用户名: 密码: 验证码:
多智能体系统协调控制中的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多智能体或多主体系统分布式协调控制问题已持续成为国内外不同学科领域研究者的关注点,这是由于其在社会、工业、建设和国防等领域有着广泛的应用背景,如:无人驾驶飞机编队控制、多智能体群集运动、分布式传感器网络、人造卫星群位姿调整及交通拥塞控制等。在多智能体系统协调控制中,一个重要的问题是多智能体系统的一致性控制。所谓一致性问题,简单的说就是随着时间的变化,多智能体系统中各主体之间通过通信协调使所有智能体的状态最终趋于一致。在整个合作过程中,分布式控制协议的设计成为实现全局协同行为的至关重要的因素。
     本文的课题得到了国家自然科学基金(61174070)、国家自然科学基金-广东省联合基金重点项目(U0735003)、海外及港澳合作基金(60828006)和高校博士点基金(20110172110033)的部分资助。本文结合代数图论、矩阵理论及Lyapunov稳定性定理,采用理论分析和数值仿真相结合的方法,对网络具有通信时延、测量噪声和变化网络通信拓扑的连续时间多智能体系统协调控制中的两个基本问题进行了研究,即一致性和聚集控制问题。具体的研究内容包括以下几个方面:
     第一部分(即第一章和第二章),首先介绍了多智能体系统分布式协调控制的研究背景和意义,其次阐述了多智能体系统协调控制中的基本问题和研究进展。最后就本文的主要工作、所用到的符号及代数图论等预备知识作了必要的说明。
     第二部分,研究了通信时延影响下的连续时间多智能体系统静态和动态聚集控制问题。(第三章)首先对于一阶静态聚集控制,利用代数图论和Lyapunov技术,以线性矩阵不等式的形式给出了实现静态聚集控制的时滞相关型判据。并且该结果可以利用MATLAB工具箱LMI Toolbox方便求解。此外,将结果推广到含有通信时延和测量噪声的情形。其次,对于二阶动态聚集控制,利用代数图论、频域分析方法及Nyquist稳定性判据,得到了每个跟随者最终进入动态领导者组成的凸形区域的充分条件。再次(第四章)分别研究了没有通信限制和通信时延干扰下的连续时间分数阶系统的静态聚集控制问题。理论结果表明:只要智能体之间的通信时延不超过给定的最大的时延上界,最终每个跟随者都能够进入多领导者组成的凸多边形区域。最后,数值仿真验证了文中结果的正确性。
     第三部分(第五章)研究了连续时间多智能体系统的一致性跟踪控制问题。首先,讨论了具有测量噪声的连续时间二阶积分多智能体系统的一致性跟踪控制,每个跟随者当前时刻接收到的邻居位置状态和速度状态均受到高斯白噪声的干扰。为了减少噪声的影响,引入了一个时变递减的一致性增益。利用速度分解技巧和随机Lyapunov分析方法,得到了闭环系统均方稳定的充分条件。此外,将结果推广到时变通信网络情形。其次,研究了通信时延影响下的高阶多智能体系统有限时间一致性跟踪控制问题。根据泛函微分方程稳定性定理,证明了所有的跟随者都能够在有限时间内跟踪上动态领导者。最后,数值仿真验证了文中所提算法之有效性和可行性。
     第四部分(第六章)研究了多个时变通信时延和外界噪声干扰下的连续时间多智能体系统H∞一致性控制问题。每个智能体只能利用自己局部状态信息和接收到的含有不同的通信时延邻居状态信息来更新自己的状态。为了便于分析,利用模型变换将原来的闭环系统转化为一个与之等价的降阶子系统。基于线性矩阵不等式方法和Lyapunov稳定性定理得到了降阶子系统稳定的充分条件。理论结果表明:最终所有智能体系统均达到一致并满足期望的H∞性能。此外,还讨论了变化通信网络拓扑情形下的鲁棒H∞一致性问题。最后,数值仿真表明结果的正确性。
In recent years, the distributed cooperative control of multi-agent systems has at-tracted a considerable interest in various scientific communities due to broad applicationsin social, industrial, construction and national defense areas, such as unmanned air vehi-cles formation control, flocking/swarming, distributed sensor network, attitude alignmentof clusters of satellite and trafc congestion control, and so on. An important problemin distributed coordinated control of multi-agent system is the consensus control. Theso-called consensus problem means to reach an agreement on certain quantities of interestthrough the local communications. The key factor of distributed control of multi-agentsystems is to design a proper distributed control protocol.
