用户名: 密码: 验证码:
薄板2524高强铝合金光纤激光焊接接头组织及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2524铝合金是目前断裂韧性和抗损伤容限最高的新型航空高强高韧Al-Cu-Mg合金,被认为是新型大型飞机的首选蒙皮材料之一。由于节能环保的迫切需要,现代飞机制造趋向轻量化,而焊接整体结构取代传统铆接连接结构是实现机身减重的重要手段。激光焊接具有能量密度高、焊接速度快、热输入小、焊接变形小等优点,而高亮度光纤激光器是未来激光焊接的主流器件,为实现高速、高效、高质量的航空高强铝合金焊接整体连接件提供了新机遇。但迄今为止鲜有关于2524铝合金激光焊接研究的相关报道,因此深入开展2524高强铝合金激光焊接接头的显微组织及力学性能研究十分必要。本文采用光纤激光焊接薄板2524高强铝合金,详细研究了焊接参数和表面状态对合金焊接裂纹敏感性的影响,考察了焊接参数、表面状态以及焊丝成分对接头力学性能和组织的影响,对2524高强铝合金激光焊接接头的焊缝、熔合区以及热影响区的组织演变也进行了深入研究。
     本文考察2524铝合金光纤激光自熔焊的焊接性。结果表明:薄板2524铝合金光纤激光焊接气孔倾向很小,但裂纹倾向大。焊接裂纹均呈高温开裂特征,裂纹包括纵向裂纹、横向裂纹和少量液化裂纹。表面状态显著影响焊缝组织及合金焊接裂纹倾向。合金表面包铝层的存在稀释焊缝合金元素,减少共晶数量,减弱裂纹“愈合”,结晶裂纹倾向大;包铝层表面氧化膜在焊接时卷入熔池,细化焊缝组织,促进晶界共晶分布不连续,降低结晶裂纹倾向。
     本文研究了含稀土Er和变质元素Zr的Al-Mg焊丝对焊缝组织的影响,获得了无缺陷的焊接接头。研究表明:焊缝主要由先生α-Al和晶界α(Al)+S(Al2CuMg)/θ(CuAl2)共晶组成,在α-Al晶内存在少量S/θ相和准晶相。添加5087/5E06焊丝引入Zr/Er元素,Al3Zr/Al3Er等成为异质形核核心,细化了晶粒尺寸,打乱了枝晶生长方向;焊接熔池Mg含量增多,提高了晶界低熔点共晶数量,减小2524铝合金激光焊接热裂纹倾向。
     本文研究了表面状态对熔合区的组织特征、接头成形及力学性能的影响。研究表明:熔合区内溶质元素析出形成粗大棒状S/θ相,而晶内原有析出相及晶界出现液化现象,形成贫溶质区,成为接头最薄弱环节。表面状态影响接头成形和贫溶质区宽度,进而影响接头拉伸断裂模式及力学性能。合金表面包铝层的存在改变熔合区与焊缝的边界线的曲率,拉伸时虽以熔合区起裂但沿焊缝柱状枝晶区扩展,最终沿熔合区扩展断裂;去包铝层状态接头始终沿熔合区发生断裂,呈塑性断裂特征。包铝层表面氧化膜的存在,增加焊接熔池表面张力,增大焊缝成形系数,增大焊缝晶界离异共晶比例,接头强度及延伸率减小,拉伸裂纹在焊缝柱状枝晶区扩展断口呈准解理断裂;去除包铝层减小试样厚度,增大单位厚度热输入,焊缝成形系数更小,最大贫溶质区宽度更小,接头强度及延伸率增大,且断裂始终发生于熔合区,呈塑性断裂特征。
     本文研究了填充焊丝成分对熔合区的组织特征、接头成形及力学性能的影响。研究表明:填充5E06焊丝的接头强度及延伸率高于填充5087焊丝接头。5E06焊丝微合金元素比例更高,利于提供更多的异质形核核心,进一步细化焊缝晶粒尺寸;Mg元素含量更高,减小焊接熔池表面张力,降低焊缝成形系数,同时增大对激光能量的吸收,增大焊缝熔宽,减小最大贫溶质区宽度,但提高焊缝晶界离异共晶数量。填充5E06焊丝去包铝层状态的接头强度系数达到85%,延伸率达5%。
     本文揭示了2524-T3激光焊接热影响区组织演化规律,并根据组织特点,将热影响区细分为液化区、回归强化区、过时效软化区及二次时效强化区。结果表明:在液化区,溶质元素析出形成大量亚微米级圆形S/θ相,而晶内原有沉淀相及晶界出现液化,形成贫溶质区;在回归强化区,原有GPB区溶解、溶质元素重新偏聚形成新的GPB区,显微硬度与母材基本相当;在过时效区,原有GPB区过度长大成为短棒状亚纳米尺寸S相,造成较小程度软化;在二次时效强化区,原有GPB区演变成细小的针状S’相,起析出强化,硬度高于母材。
Al-Cu-Mg2524is a new type aluminum alloy with the highest damage toleranceand considered to be the primary material of choice for the skin of aircraft. Greatlyweight reducing and cost saving may occurred by replacing riveting into laser beamwelding (LBW) of aircraft fuselage panels, because of a high speed, a narrow anddeep weld, a small heat-affected zone and low distortion due to the extremely lowheat input, and possibilities for automation and robotization in LBW. However, untilnow there are few reports about laser beam welding of high strength aluminum2524-T3alloy. Therefore, it is significant to investigate laser beam welding of thealloy. In this paper, thin plate2524-T3high strength aluminum alloy was welded byhigh brightness fiber laser beam welding process, the influences including weldingparameters and surface status of the alloy on hot crack susceptibility were investigated,and the microstructures and mechanical properties in different welding parameters,surface status and filler wire composition were studied, the microstructural features ofwelded metal (WM), bond and heat affected zone (HAZ) of laser welded joint werealso discussed.
