用户名: 密码: 验证码:
基于多目标模糊理论的重大危险源区域消防规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,消防问题已日益成为国内外的研究课题。随着一些新兴的包含重大危险源的工业物流园区的不断兴建,一些规模较大破坏性较强的火灾不断出现,使得这种重大危险源区域的消防工作面临的问题也越来越多,因此重大危险源区域消防规划逐渐成为人们关注的焦点。本文从区域消防整体规划的角度,并结合包含多个重大危险源的天津市散货物流区的实例出发,基于多目标模糊优化理论,对重大危险源区域消防规划,包括区域的风险评估、消防站布局规划以及消防给水系统的优化进行了系统的分析与研究,并建立了相应的消防规划模型。论文首先应用系统安全工程理论以及相关的数学方法,对重大危险源区域火灾风险评估进行了以下的研究:1、建立进行区域火灾风险评估的基本理论。分析了风险评估的内容及其本质。对区域火灾灾害系统及减灾管理进行了分析,给出了区域火灾的特征与风险评估的基本理论框架。2、给出了建立火灾风险评估指标体系的原则。构造了模糊层级分析法并以此来处理重大危险源区域火灾风险各指标的权重;对于区域火灾风险评估指标给出了相应的量化方法,并利用模糊理论对火灾风险进行了等级划分。3、利用模糊理论,开发了基于模糊均值的多指标综合评估合成技术,为研究重大危险源区域火灾风险提供了新的更加合适的方法。
     消防站布局是决定消防系统能力发挥的重要因素,他包括消防站的选址、责任区划分以及消防站设施的配备等几个方面工作。目前已有法律法规给出了相应的标准,但是此类标准具有一定的局限性,有待进一步优化。本文对消防站布局的优化主要采用了多目标模糊规划及其遗传算法,并适当的把多目标问题转换为单一的最大最小值目标问题,这样就较容易采用遗传算法进行求解。对比现有的消防站布局模型,本文的研究具有三个明显的特点:1、规划过程中考虑了模糊属性,2、充分考虑了不同风险级别对消防设施配备要求的不同,3、还考虑了消防服务出现拥挤的情况。最后的算例分析阐述了消防站布局优化模型应用的可行性和有效性。
     论文还基于相应的标准和数学模型对消防给水系统进行了规划研究。模型首先将重大危险源区域根据所发挥的功能作用划分为若干个功能区块,根据每个功能区块可能发生的火灾数及其可能出现的火灾情景建立所需要一次灭火用水量三角模糊函数,在根据系统优化理论,结合其外部天然可用水源的补充作用,并考虑调度的调控作用,建立了消防给水系统优化模型。
     文章最后用上面建立的规划模型,对天津散货物流区域的消防系统进行了规划研究,结果表明:基于多目标模糊的消防规划模型可靠的、系统的、有效的优化了整个区域的消防系统,降低了整个区域火灾风险系数。
With the increase of construction and expansion of industrial logistics centers and manufacturing zones, the disastrous hazard sources, the number of large-scale destructive fire accidents is on the rise. This presents a great challenge for the fire protection of these hazard source’s zones and therefore great attention is increasingly paid to fire protection programming in fire research field. This dissertation conducts a case study on fire protection programming for Tianjin Logistics and Manufacturing Zones, attempting to make a systematic research on the zone risk assessment, the fire station layout planning and optimization of water supply system for fire protection. Based on multi-objective fuzzy optimization, a fire programming system for significant danger zones is worked out and a fire programming model is built.
     In the first place, the researches were conducted on fire risk assessment of disastrous danger zones, using the theory of system safety engineering and multi-objective fuzzy mathematical method. They are as follows: (i) The basic theory for zone fire risk evaluation was established; the nature and content of fire risk assessment were analyzed and its hypostasis was given. The features of zone fire risk and its analyzing frame were also demonstrated. (ii) The indexes of the establishment of hazard zone fire risk assessment were provided. According to the fire data, fuzzy analytic hierarchy process was developed and it was used in dealing with the weight of zone fire risk indexes. For the analysis of the qualitative indexes, quantifying method and classification of zone fire risk were provided. (iii) Through integrating with fuzzy theory, a new synthetic evaluating technique with fuzzy mean value method was brought forward, which provided a new and appropriate means for studying on disastrous hazard zone fire risk evaluation.