     This work was supported by the National Natural Science Foundation of China un-der Grant No.61174070, the NSFC-Guangdong Joint Foundation Key Project underGrant No. U0735003, the Oversea Cooperation Foundation under Grant60828006andthe Specialized Research Found for the Doctoral Program No.20110172110033. In thisdissertation, based on the algebraic graph theory, matrix theory as well as Lyapunovstability theory, consensus problem and aggregation problem under time-dependent com-munication channels, measurement noises and switching topologies are investigated bycombining theoretical analysis and numerical simulation methods. This paper includesthe following four aspects:
     In the first part (Chapter1and Chapter2), the research background and meaningof the coordinated control of multi-agent systems are firstly introduced briefly. Secondly,the basic problems and some advances in coordinated control are recalled. Finally, themainly work of this dissertation, the used notations and some preliminaries are listed.
     In the second part (chapter3), the static and dynamic aggregation control prob-lem of continuous time multi-agent systems with delay-dependent communications arestudied. Firstly, for the first-order static aggregation control problem, by employing al-gebra graph theory and Lyapunov technology, a delay-dependent criterion is establishedin the form of linear matrix inequalities (LMIs). And this result can be easily solved byusing LMI Toolbox in MATLAB. In addition, the results have been extended to com-munication channels containing time delay and measurement noises cases. Secondly, for second-order dynamic aggregation control problem, by combining the tools of algebragraph theory, the frequency domain analysis method and the Nyquist stability criterion,sufcient conditions for the whole follower-agents aggregated in a polytope region formedby the leaders are derived. Thirdly (chapter4), the static aggregation control problemsof fractional-order systems under time delay are discussed. It is shown that each followereventually can enter the convex region which is spanned by the leaders as long as thecommunication delay can not exceeds the maximum bound. Finally, numerical examplesare given for illustration.
     In the third part (from chapter5), the distributed tracking control problems ofcontinuous time multi-agent systems are investigated. First of all, a tracking controlproblem of continuous time second-order multi-agent systems under measurement noisesis discussed. The control input of each follower agent can only use its local states and theposition and the velocity states of its neighbors which are all corrupted by Gaussian whitenoises. In order to reduce the influence of the noises, a time-varying and decay consensusgain is introduced. Based on the velocity decomposition techniques and stochastic Lya-punov analysis method, a sufcient condition is obtained, which ensures the relative stateerrors between each follower agent and the active leader converge to zero in the sense ofmean square. In addition, this result is extended to a more general case with switchingtopologies. Moreover, the tracking control problem of high order multi-agent systemswith communication time delay is studied. Based on the functional diferential equationstability theorem, it is shown that the proposed consensus protocol can guarantee thefollowers track the dynamic leader in a finite time. Finally, the numerical simulationresults prove the efectiveness and feasibility of the proposed algorithm.
     In the fourth part (chapter6), distributed H∞consensus control problems for con-tinuous time first-order multi-agent systems with multiple time-varying communicationdelays and external disturbances are investigated. Firstly, a model transformation is per-formed, and the original close-loop system is changed into a reduced order system. Then,based on the reduced order system, by constructing a proper delay-dependent Lyapunovfunction and employing LMIs technology, sufcient conditions are derived for all agents toreach an agreement with the desired H∞performance. In addition, this result is extendedto the switching topologies case. Finally, the simulation results show the correctness andvalidity of the theoretical results.
引文
[1] Ren W. and Beard R. W. Distributed consensus in multi-vehicle cooperative con-trol[M]. London, U.K.: Springer-Verlag,2008.
    [2] Waldrop M. Complexity: the emerging science at the edge of order and chaos[M].New York: Simon and Schuster,1992.
    [3] Martinez S., Cortes J. and BulloF. Motion coordination with distributed informa-tion[J]. IEEE Control Magazine,2007,27(4):75-88.
    [4] Lynch N. A. Distributed algorithms[M]. San Francisco, California: Morgan Kauf-mann,1996.
