用户名: 密码: 验证码:
大停电后电力系统恢复优化的模型与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人们对电力的依赖程度越来越大,这就要求电网需要有较高的供电可靠性。随着电力系统特别是高压与超高压电网的发展,系统规模不断增大,由于电网结构不合理、运行管理不当、继电保护及安全自动装置误动、拒动,不可抗外力等各种原因,发生电力系统事故甚至大面积停电的可能性不可忽视。尽管各电力系统都在不断采取各种有效措施提高系统的安全运行水平,但国内外近年发生的电力系统大面积停电事故仍不乏其例。鉴于发生大面积或停电的潜在可能性、危害性,深入地、系统地研究电力系统大面积停电后的恢复问题,对确保发生事故后能安全、快速地恢复供电,减少停电损失,具有十分重要的理论和实际意义。目前,国内外开始对在线的自适应恢复优化方法方面作了一些研究,但仍有很多重要问题没有得到很好的解决。
     在此背景下,本论文对大停电后电力系统恢复过程的优化方法进行了比较系统深入的研究,结合电力系统恢复的各个阶段主要目标,发展了电力系统恢复三个不同阶段恢复方案的优化方法,取得了一定的成果:
     1)在黑启动决策中,现有的决策方法尚不能合理融合定性和定量指标,也没有同时考虑指标之间的关联性以及模糊性。因此,采用了Vague值表示黑启动方案评价指标值,可以对其进行比较和综合;引入了Vague值模糊测度来描述评价指标之间的关联性。在此基础上,提出了基于非可加测度理论的黑启动决策方法。与现有方法相比,所提出的方法能够处理黑启动方案评价指标之间的关联性,且能合理地处理黑启动决策中的模糊信息。
     2)电力系统大停电后的网架重构是一个多目标、多变量的组合优化问题。本文发展了计及恢复操作时间不确定性的网架重构方案优化的机会约束规划模型。该模型以恢复的发电节点数和负荷恢复收益作为节点收益,计及了恢复操作时间的不确定性,搜索网架重构过程中收益最大的网架重构方案。之后,针对网架重构问题的特点,提出了一种改进遗传算法求解方法。
     3)大停电后电力系统负荷恢复阶段的主要内容是全面、快速地恢复负荷。通常,此阶段系统中有大量的节点负荷需要负荷,但系统的发电能力尚未完成恢复,需要分阶段优化选择所要恢复的目标负荷。针对问题中优化变量较多,采用基于角度调制的DE算法对问题进行求解;提出参考节点虚拟功率偏差的概念,对负荷恢复方案的进行频率约束的验证,减少了动态潮流计算量,提高了问题的求解效率。
With the rapid increase of power demand in recent years, the reliability of power supply has becoming more and more important. Nowadays, the development of the power system especially the high-voltage or extra high-voltage network, the scale of the system has been rapidly increasing. Despite of the implementation of various effective measurements for increasing the power system security, the possibility of the occurrence of power system contingency or even large-area power outage still exist due to many reasons, such as structure imperfection, malfunctions of protective relays and circuit breakers, natural calamities. In recent years, several impressive events of large-area power outage have taken place to the power system in many countries. Therefore, it is of great importance to lucubrate the optimization of power system restoration after blackouts for ensuring the rapid and safe restoration of power supply and reducing the economic losses. Though the adaptive methods of the optimization of power system restoration have been studied in many available references, many progresses still need to be made.
     Given this background, the method of the optimization of power system restoration is studied in this thesis. With the various objectives of the three stages during power system restoration process taken into account, some significant research results are obtained as follows:
     1) Determining the optimal black-start strategy has significant impacts on the speed of power system restoration after a blackout. In the existing black-start decision-making methods, the qualitative and quantitative indexes cannot be well synthesized, and the relevance among the indexes cannot be taken into account. Given this background, the Vague set is first employed in this work to represent the indexes for facilitating the comparisons among them. Then, the Vague value measure is presented, and a mathematical model for black-start decision-making developed. Comparing with the existing methods, the developed method could deal with the relevance among the indexes and more reasonably represent the fuzzy information.