     Secondly, fire station layout planning plays an important role in fire protection system and it comprises such work as fixing the location of fire stations, dividing the areas of responsibility and allocating the fire fighting devices. Although its related technical standards and regulations have been issued, they are limited in terms of applicable scientific theory, and thus need further optimizing. In this paper, the optimal planning of fire station facilities was made by the method of combination of a multi-objective fuzzy programming and a genetic algorithm. The original fuzzy multiple objectives were appropriately converted to a single unified“min-max”goal, which made it easy to apply a genetic algorithm to solving the problem. Compared with the existing methods of fire station location, this approach has three distinguished features: (i) Fuzzy nature of a decision maker was considered in the location optimization model. (ii) The demands for the facilities from the areas with various fire risk categories were taken into account. (iii) Fire service congested situation was also under consideration. Finally, the case study was used to illustrate the application of the method for the optimization of fire station locations.
     In addition, on the basis of reference standards and mathematical models, water supply system for fire protection was studied. Accordingly, the disastrous hazard zones were divided into many different functional units according to their functions; water requirements triangle fuzzy number of fire extinction was calculated on considering probable fires and fire scales. Using system optimization theory,considering complement of Nature’s water sources and adjusting effect of optimal operation, the model of water supply system was finally built.
     In the end, based on the above optimizing model, the paper investigated the programming problem of Tianjin Logistics and Manufacturing zone. The result shows that the multi-objective fuzzy fire programming model is reliable,systemic and effective in optimizing the fire system, and reduces the risk coefficient of zone fire.
引文
[1]Maohua Zhong,Weicheng Fan, China: some key technologies and the future developments of fire safety science. Safety Science, 2004 (42):627~637
    [2]Yang Lizhong Zhou Xiaodong, Fire situation and fire characteristic analysis based on fire statistics of China, Fire Safety Journal, 2002(37):785~802
    [3]中华人民共和国建设部,GB18218-2000,中华人民共和国国家标准重大危险源辨识,北京:中国标准出版社,2000
    [4] R.C. Larson, A hypercube queuing model for facility location and redistricting in urban emergency services, Computers and Operations Research 1 (1974) 67~5
    [5]Michael S Wright Dwelling, Risk Assessment, Toolkit, 1999
    [6]李华军,梅宁等,城市火灾危险性模糊综合评估,火灾科学,1995,4(1):44~45
    [7]USFA, Information on the Risk, Hazard and Value Evaluation, 1999
    [8]赵敏学,吴立志,商靠定等,石化企业的消防安全评价,安全与环境学报,2003(3):54~57
    [9]李杰等,城市火灾危险性分析,自然灾害学报,1995(2):99~103
    [10]李志宪,杨漫红,周心权,建筑火灾风险评价技术初探,中国安全科学学报,2002,12(2):30~34
    [11]Helly W,Urban System Model,New York Academic Press,1975
    [12]Masood A.Badri, A multi-objective model for locating fire stations, Theory and Methodology, European Journal of Operational Research, 1998(11):243~260
    [13]田伟涛.集成化城市火灾防治信息系统研究: [博士学位论文],北京: 清华大学,1997
    [14]陈驰,任爱珠,消防站布局优化的计算机方法,清华大学学报(自然科学版),2003,43(10):1390~1393