    [5]洪弈光,翟超.多智能体系统动态协调与分布式控制设计[J].控制理论与应用,2011,28(10):1506-1512.
    [6]俞辉.多智能体机器人协调控制研究及稳定性分析[D].武汉:华中科技大学博士学位论文,2007.
    [7] Liu J. M.,靳小龙,张世武等.多智能体模型与实验[M].北京:清华大学出版社,2003.
    [8] Hong Y. G., Gao L. X., Chang D. Z., et al. Lyapunov-based approach to multiagentsystems with switching jointly connected interconnection [J]. IEEE Transactions onAutomatic Control,2007,52(5):943-948.
    [9]蔡自兴,徐光拓.人工智能及其应用[M].北京:清华大学出版社,2003.
    [10] Li Z. K., Duan Z. S., Chen G. R., et al. Consensus of Multiagent Systems andSynchronization of Complex Networks: A Unified View point[J]. IEEE TransactionsOn Circuits and Systems-I: Regular Papers,2010,57(1):213-224.
    [11]王磊.动态对抗性环境下多机器人系统合作研究[D].北京:清华大学博士学位论文,2005.
    [12]杨文.带领导者的多智能体系统中的一致性问题研究[D].上海:上海交通大学博士学位论文,2009.
    [13] Sinha A., Ghose D. Generalization of linear cyclic pursuit with application to ren-dezvous of multiple autonomous agents. IEEE Transactions on Automatic Control,2006,51(11),1819-1824.
    [14] Flint M., Fernandez-Gaucherand E., Polycarpou M. Cooperative control for UAV’ssearching risky environments for targets[C]. Proceedings of the IEEE Conference onDecision and Control, Maui, Hl, United States: Institute of Electrical and ElectronicsEngineers Inc.,2003:3567-3572.
    [15] Flint M., Polycarpou M., Fernandez-Gaucherand E. Cooperative control for multi-ple autonomous UAV’ searching for targets[C]. Proeeedings of the IEEE Conferenceon Decision and Control, Las Vegas, NV, United States: Institute of Electrical andElectronics Engineers Inc.,2002:2823-2828.
    [16] Yang Y., Minai A. A., Polyearpou M. M. Deeentralized cooperative search by net-worked UAVs in an uncertain environment[C]. Proeeedings of the Ameriean ControlConference, Boson, MA, United States: Institute of Electrical and Electronics Engi-neers Inc.,2004:5558-5563.
    [17] Sujit P. B., Ghose D. Search using multiple UAVS with flight time constraints[J].IEEE Transactions On Aerospace and Eleetronic Systems,2004,40(2):491-509.
    [18]王晓丽,洪弈光.多智能体系统分布式控制的研究新进展[J].复杂系统与复杂性科学,2010,7(2-3):70-81.
    [19] Olfati-Saber R., Fax J. A., Murray R. M. Consensus and cooperation in networkedmulti-agent systems[J]. Proceeding of the IEEE,2007,95(1):215-233.
    [20] Ren W., Beard R. W., Atkins E. M. A survey of consensus problems in multi-agentcoordination[C]. Proceedings of the2005American Control Conference, Portland,USA: Institute of Electrical and Electronics Engineers Inc.,2005,(3):1859-1864.
    [21]杨文,汪小帆,李翔.一致性问题综述[C].25届中国控制会议,哈尔滨,北京:北京航空航天大学出版社.2006:1491-1495.
    [22] Reynolds C. W. Flocks, herds, and sehools: a distributed behavioral model[C].Poceedings of the14th Annual Conference on Computer Grophics and InteraetiveTechnique, Institute of Electrical and Electronics Engineers Inc.,1987,21:25-34.
    [23] Tanner H. G. Flocking with obstacle avoidance in switching networks of intercon-nected vehicles[C]. Proceedings of the IEEE International Conference on Robotics andAutomation, New Orleans, LA, United States: IEEE,2004:3006-3011.
    [24] Tanner H. G., Jadbabaie A., Pappas G. J. Flocking in fixed and switching net-works[J]. IEEE Transactions on Automatic Control,2007,52(5):863-868.
    [25] Olfati-Saber. R. Flocking with obstacle avoidance[R]. California Institute of Tech-nology, Control Dynamic Systems, Pasadena, CA, Technical Report CIT-CDS,2003.