     2) The network reconfiguration during power system restoration after blackouts usually takes a long and complex procedure. To address the uncertainties in the restoration steps and time involved, a CCP (Chance Constrained Programming) based method for network reconfiguration scheme optimization is proposed in this paper. The proposed method can generate the best restoration sequence to maximize the benefit of the reconfiguration scheme by taking in to account the number of restarted generators-nodes and the income from restored restored-nodes accordingly. The Genetic Algorithm (GA) is employed to solve for the optimal solution subject to special requirements of the network reconfiguration operation.
     3) The third stage of power system restoration is load restoration stage, in which the main objective is to restore as many loads as possible. Generally speaking, during load restoration stage, a large amount of buses and loads has to be restored, but the power supply is not completely restored yet, so the amount of buses and loads to be restored at a time has to be decided by the dispatchers. To optimizing the election of buses and loads to be restored, the concept of virtual power violation of reference bus is used to examine the constraint of maximum frequency violation. The Differential Evolution algorithm based on signal modulation theory is employed for the optimal solution subject to special requirements of the load restoration.
引文
[1] U.S.-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada[EB/OL]. Available on: https://reports.energy.gov/BlackoutFinal-Web.pdf
    [2]唐斯庆,张弥,李建设,等.海南电网9·26大面积停电事故的分析与总结[J].电力系统自动化, 2006, 30(1): 1-7, 16
    [3] Union for the Co-ordination of Transmission of Electricity (UCTE). Final Report System Disturbance on 4 November 2006[EB/OL]. Available on: http://www.ucte.org/_library/otherreports/ Final-Report-20070130.pdf
    [4]刘有飞,蔡斌,吴素农.电网冰灾事故应急处理及反思[J].电力系统自动化, 2008, 32(8): 10-13
    [5] Adibi M.M.. Power System Restoration: Methodologies & Implementation Strategies[M]. New York: Wiley-IEEE Press, 2000
    [6] Lindenmeyer D., Dommel H.W., Adibi M.M.. Power System Restoration A Bibliographical Survey[J]. International Journal of Electrical Power and Energy Systems, 2001, 23(3): 219-227
    [7] Adibi M.M., Fink L.H.. Overcoming Restoration Challenges Associated with Major Power System Disturbances[J]. IEEE Power and Energy Magazine, 2006, 4(5): 68-77
    [8] Kojima Y., Warashina S., Kato M., et al. The Development of Power System Restoration Methods for a Bulk Power System by Applying Knowledge Engineering Techniques[J]. IEEE Transactions on Power Systems, 1989, 4(3): 1228-1235
    [9] Kirschen D.S., Volkmann T.L.. Guiding a Power System Restoration with an Expert System[J]. IEEE Transactions on Power Systems, 1991, 6(2): 558-566
    [10] Matsumoto K., Sakaguchi T., Kafka R.J., et al. Knowledge-Based Systems as Operational Aids in Power System Restoration[J]. Proceedings of the IEEE, 1992, 80(5): 689-697
    [11] Adibi M.M., Kafka L.R.J., Milanicz D.P.. Expert System Requirements for Power System Restoration[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1592-1600
    [12]高远望,顾雪平,刘艳,等.电力系统黑启动方案的自动生成与评估[J].电力系统自动化, 2004, 18(13): 50-54, 84