    [15]吴美文,吴军,胡传平,城市消防站布局评估指标量化分析,自然灾害学报,2006,15(5):162~167
    [16]C.Toregas,R. Swain,C. ReVelle, L. Bergman, The location of emergency service facilities,Operations Research,1971 (17) :1363~1373
    [17]R. Church, C. ReVelle, The maximal covering location problem, Papers of the Regional Science Association,1974 (32) 101~118
    [18]R.C. Larson, A hypercube queuing model for facility location and redistricting in urban emergency services, Computers and Operations Research,1974:67~95
    [19]R.C. Larson, Approximating the performance of urban emergency service systems, Operations Research,1975:845~868
    [20] M.S. Daskin, A maximum expected covering location model: formulation, properties and heuristic solutions, Transportation Science,1983 (17):48~70
    [21]O. Berman, R. Larson, S. Chiu, Optimal server location on a network operating as an M/G/1 queue, Operations Research,1985 (12):746~771
    [22]O. Berman, R. Larson, C. Parkan, The stochastic queue p-median location problem, Transportation Science 1987 (21):207~216
    [23]O. Berman, R. Mandowsky, Location–allocation on congested network, European Journal of Operational Research 1986 (26):238~250
    [24]Z. Drezner (Ed.), Facility Location: A Survey of Applications and Methods, Springer, New York, 1995
    [25]C. ReVelle, K. Hogan, The maximum availability location problem, Transportation Science,1989 (23):192~200
    [26]V. Marianov, C. ReVelle, The queuing probabilistic location set covering problem and some extensions, Socio-Economic Planning Sciences,1994 (30):167~178
    [27]V. Marianov, D. Serra, Probabilistic maximal covering location–allocation models for congested systems, Journal of Regional Science,1998 (3) :401~424
    [28]V. Marianov, C. ReVelle, The queuing maximal availability location problems: a model for the sitting of emergency vehicles, European Journal of Operational Research,1996 (93):110~120
    [29]M.J. Canos, C. Ivorra, V. Liern, Exact algorithm for the fuzzy p-median problem, European Journal of Operational Research,1999 (116):80~86
    [30]H.J. Zimmermann, Fuzzy Set Theory and its Application, third ed., Kluwer Academic Publishers, 1996
    [31]Hassan Shavandi,Hashem Mahlooji,A fuzzy queuing location model with a genetic algorithm for congested systems,Applied Mathematics and Computation,2006(181):440~456
    [32]J.B. Jo, Y. Tsujimura, M. Gen, G. Yamazaki, A delay model of queuing network system based on fuzzy sets theory, Computers and Industrial Engineering,1993 (25): 143~146
    [33]D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic, New York, 1980
    [34]O. Kariv, S.L. Hakimi, An algorithmic approach to network location problems, Part 2: the p-medians, SIAM Journal on Applied Mathematics,1979(37):539~560
    [35]C.M. Hosage, M.F. Goodchild, Discrete space location–allocation solutions from genetic algorithm, Annals of Operations Research:1986 (6):35~46
    [36]C. Dibble, P.J. Densham, Generating interesting alternatives in GIS and SDSS using genetic algorithm, GIS/LIS, 1993
    [37]J.A. Moreno-Perez, J.M. Moreno-Vega, N. Mladenovic, Tabu search and simulated annealing in p-median problem, in: Operational Research Society Conference, Canada, Montreal, 1994
    [38]J. Kratica, D. Tosic, V. Filipovic, I. Ljubic, Solving the simple plant location problem by genetic algorithm, Rairo Operations Research,2001(35):127~142.