    [26] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory[J].IEEE Transactions on Automatic Control,2006,51(3):401-420.
    [27] Wang L., Shi H., Chu T. G. Flocking control of groups of mobile autonomous agentsvia local feedback[C]. Proceedings of the2005IEEE International Symposium on In-telligent Control, Limassol, Cyprus: Institute of Electrical and Electronics EngineersInc.,2005:441-446.
    [28] DeGroot M. H. Reaching a consensus[J]. Journal of American Statistical Association,1974,69(345):118-121.
    [29] Vicsek T., Cziro′k T., Ben-Jacob E., et al. Novel type of phase transition in a systemof self-driven particles[J]. Physcial Reviewer Letters,1995,75(6):1226-1229.
    [30] Jadbabaie A., Lin J., Morse A. S. Coordination of groups of mobile autonomousagents using nearest neighbor rule[J]. IEEE Transactions on Automatic Control,2003,48(6):988-1001.
    [31] Olfati-Saber R., Murray R. M. Consensus problem in networks of agents with switch-ing topology and time-delays[J]. IEEE Transactions on Automatic Control,2004,49(9):1520-1533.
    [32] Hong Y. G., Chen G. R., Bushnell L. Distributed observers design for leader-followingcontrol of multi-agent networks[J]. Automatica,2008,44(3):846-850.
    [33] Laferriere G., Williams A., Caughman J., et al. Decentralized control of vehicleformations[J]. Systems&Control Letters,2005,54(9):899-910.
    [34] Fax J. A., Murray R. M. Information flow and cooperative control of vehicle forma-tions[J]. IEEE Transactions on Automatic Control,2004,49(9):1465-1476.
    [35] Vidal R., Shakernia O., Sastry S. Formation control of nonholonomic mobile robotswith omnidirectional visual servoing and motion segmentation[C]. Proceedings ofIEEE Conference Robotics and Automation, Taibei, TaiWan: IEEE,2003:584-589.
    [36]曹志强,张斌,谭民.基于行为的多移动机器人实时队形保持[J].高技术通信,2001,10:74-77.
    [37] Wang Z D, Takano Y, Hirata Y, et al. A pushing leader based decentralized controlmethod for cooperative object transportation[C]. Proceedings of the2004IEEE/RSJInternational Conference on Intelligent Robots and Systems, Sendai, Japan: Instituteof Electrical and Electronics Engineers Inc.,2004:1035-1040.
    [38] Shiroma N., Matsumoto O., Tani K. Cooperative behavior of a mechanically unstablemobile robot for object transportation[J]. JSME International Journal-Series C,1999,42(4):965-973
    [39] Kosuge K, Oosumi T, Satou M, et al. Transportation of a single object by twodecentralized-controlled nonholonomic mobile robots. Proceedings of the IEEE In-ternational Conference on Robotics and Automation, Leuven, Belgium: Institute ofElectrical and Electronics Engineers Inc.,1998:2989-2994
    [40] Cortes J., Bullo F. Robust rendezvous for mobile autonomous agents via proximitygraphs in arbitrary dimensions[J]. IEEE Transaction on Automatic Control,2006,51(8):1289-1298.
    [41] Su H. S., Wang X. F., Chen G. R. Rendezvous of multiple mobile agent with pre-served network connectivity[J]. Systems&Control letters,2010,59(5):313-322.
    [42] Khoo S. Y., Xie L. H., Man Z. H. Robust finite-time consensus tracking algorithmfor multirobot systems[J]. IEEE Transactions on Mechatronics,2009,14(2):219-227.
    [43] Sun Y. G., Wang L., Xie G. M. Average consensus in directed networks of dynamicagents with time-varying communication delays[C]. Proceddings of the45th IEEEConference on Decision and Control, San Diego: IEEE,2006:3393-3398.
    [44] Sun Y. G., Wang L., Xie G. M. Average consensus in networks of dynamic agents withswitching topologies and multiple time-varying delays[J]. System&Control Letters,2008,57(2):175-183.
    [45] Lin P., Jia Y. M. Average consensus in networks of multi-agents with both switchingtopology and coupling time-delay[J]. Physica A,2008,387(1):303-313.