    [13]董张卓,焦建林,孙启宏.用层次分析法安排电力系统事故后火电机组恢复的次序[J].电网技术, 1997, 21(6): 48-51, 54
    [14] Kostic T., Cherkaoui R., Germond A., et al. Decision Aid Function for Restoration of Transmission Power Systems: Conceptual Design and Real Time Considerations[J]. IEEE Transactions on Power Systems, 1998, 13(3): 923-929
    [15]杨宛辉,王克文,王军,等.城市电网运行智能决策支持系统[J].继电器, 2004, 32(14): 56-59, 75
    [16]周云海,闵勇,杨滨.黑启动及其决策支持系统[J].电力系统自动化, 2001, 25(15): 43-46, 62
    [17]刘天琪.超高压大系统最优恢复计划的多目标模糊决策法[J].电力系统自动化, 2000, 24(15): 27-31
    [18] Islam S., Chowdhury N.. A Case-based Windows Graphic Package for the Education and Training of Power System Restoration[J]. IEEE Transactions on Power Systems, 2001, 16(2): 181-187
    [19]王洪涛,刘玉田,邱夕照.基于分层案例推理的黑启动决策支持系统[J].电力系统自动化, 2004, 28(11): 49-52
    [20]顾雪平,赵书强,刘艳,等.一个实用的电力系统黑启动决策支持系统[J].电网技术, 2004, 28(9): 54-57, 74
    [21]苏德生,顾雪平,赵书强,等.河北南网黑启动决策支持系统的研究开发[J].电力系统自动化, 2004, 28(12): 45-50
    [22] Wang Hongtao, Liu Yutian. Power System Restoration Collaborative Grid Based on Grid Computing Environment[C]. Proceedings of IEEE Power Engineering Society General Meeting: Vol. 1, San Francisco, USA, June 12-16, 2005: 644-649
    [23]刘艳,顾雪平,张丹.基于数据包络分析模型的电力系统黑启动方案相对有效性评估[J].中国电机工程学报, 2006, 26(5): 32-37, 94
    [24]刘艳,顾雪平.评估黑启动方案的层次化数据包络分析方法[J].电力系统自动化,2006, 30(21): 33-38
    [25]王洪涛,刘玉田,邱夕兆,等.基于多agent的电力系统主从递阶恢复决策[J].电力系统自动化, 2006, 30(15): 5-9
    [26]张志毅,陈允平.基于模糊多属性决策的黑启动方案优选[J].高电压技术, 2007, 33(3): 42-45, 52
    [27]林济铿,蒋越梅,岳顺民,等.基于DEA/AHP模型的电力系统黑启动有效方案评估[J].电力系统自动化, 2007, 31(15): 65-69, 110
    [28]王洪涛,刘玉田.电力系统恢复的主从递阶决策模型及其优化算法[J].中国电机工程学报, 2007, 27(1): 8-13
    [29]林振智,文福拴,周浩.熵权决策理论及其在黑启动决策中的应用[J].电力系统自动化学报, 2009, 12(6): 26-33.
    [30]林振智,文福拴,薛禹胜,等.基于多属性群决策特征根法的智能电网黑启动决策[J].电力系统自动化, 2010, 34(5): 18-23.
    [31]林振智,文福拴,薛禹胜,等.智能电网黑启动群体决策的可靠性分析[J].电力系统自动化. 2010, 34(9): 17-22
    [32]李志民,刘迎春,李卫星,等.电力系统恢复典型案例分析[J] .电力系统自动化, 2003, 27(2): 60-64
    [33] Chu R.F., Dobrowolski E.J., Barr E.J., et al. The Uses of an Operator Training Simulator for System Restoration[C]. Proceedings of Power Industry Computer Application Conference, Baltimore, USA, May 7-10, 1991: 171-177
    [34]谌军,曾勇刚,杨晋柏,等.南方电网黑启动方案[J].电力系统自动化, 2006, 30(9): 80-83, 87
    [35]徐青山.电力系统故障诊断及故障恢复[M].北京:中国电力出版社, 2007
    [36]蔡述涛,张尧,荆朝霞.地方电网黑启动方案的制定[J].电力系统自动化, 2005, 29(12): 73-76
    [37] Shimakura K., Inagaki J., Matsunoki Y., et al. A Knowledge-Based Method for Making Restoration Plan of Bulk Power System[J]. IEEE Transactions on Power Systems, 1992, 7(2): 914-920
    [38]徐升,房鑫炎.专家系统在电力系统结构恢复中的应用[J].电力自动化设备, 2003, 23(5): 33-35
    [39] Liu C.C., Liou K.L., Chu R.F., et al. Generation Capability Dispatch for Bulk Power System Restoration: A Knowledge-Based Approach[J]. IEEE Transactions on Power Systems, 1993, 8(1): 316-325
    [40] Nagata T., Sasaki H., Yokoyama R.. Power System Restoration by Joint Usage of Expert System and Mathematical Programming Approach[J]. IEEE Transactions on Power Systems, 1995, 10(3): 1473-1479
    [41]邱晓燕,唐海平,李兴源,等.基于专家系统和数值计算的电力系统恢复[J].中国电机工程学报, 1996, 16(6): 413-416
    [42] Park Y.M., Lee K.H.. Application of Expert System to Power System Restoration in Sub-Control Center[J]. IEEE Transactions on Power Systems, 1997, 12(2): 629-635.