    [39]B. Bozkaya, J. Zhang, E. Erkut, An efficient genetic algorithm for the p-median problem, in: Z. Drezner, H.W. Hamacher (Eds.), Facility Location: Applications and Theory, Springer, Heidelberg,2002:179~205
    [40]罗云,樊运晓,马晓春,风险分析与安全评价,北京:化学工业出版社,2004
    [41]Hall JR, Sekizawa A,Fire risk analysis:general conceptual framework for describing models,Fire Technology,1991(27):33~53
    [42]郑双忠,陈宝智,吴弯等,易燃易爆企业火灾危险性评价及对策,东北大学学报,2001
    [43]Thomas F.Barry,John M.Watts.Simplified fire hazard and risk caculation, section11 chapter11:108~110
    [44]甘心孟,沈斐敏,安全科学技术导论,北京气象出版社,2000:161~210
    [45]宋建学,赵水苗,李江,开封市城市火灾危险性分析,郑州工业大学学报 1998, 19 (4):80~83
    [46]W.D.Rowe,Assessing the Risk of Fire Systemically,In Fire Risk Assessment (Castina/Harmathy, editors), ASTM Head,S.C,1980
    [47]吴立志,城市火灾风险评价的数学模型及其应用,北京:北京理工大学,1998
    [48]黄诗峰,洪水灾害风险分析,北京:中国科学院地理所,1999
    [49]黄崇福,自然灾害风险分析的基本原理,自然灾害学报,1999,8(2):21~30
    [50]郑双忠,城市火灾风险评估的研究,东北大学博士学位论文,2003
    [51]郑双忠,邓云峰,蒋清华,基于火灾统计灾情数据的城市火灾风险分析,中国安全生产科学技术,2005(3):15~18
    [52]张源雪,液化石油气罐火灾危险性模拟估算,消防技术与产品信息,2005(12):28~30
    [53]Weihong Yang,Wlodzimierz Blasiak,Numerical simulation of properties of a LPG flame,International Journal of Thermal Science,2005(44):973~985
    [54]邢志祥,蒋军成,葛秀坤,液化石油气储罐热响应影响因素模拟分析,石油机械,2005(4):6~9
    [55]R.Ohba,A.Kouchi,T.Hara,Validation of heavy and light gas dispersion models for the safety analysis of LNG tank,Journal of Loss Prevention in the Process Industries,2004(17):325~337
    [56]董茹英,陈刚,化工厂储罐事故分析与危险控制,中国计量学报,2006(2):150~154
    [57]D.K.Beller,J.M.WattsJr,Occupancy classification for performance-based life safety,Fire and Materials,1999(23):281~289
    [58]冯圣洪一种多指标综合评价合成技术方法研究,模糊系统与数学,1999,13 (2):85~89
    [59]刘艳,康仲远,赵汉章.我国城市减灾管理综合评价指标体系研究,自然灾害学报,1999,8 (2):61~66
    [60]Anon Weber's, Encyclopedic Unabridged Dictionary of the English Language,Gramercy Books,NewYork,1989
    [61]许开立,系统危险性的模糊评价,沈阳:东北大学,1999
    [62]谢仁山,王先华,层次分析法在安全评价有关指标赋值的应用闭,工业安全与防尘,1996 (1):31~34
    [63]王莲芬,许树柏,层次分析法引论,北京:中国人民大学出版社,1990:1~60
    [64]张吉军,模糊层次分析法,模糊系统与数学,2000,14(2):80~88
    [65]T.J.Shields,G.W.Silcock,Y.Bell,Fire safety evaluation of dwellings,Fire Safety Journal,1986,10:29~36
    [66]John M.Watts,Analysis of the NFPA fire safety evaluation system for business occupancies,Fire Technology,1997,33(3):276~282
    [67]陈守煌,赵英琪,模糊识别、决策与聚类理论,模糊系统与数学,1991,5(2): 83~91
    [68]陈宝智,危险源辨识控制及评价,成都:四川科学技术出版社,1996
    [69]许开立,系统危险性的模糊评价,沈阳:东北大学,1999
    [70]浅居喜代治,田中英夫等著,赵汝怀译.模糊系统理论入门,北京:北京师范大学出版社,1982.9
    [71]黄晓莉,曾黄麟,王秀碧,基于模糊均值聚类的粗集理论连续属性的离散化新算法,重庆邮电学院学报(自然科学版),2006,5:1~4
    [72]陈志宗,尤建新,城市防灾减灾设施的层级选址问题建模,自然灾害学报,2005,14(2):131~135
    [73]俞艳,郭庆胜,何建华,顾及地理网络特征的城市消防站布局渐进优化,武汉大学学报,2005,30(4):333~336
    [74]吴军,消防站优化布局方法与技术研究,消防科学与技术,2006,25(1):100~102
    [75]冯凯,徐志胜,杨淑江,消防站布局规划及可视化系统研究,消防科学与技术,2006,25(1):97~99
    [76]Hogg, J,The sitting of fire stations,Operational Research Quarterly,1968,19 (1), 275~287
    [77]Tzeng G.H.,Chen Y.W.,The optimal location of airport fire stations: A fuzzy multi-objective programming and revised genetic algorithm approach,Transportation Planning and Technology,1999,23,37~55
    [78]Diwekar U,Introduction to Applied Optimization,Kluwer Academic Publisher,2003,209~253.