    [46] Ren W., Beard R. W. Coordination variables and consensus building in multiple ve-hicle systems cooperative control[J]. Springer-Verlag Series: Lecture Notes in Controland Information Sciences,2004,309:171-188.
    [47]刘成林,田玉平.具有时延的多个体系统的一致性问题综述[J].控制与决策,2009,24(11):1601-1608.
    [48] Li T., Fu M. Y., Xie L. H., et al. Distributed consensus with limited communicationdata rate[J]. IEEE Transactions on Automatic Control,2011,56(2):279-292.
    [49] Ren W., Randal W. B., Kingston D. B. Multi-agent kalman consensus with relativeuncertainty[C]. Proceedings of the2005American Control Conference, Portland, USA:Institute of Electrical and Electronics Engineers Inc.,2005:1865-1870.
    [50] Moreau L. Stability of multi-agent systems with time-dependent communicationlinks[J]. IEEE Transactions on Automatic Control,2007,50(2):169-182.
    [51] Kingston D. B., Beard R. W. Discrete time average consensus under switching net-work topologies[C]. Proceedings of the2006America control conference, Minneapolis,Minnesota: Institute of Electrical and Electronics Engineers Inc.,2006:3551-3556.
    [52] Yu W. W., Chen G. R., Cao M. Some necessary and sufcient conditions for second-order consensus in multi-agent dynamical systems[J]. Automatica,2010,46(6):1089-1095.
    [53] Zhu W., Cheng D. Z. Leader-following consensus of second-order agents with multipletime-varying delays[J]. Automatica,2010,46(12):1994-1999.
    [54] Tian Y. P., Liu C. L. Consensus of multi-agent systems with diverse input and com-munication delays[J]. IEEE Transactions on Automatic Control,2008,53(9):2122-2128.
    [55] Yang H. Y., Liu Q. M. Formation control of second-order multi-agent with diversedelays[C]. Chinese Control and Decision Conference, Guilin, China: Institute of Elec-trical and Electronics Engineers Inc.,2009:1342-1346.
    [56] Tanner H. G., Christodoulakis D. K. State synchronization in local-interaction net-worksis robust with respect to time delays[C]. Proceedings of the44th IEEE Confer-ence on Decision and Control and2005European Control Conference, Seville, Spain,2005: IEEE,4945-4950.
    [57] Liu S., Xie L. H., Frank L. L. Synchronization of multi-agent systems with delayedcontrol input information from neighbors[J]. Automatica,2011,47(10):2152-2164.
    [58] Li T., Zhang J. F. Mean square average consensus under measurement noises andfixed topologies: necessary and sufcient conditions[J]. Automatica,2009,45(8):1929-1936.
    [59] Hu J. P., Hong Y. G. Leader-following coordination of multi-agent systems withcoupling time delays[J]. Physica A,2007,(374):853-863.
    [60] Lin P., Jia Y.M., Lin L. Disturbuted robust H∞consensus control in directed net-works of agents with time-delay[J]. Systems&Control Letters,2008,57(8):643-653.
    [61] Carli R., Chiuso A., Schenato L., et al. Distributed kalman filtering using consensusstrategies[C]. Proceedings of the46th IEEE Conference on Decision and Control NewOrleans, LA, USA: IEEE,2007:5486-5491.
    [62] Carli R., Chiuso A., Schenato L., et al. Distributed Kalman Filtering Based onConsensus Strategies[J]. IEEE Journal on selected areas in communications,2008,26(4):622-633.
    [63] Dimarogonas D. V., Johansson K. H. Stability analysis for multi-agent systems usingthe incidence matrix: quantized communication and formation control[J]. Automat-ica,2010,46(4):695-700.
    [64] Carli R., Bullo F., Zampieri S. Quantized average consensus via dynamic cod-ing/decoding schemes[J]. International Journal Robust and Nonlinear Control,2010,20(2):156-175.
    [65] Carli R., Bullo F., Zampieri S. Quantized average consensus via dynamic cod-ing/decoding schemes[C]. Proceedings of the47th IEEE Conference on Decision andControl, Cancun, Mexico: IEEE,2008:4916-4921.
    [66] Kashyap A., Basar T., Srikant R. Consensus with quantized information updates[J].Proceedings of the45th IEEE Conference on Decision and Control, San Diego, USA:IEEE,2006:2728-2733.