    [43] Nagata T., Sasaki H.. A Multi-Agent Approach to Power System Restoration[J]. IEEE Transactions on Power Systems, 2002, 17(2): 457-462
    [44] Liu D., Chen Y., Shen G., et al. A Multi-Agent Based Approach for Modeling and Simulation of Bulk Power System Restoration[C]. Proceedings of IEEE PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, Aug. 15-17, 2005: 1-6
    [45] Ketabi A., Asmar H., Ranjbar A.M., et al. An Approach for Optimal Units Start-up During Bulk Power System Restoration[C]. Proceedings of Large Engineering Systems Conference on Power Engineering. Halifax, Canada, July 11-13, 2001: 190-194
    [46] Bretas A.S., Phadke A.G.. Artificial Neural Networks in Power System Restoration[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1181-1186
    [47] Chin H.C., Su Y.S.. Application of The Ant-Based Network for Power System Restoration[C]. Proceedings of IEEE PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, Aug. 15-17, 2005: 1-5
    [48]魏智博,刘艳,顾雪平.基于DPSO算法以负荷恢复为目标的网络重构[J].电力系统自动化, 2007, 31(1): 38-42
    [49]韩忠晖,顾雪平,刘艳.考虑机组启动时限的大停电后初期恢复路径优化.中国电机工程学报, 2009, 29(4): 21-26.
    [50]刘连志,顾雪平,刘艳.不同黑启动方案下电网重构效率的评估.电力系统自动化, 2009, 33(5): 24-28.
    [51]袁崇义. Petri网原理与应用[M].北京:电子工业出版社, 2005
    [52] Wu J.S., Liu C.C., Liou K.L., et al. A Petri Net Algorithm for Scheduling of Generic Restoration Actions[J]. IEEE Transactions on Power Systems, 1997, 12(1): 69-76
    [53]程云志,房鑫炎. Petri Nets算法在电力系统恢复中的应用[J].电力自动化设备, 2003, 23(5): 12-15
    [54] Fountas N.A., Hatziargyriou N.D., Valavanis K.P.. Hierarchical Time-Extended Petri Nets as Generic Tool for Power System Restoration[J]. IEEE Transactions on Power Systems, 1997, 12(2): 837-843
    [55] Fountas N.A., Hatziargyriou N.D., Valavanis K.P.. A Novel Framework for the Process Control of the Restoration of Electrical Industrial Systems[J]. Electric Power Systems Research, 1999, 50(3): 163-167
    [56]马骞,杨以涵,刘文颖,等.基于对象Petri网技术的电力系统故障恢复方法[J].电网技术, 2005, 29(3): 23-28
    [57] Yang C.L., Li J.. Visualization and Support Tool of Power System Restoration Using Hierarchical Color Petri Net[C]. Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Niagara Falls, Canada, May 4-7, 2008, 439-442
    [58]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社, 2006
    [59] Watts D.J., Strogatz S.H.. A Method for Sustained Overvoltage Collective Dynamics of Small-World Networks[J]. Nature, 1998, 393(6684): 440-442
    [60] Barabás A.L., Albert R.. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512
    [61]周云海,闵勇.恢复控制中的系统重构优化算法的研究[J].中国电机工程学报, 2003, 23(4): 67-70, 188
    [62] Mota A.A., Mota L.T.M., Morelato A.. Visualization of Power System RestorationPlans Using CPM/PERT Graphs[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1322-1329
    [63]刘艳,顾雪平.基于节点重要度评价的骨架网络重构[J].中国电机工程学报, 2007, 27(10): 20-27
    [64] Liu Yan, Gu Xueping. Skeleton-Network Reconfiguration Based on Topological Characteristics of Scale-Free Networks and Discrete Particle Swarm Optimization[J]. IEEE Transactions on Power System, 2007, 22(3): 1267-1274