    [79]Chen L,Multi-objective design optimization based on satisfaction metrics, Engineering Optimization,2001,33,6012~6617
    [80]Hale T.S,Moberg C.R.,Location science research;A review Annals of Operations Research,2003,123,21~35
    [81]Sakawa,M Kato,K Sunada,Fuzzy programming for multiobjective 0–1 programming problems through revised genetic algorithms,European Journal of Operational Research 1997,97,149~158
    [82]Badri,M.A. Mortagy,A.K. Alsayed,Multi-objective model for locating fire stations,European Journal of Operational Research,1998,110,243~260
    [83]Cheung,B.K.S. Langevin, A Villeneuve, B,High performing evolutionary techniques for solving complex location problems in industrial system design,Journal of Intelligent Manufacturing,2001,12,455~466
    [84]Salhi S,Gamal M.D.H.,A genetic algorithm based approach for the uncapacitated continuous location problem,Annals of Operational Research,2003,123,203~222
    [85]Gong D,Gen, M., Yamazaki,G., Xu, W,Hybrid evolutionary method for capacitated location-allocation problem,Computers in Industrial Engineering,1997,33,577~580.
    [85]董学京,席连桐,杨丙杰,城市消防给水系统主要技术参数及修订的建议,消防科学与技术,2004,03:254~257
    [86]陆莺,石化企业稳高压消防给水系统设计的探讨,化工设计,2004,14(6):38~41
    [87]镡新,李明,区域集中消防给水系统的几点探讨,消防科学与技术,2004,23(1):40~42
    [88]段焕丰,俞国平,改进混和遗传算法优化城市给水系统调度模型,同济大学学报,2006,34(3):377~381
    [89]Water Supplies for commercial and Residential Fire Protection Information Packet,Colorado Springs Fire Department Office of the Fire Marshal,2005
    [90]马桐臣,杜霞,城市消防规划技术指南,天津科技出版社,2004
    [91]Anderson,Gordon C,ISO Commercial Risk Services,AWWA Seminar Proceedings - Fire Protection,American Water Works Association,1986
    [92]Linder,Kenneth W,Water Supply Requirements For Fire Protection,,Fire Protection Handbook, 17th ed,National Fire Protection Association,1981
    [93]Royer,Keith,Floyd W, Water For Fire Fighting - Rate-of-Flow Formula,Iowa State University Bulletin, Engineering Extension - Bulletin No. 18
    [94]Buchanan, A.H. , Fire Engineering Design Guide , Centre for Advanced Engineering,University of Canterbury,New Zealand, 1994
    [95]Fire Protection Water Supply Guideline for Part 3 in the Ontario Building Code,Office of the Fire Marshal Technical Guideline,North York, 1996
    [96]NFPA 1231: Standard on Water Supplies for Suburban and Rural Fire Fighting, National Fire Protection Association,1993
    [97]D. Drysdale,An Introduction to Fire Dynamics,1985:302~303
    [98]Fire Prevention Evaluation Committee,Tokyo Fire Department, Assessment of Fire Prevention Characteristics and Safety of Building, 1999:207~212
    [99] Heng Hsieh,Firefighting Manual,Shanghai Science and Technology Publisher, 1989,112~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700