    [67] Kashyap A., Basar T. Srikant R. Quantized consensus[J]. Automatica,2007,43(7):1192-1203.
    [68] Huang M. Y., Manton J. H. Coordination and consensus of networked agents withnoisy measurment: stochastic algorithms and asymptotic behavior[J]. SIAM Journalon Control and Optimization: Special Issue on Control and Optimization in Cooper-ative Networks,2006,48(1):134-161.
    [69] Li T., Xie L. H. Distributed consensus over digital networks with limited bandwidthand time-varying topologies[J]. Automatica,2011,47(9):2006-2015.
    [70] Olfati-Saber R. Distributed Kalman Filter with Embedded Consensus Filters[C].Proceeding of the44th IEEE Conference on Decision and Control and2005EuropeanControl Conference, Seville, Spain: IEEE,2005:8179-8184.
    [71] Olfati-Saber R., Shamma J. S. Consensus filters for sensor networks and distributedsensor fusion[C]. Proceeding of the44th IEEE Conference on Decision and Controland2005European Control Conference, Seville, Spain: IEEE,2005:6698-6703.
    [72]韩屏,李方敏,罗婷.无线移动传感器网络的分布式目标跟踪算法[J].北京邮电大学学报,2009,32(1):90-94.
    [73] Cao Y. C., Ren W., Chen F., et al. Finite-time consensus of multi-agent networkswith inherent nonlinear dynamics under an undirected interaction graph[J]. AmericanControl Conference,2011:4020-4025
    [74] Xiong W. J., Ho D. W. C., Wang Z. D. Consensus Analysis of Multiagent Networksvia Aggregated and Pinning Approaches[J]. IEEE Transactions on Neural Networks,2011,22(8):1231-1240.
    [75] Min H., Sun F., Wang S., et al. Distributed adaptive consensus algorithm for net-worked Euler-Lagrange systems[J]. IET Control Theory&Applications,2011,5(1):145-154
    [76] Chen G., Lewies F. L., Xie L. H. Finite-time distributed consensus via binary controlprotocols[J]. Automatica,2011,47(9):1962-1968.
    [77] Su H. S., Chen G. R., Wang X. F., et al. Adaptive second-order consensus of net-worked mobile agents with nonlinear dynamics[J]. Automatica,2011,47(2):368-375.
    [78] Qing H., Wassim M. H. Distributed nonlinear control algorithms for network con-sensus[J]. Automatica,2008,44(9):2375-2381.
    [79] Meurer T., Krstic M. Finite-time multi-agent deployment: A nonlinear PDE motionplanning approach[J]. Automatica,2011,47(11):2534-2542.
    [80] L′echevin N., Rabbath C.A., Sicard P. Trajectory tracking of leader-follower for-mations characterized by constant line-of-sight angles[J]. Automatica,2006,42(12):2131-2141.
    [81] Xiao F., Wang L., Chen J., et al. Finite-time formation control for multi-agentsystems[J]. Automatica,2009,45(11):2605-2611.
    [82] Schlanbusch R., Kristiansen R., Nicklasson P. J. Spacecraft formation reconfigurationwith collision avoidance[J]. Automatica,2011,47(7):1443-1449.
    [83] Abhijit D., Lewies F. L. Distributed adaptive control for synchronization of unknownnonlinear networked systems[J]. Automatica,2010,46(12):2014-2021.
    [84] Podlubny I. Fractional Diferential Equations[M]. New York: Academic,1999.
    [85] Oldham K., Spanier J. The Fractional Calculus[M]. Academic, New York,1974.
    [86]胡跃明.非线性控制系统理论与应用(第二版)[M].北京:国防工业出版社,2005.
    [87] Rouche N., Habets P., Laloy M. Stability Theory by Liapunov’s Direct Method[M].Springer-Verlag, New York,1979.
    [88] Cucker F., Smale S. Emergent behavior in flocks[J]. IEEE Transactions on AutomaticControl,2007,52(5):852-862.
    [89] Xiao L., Boyd S., Lall S. A scheme for robust distributed sensor fusion based onaverage consensus[C]. Proceedings of the4-th International Conference on InformationProcess in Sensor Networks, Los Angeles, United states: IEEE,2005:63-70.
