Hall, 1983.
    [85] Barford L A. A graphical, language-based editor for genetic solid models represented by constraints. PhD thesis,[D]Dept of Computer Sciences,Cornell University,1987.
    [86]Kalra D and Barr A.Constraint-based figure-maker.Eurographics'90[C],1990,413-424.
    [87]Ge J X,Chou S C and Gao X S.Geometric constraint satisfaction using optimization methods[J].CAD,1999,31(14):867-879.
    [88]Kin N,Takal Y and Kunii T L.Geometric constraint solving based on the extended Bo;tzmarm machine.Computers in industry[J],1992,19:239-250.
    [89]Thornton A C.A support tool for constraint process in embodiment design.Design Theory and Methodology,DTM'94,ASME[C],1994,68:231-239.
    [90]Hel-Or Y,Rappoport A and Werman M.Relaxed parametric design with probabilistic constaints[J].CAD,1994,26:426-434.
    [91]Parbon J,Young R.Integrating parametric Geometry,Features,and Variational Modeling for Conception Design[J],Int.Journal of System Automation.1992,4:17-37.
    [92]Gosling J.Algebraic Constraints,P.H.D Thesis[D],Carnegie Mellon University,May 1983.
    [93]B.Buehberger.An Algorithm for Finding a Basis for the Residue class Ring of a Zero-Dimensional Polynomial Ideal(in German).PhD thesis[D],Institute if Mathematics,University of Innsbruck,Austria,1965.
    [94]B.Buchberger.Grobner Basis:An Algorithmic Method in Polynomial Ideal Theory.In N.K.Bose,editor,Recent Trends in Multidimensional Systems Theory[C],D.Reidel,1985,184-232.
    [95]D.Cox,H.Little & D.O'shea.Ideals,Varieties and Algorithms[M].Springer-Verlag,1992.
    [96]N.K.Bose,editor.Multidimensional Systems Theory[R],p 184-232.D.Reidel Publishing Co.,1985.
    [97]Chou S C.Mechanical Geometry theorem proving[M],Dordrecht:Kluwer,1987.
    [98]C.M.Hoffmann.Solid and geometric Modeling[M].Morgan Kaufmarm,1989.
    [99]K.Kondo.Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models[J].Computer Aided Design,1992,Vol.24,No.3,141-147.
    [100]K.Kondo.PIGMOD:parametric and interactive geometric modeler for mechanical design[J].Computer Aided Design,22(10):633-644,December 1990.
    [101]K.Kondo.Algebraic method for manipulation of dimensional relationships in geometric models[J].CAD,24(3):141-147,March 1992.
    [102]W.T.Wu.Basis Principle of Mechanical Theorem Proving in Geometries,Volume Ⅰ:Part of Elementary Geometries[C].Science Press,Beijing(in Chinese) 1984.English Translation,Springer,1994.
    [103]D.Wang.On Wu's Method for Solving Systems of Algebraic Equations JR].RISC-Linz Series 91-52.0,Johannes Kepler University,Austria,1989.
    [104]D.Lazard.A New Method for Solving lgebraic Systems of Positive Dimension.Discrete Applied Mathematics[R],33:147-160,1991.
    [105]M.Kalkbrener.A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties[J].Journal of Symbolic Computation,15:143-167,1993.
    [106]杨路,张景中,候校荣.非线性代数方程组与定理机器证明[M].上海:上海科技教育出版社,1996.
    [107]Gao X S and Chou S C and Gao X S.Geometric constraint satisfaction using optimization methods[J].CAD,1999;31(14):867-879.
    [108]Zhang J Z,Yang L and Yang X C.The realization of elementary configurations in Euclidean speace.Science in China(series A)[J],1994,37(1):15-26.
    [109]D.Lazard.On Theories of Triangular Sets[J].Journal of Symbolic Computation,28:105-124,1999.