    [65]周云海,闵勇.负荷的快速恢复算法研究[J].中国电机工程学报, 2003, 23(3): 74-79
    [66] Wang Q., Ajjarapu V.. A Novel Approach to Implement Generic Load Restoration in Continuation-based Quasi-Steady-State Analysis[J]. IEEE Transactions on Power systems, 2005, 20(1): 516-518
    [67]张玥,张尧.蚁群算法在配电网冷负荷恢复中的应用[J].继电器, 2006, 34(5): 39-42
    [68] Wu F.F., Monticelli A.. Analytical Tools for Power System Restoration Conceptual Design[J]. IEEE Transactions on Power Systems, 1988, 3(1): 10-26
    [69]王洪涛.大规模电力系统恢复研究[D] .济南:山东大学, 2005
    [70]徐青山.电力系统故障诊断及故障恢复[M].北京:中国电力出版社, 2007
    [71]刘强,石立宝,周明,等.现代电力系统恢复控制研究综述[J].电力自动化设备, 2007, 27(11): 104-110, 114
    [72] Adibi M.M., Clelland P., Fink L., et al. Power System Restoration A Task Force Report[J]. IEEE Transactions on Power Systems, 1987, 2(2): 271-277
    [73] Adibi M.M., Borkoski J.N., Kafka R.J.. Power System Restoration The Second Task Force Report[J]. IEEE Transactions on Power Systems, 1987, 2(4): 927-932
    [74] Adibi M.M., Borkoski J.N., Kafka R.J., et al. Frequency Response of Prime Movers During Restoration[J]. IEEE Transactions on Power Systems, 1999, 14(2): 751-756
    [75] Mcdonald J.E., Bruning A.M.. Cold Load Pickup[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(4): 1384-1386
    [76] Ihara S., Schweppe F.C.. Physically Based Modeling of Cold Load Pickup[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(9): 4142-4150
    [77] Roos H.B., Zhu N., Giri J., et al. An AGC Implementation for System Islanding and Restoration Conditions[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1399-1410
    [78]何宝灵,刘玉田,王洪涛,等.利用抽水蓄能黑启动大型火电机组辅机的频率估计[J].电力自动化设备, 2008, 28(5): 68-71
    [79] Adibi M.M., Milanicz D.P.. Reactive Capability Limitation of Synchronous Machines[J]. IEEE Transactions on Power Systems, 1994, 9(1): 29-40
    [80] Adibi M.M., Milanicz D.P., Volkmann T.L.. Optimizing Generator Reactive Power Resources[J]. IEEE Transactions on Power Systems, 1999, 14(1): 319-326
    [81] Adibi M.M., Polyak R.A., Griva I.A., et al. Optimal Transformer Tap Selection Using Modified Barrier-Augmented Lagrangian Method[J]. IEEE Transactions on Power Systems, 2003, 18(1): 251-257
    [82] Adibi M.M., Kafka R.J.. Power System Restoration Issues[J]. IEEE Computer Applications in Power, 1991, 4(2): 19-24
    [83] Adibi M.M., Alexander R.W., Milanicz D.P.. Energizing High and Extra-High Voltage Lines During Restoration[J]. IEEE Transactions on Power Systems, 1999, 14(3): 1121-1126
    [84]程改红,徐政.电力系统故障恢复过程中的过电压控制[J].电网技术, 2004, 28(11): 29-33
    [85]吴义纯,丁明,汪兴强.黑启动过程中空载线路的过电压计算[J].合肥工业大学学报(自然科学版), 2005, 28(1): 18-21
    [86]王洪涛,刘玉田,栾兆文,等.空载线路合闸对发电机励磁回路的影响[J].中国电力, 2002, 35(7): 31-34
    [87] Cheng G.H., Xu Z.. A Method for Sustained Overvoltage Control During Power System Restoration[C]. Proceedings of IEEE PES Power Systems Conference and Exposition: Vol. 1, New York, USA, Oct. 10-13, 2004: 473-477