    [90] Yu W. W., Chen G., Cao J. D. Adaptive synchronization of certain and uncertaincoupled complex networks[J]. Asian Journal of Control,2011,13(3):418-429.
    [91] Barahona M., Pecora L. Synchronization in small-world systems[J]. Physical reviewletters,2002,89(5):054101-4.
    [92]刘德进,刘成林.具有通信时延的离散时间二阶多个体网络的一致性问题[J].控制理论与应用,2010,27(8):1108-1112.
    [93]谭拂晓,关新平,刘德荣.具非平衡拓扑结构的多智能体网络系统一致性协议[J].控制理论与应用,2009,26(10):1087-1092.
    [94] Hu J. P., Yuan H. W. Collective coordination of multi-agent systems guided bymultiple leaders[J]. Chinese Physics B,2009,18(9):3777-3782.
    [95] Shi G., Hong Y. G. Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies[J]. Automatica,2009,45(5):1165-1175.
    [96] Ji M., Ferrari-Trecate G., Egerstedt M., et al. Containment control in mobile net-works[J]. IEEE Transactions Automatic Control,2008,53(8):1972-1975.
    [97] Cao Y. C., Ren W. Containment control with multiple stationary or dynamic leadersunder a directed interaction graph[C]. Proceedings of Joint48th IEEE Conferenceon Decision and Control and28th Chinese Control Conference, Shanghai, China:Institute of Electrical and Electronics Engineers Inc.,2009:3014-3019.
    [98] Xiao F., Wang L. Consensus protocols for discrete-time multi-agent systems withtime-varying delays[J]. Automatica,2008,44(10):2577-2582.
    [99] Boyd S., Ghaoui L. E., Feron E., et al. Linear Matrix Inequalities in System andControl Theory[M]. Phliladelphia: SIAM,1994.
    [100]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [101] Gahient P., Nemirovski A., Laub A., et al. LMI control toolbox user’s guide[M].Natick: The Math Works,1995.
    [102] Sun Y. Z., Zhao D. H., Ruan J. Consensus in noisy environments with switchingtopology and time-varying delays[J]. Physica A,2010,389(19):4149-4161.
    [103] Mao X. R. Robustness of exponential stability of stochastic diferential delay equa-tions[J]. IEEE Transactions Automatic Control,1996,41(3):442-447.
    [104] Parks P. C., Hahn V. Stability theory[M]. New York: Prentice Hall,1993.
    [105] Torvik P. J, Bagley R. L. On the appearance of the fractional derivative in thebehavior of real material[J]. Journal of Applied Mechanics,1984,51(2):294-298.
    [106] Cao Y. C., Li Y., Ren W., et al. Distributed coordination algorithms for multi-ple fractional-order systems[C]. Proceedings of the IEEE Conference Decision andControl, Cancun, Mexico,2008:2920-2925.
    [107] Cao Y.C., Li Y., Ren W., et al. Distributed coordination of networked fractional-order systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2010,40(2):362-370.
    [108] Sun W., Li Y., Li C. P., et al. Convergence speed of a fractional order consensusalgorithm over undirected scale-free networks[J]. Asian Journal of Control, accepted.
    [109] Shen J., Cao J. D., Lu J. Consenus of fractional-order systems with non-uniforminput and communication delays[J]. Asian Journal of Control, accepted.
    [110] Shen J., Cao J. D. Necessary and sufcient conditions for consenus of delayedfractional-order systems over directed graph[Z]. http://www.paper.edu.cn,2011.
    [111] Cao Y. C., Ren W. Distributed formation control for fractional-order systems: Dy-namic interaction and absolute/relative damping[J]. Systems&Control Letters,2010,59(3-4):233-240.
    [112] Matignon D. Stability result on fractional diferential equations with applicationsto control processing[C]. Proceeding of the. IMACS-SMC proceedings, Lille, France,1996:963-968.
    [113] Cao Y. C., Ren W. Distributed Coordination of Multi-agent Networks EmergentProblems, Models, and Issues[M]. London, U.K.: Springer-Verlag,2011.
    [114] Deng W. H, Li C. P., Lu¨ J. H. Stability analysis of linear fractional diferentialsystem with multiple time delays[J]. Nonlinear Dynamics,2007,48(4):409-416.