    [110]D.Kapur,T.Saxena & L.Yang.Algebraic and Geometric Reasoning with Dizon Resultants[M].In Proc.ISSAC'94,Oxford,ACM Press,1994.
    [111]Y.Yamaguchi,F.,Kimma.A constraint modeling system for variational geometry[J].Geometric Modeling for Product Engineering,IFIP,1990.
    [112]H.Suzuki,H.Ando,F.Kimma.Geometric constraint and reasoning for mechanical CAD systems.Computer Graphics[J],vol.14,No.2,1990,211-224.
    [113]H.Ando,H.Suzuki,F.kimura.A geometric reasoning system for mechanical product design[M].Computer Applications in Production and Engineering,North-Holland,1989,131-140.
    [114]G.Sunde.A CAD System with Declarative Specification of Shape.EuroGraphics Workshop on Intelligent CAD Systems[M],the Nededands,1987.
    [115]A.Verroust,F.Schonek and D.Roller.Rule-Oriented Method for Parameterized Computer-Aided Design[J],October 1992,24(10):531-540.
    [116]X.S.Gao & S.C.Chou.Solving Geometric Constaint Systems I.A Global Propagation Approach.Computer-Aided Design[J],1998,30(1):47-54.
    [117]R.Joan-Arinyo & A.Soto.A Correct Rule-Based Geometric Constaint Solver.Compt.and Graphics[J]1997,21(5):599-609.
    [118]R.Joan-Arinyo & A.Soto.Combing Constructive and Equational Geometric Constaint-Solving Techniques[J].ACM Trac.on Graphics,1999,18(1):35-55.
    [119]R.Joan-Arinyo & A.Soto.A Rule-and Compass Geometric Constraint Solver.In M.J.Pratt,R.D.Sriram & M.J.Wozny,editors,Product Modeling for Cmputer Integrated Design and Manufacture,Chapman and Hall,London[M],1997,384-393.
    [120]C.M.Hoffmann & R.Joan-Arinyo.Symbolic Constaint in Constructive Geometry[J].Journal of Symbolic Compuation,1997,23:287-300.
    [121]陈立平,周济等.几何约束系统推理研究.[J]华中理工大学学报,1995,6:70-74.
    [122]罗浩,陈立平,周济.基于规约的几何约束推理研究[J].计算机辅助设计与图形学学报,May.1997,9(3):262-268.
    [123]董金祥,葛建新,高屹,李海龙.变参数绘图系统中约束求解的新思路[J].计算机辅助设计与图形学学报,Nov.1997,9(6):513-519.
    [124]谭孟恩,董金祥,葛建新,何志均.基于几何抽象的约束问题求解[J].软件学报,June.1997,Suppl.42-48
    [125]W.Fitzerland.Using Axial Dimensions to determine the Proportions of Line Drawings in Computer Graphics[J].Computer Aided Design,Nov.1981,Vol.13,No.6.
    [126]P.Todd.A k-tree Generalization that Characterizes Consistency of Dimensioned Engineering Drawings.
    [127]J.Owen.Algebraic Solution for Geometry from Dimensional Constraints.ACM syrup.Found,of Solid Modeling[M],Austin TX,1991,397-407.
    [128]J.Owen.Constraints of Simple Geometry in Two and Three Dimensions,Inter,J.of Comp.Geometry and Its Applications[M],1996,6:421-434.
    [129]G.A.Kramer.Solving Geometric Constraints Systems:A Case Study in Kinematics[M],MIT Press,1992.
    [130]Kramer G.Solving Geometric Constraint Systems,Proceedings AAAI-90[M],Boston MA,1990:1038-1044
    [131]Kramer G.A geometric constraint Engine[J],Artificial Intelligence,1992,58:327-360.
    [132]S.Ait-Aoudia,R.Jegou & D.Michelucci.Reduction of Constraint Systems.In Proc.Compugraphics,Alvor,Portugal[M],1993,83-92.