    [88]刘艳,顾雪平,赵书强,等.基于MATLAB的电力系统黑启动发电机自励磁仿真研究[J].华北电力技术, 2005, 35(4): 14-18
    [89]胡键,郭志忠,刘迎春,等.故障恢复问题和发电机恢复排序分析[J].电网技术, 2004, 28(18): 1-4, 15
    [90]刘映尚,张碧华,周云海.黑启动过程中继电保护和安全自动装置的特性和运行[J].中国电力, 2005, 38(5): 25-28
    [91]刘隽,李兴源,许秀芳.互联电网的黑启动策略及相关问题[J].电力系统自动化, 2004, 28(5): 93-97
    [92]房鑫炎,郁惟镛,熊惠敏,等.电力系统黑启动的研究[J].中国电力, 2000, 33(1): 40-43, 96
    [93]余涛,韦曼芳,陈家荣.暂态能量函数法在地区电网黑启动辅助决策中的应用[J].电力系统自动化, 2006, 30(13): 73-78
    [94] Adibi M.M., Adsunski G., Jenkins R., et al. Nuclear Plant Requirements During Power System Restoration[J]. IEEE Transactions on Power Systems, 1995, 10(3): 1486-1491
    [95]周晓光,谭春桥,张强.基于Vague集的决策理论与方法[M].北京:科学出版社, 2009
    [96]薛禹胜,费圣英,卜凡强.极端外部灾害中的停电防御系统构思: (二)任务与展望[J].电力系统自动化. 2008, 32(10): 1-5
    [97]周晓光,张强.基于Vague集的群决策方法研究[J].数学的实践与认识. 2007, 37(19): 12-18
    [98]李彦鹏,黎湘,庄钊文.基于Sugeno模糊积分的目标识别效果评估[J].系统仿真学报, 2005, 17(5), 1175-1178, 1199
    [99]薛禹胜,王昊昊, Dong Zhaoyang,等.市场环境下互联电网恢复控制的评述[J].电力系统自动化, 2007, 31(21): 110-115
    [100]刘强,石立宝,周明,等.电力系统恢复控制的机组优化启动策略[J].电力自动化设备, 2009, 29(4): 24-28
    [101]刘强,石立宝,倪以信,等.电力系统恢复控制的网络重构智能优化策略[J].中国电机工程学报, 2009, 29(13): 8-15
    [102]王昊昊,薛禹胜,董朝阳,等.互联电网恢复控制的自适应优化[J].电力系统自动化, 2007, 31(22): 1-5
    [103]赵红生,丁彩红,黄涌,等.基于专家系统的电力系统大停电后恢复过程中电压控制方法研究[J].华中电力, 2010, 23(4): 18-22
    [104] EL-WERFELLI M, DUNN R, IRAVANI P. Backbone-network reconfiguration for power system restoration using genetic algorithm and expert system[C]. Proceedings of 2009 International Conference on Sustainable Power Generation and Supply (Supergen 09), 6-7 April, 2009. Nanjing, China: 1-6
    [105]周云海,闵勇.恢复控制中的系统重构优化算法研究[J].中国电机工程学报, 2003, 23(4): 67-70, 88
    [106]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社, 2003
    [107]杨宁,文福拴.基于机会约束规划的输电系统规划方法[J].电力系统自动化, 2004, 28(14): 23-27
    [108] ADIBI M M, MILANICZ D P. Estimating restoration duration[J]. IEEE Trans on Power Systems, 1999, 14(4): 1493-1498
    [109]薛禹胜.时空协调的大停电防御框架: (三)各道防线内部的优化和不同防线之间的协调[J].电力系统自动化, 2006, 32(2): 1-10
    [110]薛禹胜.时空协调的大停电防御框架: (二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化, 2006, 32(2): 1-10
    [111]陈小平,顾雪平.基于遗传模拟退火算法的负荷恢复计划制定[J].电工技术学报. 2009, 24(1):171-175
    [112] Kremens.Z.B, Labuzek.M. Load flow analysis incorporating frequency as a state vector variable[C]. Proceedings of the Ninth International Conference on Harmonics and Quality of Power, Orlando, USA, Oct. 1-4, 2002:526-530
    [113]张志毅,陈允平,刘敏忠,等.用改进遗传算法求解电力系统负荷恢复[J].华中科技大学学报(自然科学版). 2007, 35(7): 102-104
    [114]张志毅,陈允平,袁荣湘.电力系统负荷恢复问题的混合遗传算法求解[J]. 2007, 22(2): 105-109
    [115]张志毅,文福拴,刘敏忠.电力系统负荷恢复优化的并行遗传算法实现[J].华南理工大学学报(自然科学版). 2007, 35(6): 38-42
    [116]邓长寿.高维0-1背包问题的双种群角度调制DE算法[J].计算机工程与应用. 2010, 46(24): 45-47
    [117]王尔智,赵玉环.电力网络灵敏度分析与潮流计算[M].北京:机械工业出版社,1992
    [118] Zimmerman R.D., Murillo-Sánchez C.E., Gan Deqiang. A MATLAB Power System Simulation Package[EB/OL]. Available on: http://www.pserc.cornell.edu/matpower/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700