    [115] Huang M. Y., Manton J. H. Stochastic consensus seeking with noisy and directedinter-agent communication: fixed and randomly varying topologies[J]. IEEE Transac-tions on Automatic Control,2010,55(1):235-241.
    [116] Liu S., Xie L. H., Zhang H. S. Distributed consensus for multi-agent systems withdelays and noises in transmission channels[J]. Automatica,2010,47(5):920-934.
    [117] Li T., Zhang J. F. Consensus conditions of multi-agent systems with time-varyingtopologies and stochastic communication noises, IEEE Transactions on AutomaticControl,2010,55(9):2043-2057.
    [118] Ma C. Q., Li T., Zhang J. F. Leader-following consensus control for multi-agentsystems under measurement noises[J]. Proceedings of the17th IFAC congress, COEX,Korea, South: Institute of Electrical and Electronics Engineers Inc.,2008:1528-1533.
    [119] Ma C. Q., Li T., Zhang J. F. Consensus control for leader-following multi-agentsystems with measurement noises[J]. Journal of Systems Science and Complexity,2010,23(1):35-49.
    [120] Hu J. P., Feng G. Distributed tracking control of leader-follower multi-agent systemsunder noisy measurement[J]. Automatica,2010,46(8):1382-1387.
    [121] Ni W., Cheng D. Z. Leader-following consensus of multi-agent systems under fixedand switching topologies [J]. Systems&Control Letters,2010,59(3-4):209-217.
    [122] Lu X. Q., Francis A., Chen S. H. Cluster Consensus of Nonlinearly Coupled Multi-Agent Systems in Directed Graphs[J]. Chinese Physics Letters,2010,27(5):050503
    [123] Ma C. Q., Zhang J. F. Necessary and sufcient conditions for consensusabilityof linear multi-agent systems[J]. IEEE Transactions on Automatic Control,2010,55(5):1263-1268.
    [124] You K. Y., Xie L. H. Network topology and communication data rate for consen-susability of discrete-time multi-agent systems[J]. IEEE Transactions on AutomaticControl,2011,56(10):2262-2275.
    [125] Seo J., Shim H., Back J. Consensus of high-order linear systems using dynamicoutput feedback compensator: Low gain approach[J]. Automatica,2009,45(11):2659-2664.
    [126] You K. Y., Xie L. H. Coordination of discrete-time multi-agent systems via relativeoutput feedback[J]. International Journal of Robust and Nonlinear Control,2010,21(13):1587-1605.
    [127] Ren W., Moore K., Chen Y. Q. High-order consensus algorithms in cooperativevehicle systems[J]. Proceedings of the IEEE International Conference on Networking,Sensing and Control, Hainan, China: Institute of Electrical and Electronics EngineersInc.,2006:457-462.
    [128] He W., Cao J. Consensus control for high-order multi-agent systems[J]. IET ControlTheory&Applications,2011,5(1):231-238.
    [129] Cai N., Xi J. X., Zhong Y. S. Swarm stability of high-order linear time-invariantswarm systems[J]. IET Control Theory&Applications,2011,5(2):402-408.
    [130] Gu G. X., Marinovici L., Lewis F. L. Consensusability of discrete-timedynamicmulti-agent systems[J]. IEEE Transactions on Automatic Control,2011, doi:10.1109/TAC.2011.2179431.
    [131] Li Z. K., Duan Z. S., Chen G. R. Consensus of discrete-time linear multi-agentsystems with observer-type protocols[J]. Discrete and Continuous Dynamical Systems-Series B,2011,16(2):489-505.
    [132] Nevelson M. B., Hasminskii R. Z., Silver B. Stochastic approximation and recursiveestimation[M]. Providence: American Mathematical Society,1976.
    [133] Godsil C., Royle G. Algebraic Graph Theory[M]. New York: Springer-Verlag,2001.
    [134] Michel N., Miller K. Qualitative analysis of large scale dynamical systems[M]. NewYork: Academic Press,1977.
    [135] Hong Y. G., Hu J. P., Gao L. X. Tracking control for multi-agent consensus withan active leader and variable topology[J]. Automatica,2006,42(7):1177-1182.
    [136] Halanay A. Diferential Equations: Stability Oscillations Time Lags[M]. New York:Academic Press,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700