    [133]C.Hsu & Beat D.Bruderlin.Moving into Higher Dimensions of Geometric Constraint Solving.Technical Report UUCS-94-027[M],Department of Computer Science,University of Utah,1994.
    [134]Hoffmann C M,Fudos I.Constraint-based Parametric Conics for CAD[J],Geometric Aided Design,1996,28(2):91-100.
    [135]Bouma W,Fudos I,Hoffmann C,etc.Geometric constraint solver[J],Computer-Aided Design,1995,27(6):487-501.
    [136]Lee K,Chong N.Automatic Constraint geometry for Variational Geometry[C],CAD & CG'89Proceedings of International Conference on CAD & CG,Beijing:1989.
    [137]Lee K,Andews G.Inference of the Positions of Components in an assembly:Part2[J].Computer-Aided Design,1985,17(1):20-24.
    [138]Lee Jae Yael,Kwangsoo Kim.A 2D geometric constaint solver using DOF-based graph reduction[J].Computer-Aided Design,1998,30(11):883-896.
    [139]B.Yuan & J.G Sun.A Graph Based Approach to Design Decomposition[C].The 6th International Conference on CAD &CG,Shanghai-China,Dec.1999,984-988.
    [140]Yantao Li & Jiaguang Sun.A Propagation Approach to Geometric Constraint solving[C].In the Proceedings of the 6th International Conference on Computer Aided Design & Computer Graphics,1999,994-998.
    [141]Li Yan-Tao,Hu Shi-Min & Sun Jia-Guang.Hybrid model of geometric constraint satisfaction[J].Journal of Computer Research and Development,2000,37(10):1233-1239.
    [142]陈立平,涂中斌,罗浩,周济.一种新的面向参数化绘图的约束管理技术[J].软件学报,Jul.1996,7(7):394-400.
    [143]罗浩,陈立平,周济.几何约束满足问题的规约分治算法[J].计算机学报,Sept.1996,vol.19,Suppl,232-239.
    [144]Liping Chen,Feng Gao & Ji Zhou.An Optimal Method of bipartite Graph Matching for Under-Constrained Geometry Solving[C].In the Proceedings of the 6th International Conference on Computer Aided Design & Computer Graphics,1999,952-957.
    [145]D-Cubed.The Dimensional Constraint Manaeg[M].Cambridge,England,1994.Version 2.7.
    [146]I.Fudos.Editable Representations for 2D Geometric Design,Master's Thesis[M],Purdue University,1993.
    [147]C.Hoffmann,P.Vermeer.Geometric constraint solving in R2 and R3 in compuing in Euclidean Geometry second edition[M].World Scientific Publishing,Singapore,1995,266-298.
    [148]陈立平,王波兴,彭小波.一种面向欠约束几何系统求解的二部图匹配优化处理方法[J].计算机学报,2000,23(5):523-530
    [149]L ee J Y,Kim K.A 2-D geometric constraint solver using DOF based graph reduction[J].Computer-Aided Design,1998,30:883 896.
    [150]李彦涛,胡事民,孙家广.一个几何约束系统分解的新算法[J]计算机辅助设计与图形学学报,2000,12(12):926-930)
    [151]J.Owen,Algebraic solution for geometry from dimensional constraints,in:Proc.1st ACM Symposium of Solid Modelling and CAD/CAM Applications[C],ACM Press,New York,1991,pp.397-407.
    [152]L.Brisoux-Devendeville,C.Essert-Villard,and P.Sehreck,"Exploration of a solution space structured by finite constraints,"in ECAI 14th European Conference on Artificial Intelligence.Workshop on Modelling and Solving Problems with Constraints[C],Berlin,2000,pp.:1-18.
    [153]C.Essert-Villard,P.Schreck,and J.-F.Dutburd,"Skecth-based pruning of a solution space within a formal geometric constraint solver,"[J]Artificial Intelligence,vol.124,pp.139-159,2000.
    [154]R.Joan-Arinyo and A.Soto-Riera.Combining constructive and equational geometric constraint solving techniques[J].ACM Transactions on Graphics,18(1):35 - 55,January 1999.
    [155]N.Mata.Constructible Geometric Problems with Interval Parameters[D].PhD thesis,Dept.LSI,Universitat Polit'ecnica de Catalunya,Barcelona,Catalonia,Spain,2000.
    [156]R.Joan-Arinyo and M.V.Luz' on and A.Soto.Constructive geometric constraint solving:a new application of genetic algorithms[J].In Parallel Problem Solving from Nature-PPSN Ⅶ,volume 1,pages 759 - 768,2002.
    [157]A.E.Eiben and Zs.Ruttkay.Constraint-satisfaction problems.In T.B(a|")ack,D.B.Fogel,and Z.Michalewicz,editors,Handbook of Evolutionary Computation[M],chapter C5.7,pages C5.7:1-C5.7:5.Institute of Physics Publishing Ltd and Oxford University Press,1997.
    [158]李秋夏,贺达汉,长有德,刘丽丹.蚂蚁取食行为研究概况[J].宁夏农学院学报,2000,21(2):94-97.
    [159]Macro Dorigo,Gianni Di Garo.Ant algorithms for discrete optimization[J].Artificial Life,1999,5(3)137-172.
    [160]邱模杰,若干优化问题的蚂蚁算法及其实验研究[D],上海理工大学硕士学位论文,2001年.
    [16]]Eric Bonabeau,Guy The ranlaz著,郭凯声译,游动的智能代理人[M],科学(中文版),2000,6:32-37.
    [162]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245.
    [163]熊伟清,余舜洁 赵杰煜.具有分工的蚁群算法用应用[J].模式识别与人工智能,2003年9月,第16卷第3期,328-332.
    [164]蒋宗礼.人工神经网络导论[M]北京,高等教育出版社,2001:7-8.
    [165]周春光,梁艳春,计算智能[M],吉林大学出版社,长春,2001.
    [166]Bidarra R,Bronsvoort W F.Semantic feature modeling[J].Computer Aided Design,2000,32:201-225.
    [167]陈正鸣,高曙明,张凤军,彭群生一种拓扑元素的命名和辨识方法[J]计算机学报2001 24(11):1270-1277.
    [168]Konstantinos Nezis George Vosniakos.Recognizing 2.5D shape features using a neural network and heuristics[J].Computer-Aided Design.1997,29(7),523- 579.
    [169]吴微.神经网络计算[M].北京,高等教育出版社,2003:59-60.
    [170]靳蕃.神经计算智能基础[M].成都,西南交通大学出版社,2000:151-153.
    [171]Hoffmann M,Várady L.Free-form surfaces for scattered data by neural networks[J].Journal for Geometry Graphics,1998,2(1):1-6.
    [172]Hoffmann M,Modified Kohonen Neural Network for Surface Reconstruction[M].Publ.Math.1999,54:857-864.
    [173]Hoffmann M.Local update of B-spline surface by kohonen neural network[C].Proceeding of the 5th International Conference on Computer Graphics and Artificial Intelligence,Limoges,2002:103-112.
    [174]Barhak J,Fischer A.Adaptive reconstruction of freeform objects with 3D SOM neural network grids [C].Computers & Graphics,2002(26):745-751.
    [175]尹康康,潘志庚,石教英一种强壮的网格水印算法[J].计算机辅助设计与图形学学报,2001,13(2):409-420.
    [176]Daubechies I.Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,41(7):909-996.
    [177]Hwang MS,Chang CC,Hwang KF.A watermarking technique based on one-way hash functions[J].IEEE Trans.on Consumer Electronics,1999,45(2):286-294.
    [178]张静等:基于几何特征的三维网格数字水印算法[J]计算机辅助设计与图形学学报,2005,17(14)740-747.
    [179]Chen Y.,Medioni G.Object modeling by registration of multiple range images[J].Image and Vision Computing,1992,10(3):145- 155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700