     Autogenously bead-on-plate fiber laser beam welding has been presented toevaluate the weldability of2524alloy. The results show that the fiber laser weldedthin plate2524-T3joint has a very low porosity but a high crack susceptibility. Thecracks occur at high temperature, including longitudinal cracks, transverse cracks andfew liquation cracks. The surface status affects the microsturctures and solidificationcracking susceptibilities siginificantly. The alclad on the surface of AA2524can dilutethe alloying elements in joints, reduce the quantity of eutectic and weaken the healingeffect, increase the solidification cracking susceptibility; And the oxide-film on thesurface of alclad can be involved in welding pool, act as heterogeneous nucleation siteplaying an important role in refining grain size, promote a discontinuous eutecticdistribution and reduce the solidification cracking susceptibility.
     The hot crack free welded joint is obtained by filling Al-Mg filler wire with rareearth elemete Er and inoculants elemete Zr. The results show that the weld metalcomposed of α (Al) primary phase, α(Al)+S(Al2CuMg)/θ(CuAl2) as dendrites or ingrain boundaries and few S/θ phase or quasicrystal containing Cu, Fe, Mn in thegrain.Adding ER5087/ER5E06brings Al3Zr/Al3Er particles as the heterogeneous nuclei, fining grain and disturbing the growth direction of columnar dendrites; andincreases the content of Mg element in welding pool, promoting the amount of lowmelting point eutectic on grain boundary and reducing the solidification crackingsusceptibility of weld joint.
     The influences of surface status on the microstructural features, weld beadgeometries and mechanical properties of welded joint have been investigated. Soluteelemetes precipitated and formed into coarse approximately rod-like micronscale S/θparticles, the original constituents and grain boundaries liquated, forming thesolute-depleted zone in the bond, becoming the weakest region in welded joint.Different surface status joints have different weld bead geometries, solute-depletedzone widths in bond and eutectic quantities in weld metal, leading to the differenttensile fracture models and mechanical properties. The alclad on the surface ofAA2524affects the curvity of the boundary between bond and weld metal, resulted atensile crack extending into the columnar dendrite zone in weld metal besidescracking in bond. And the oxide-film on the surface of alclad can increase surfacetension of weld pool, leading a high welding profiled coefficient and enlargeddivorced eutectics percentage, and the tensile fracture surfaces observation showedquasi-cleavage characteristics in the columnar dendrite zone of weld metal; While,removing alclad reduced the depth of sample, increasing the heat input per thicknessand decreasing the welding profiled coefficient, leading to a higher strength andelongation of welded joint, and the tensile cracks always in the bond, showing themicro-porous aggregation toughness fracture characteristics.
     The microstructures, weld bead geometries and mechanical properties of weldedjoints with two different filler wires has been compared. The results show that thetensile strength and elongation of the joint with5E06filler wire is higher than that ofthe joint filling with5087filler wire. The5E06filler wire affords more heterogeneousnuclei, generating finer weld grains; provide higher Mg element, increasing solute inwelding molten pool, helping to reduce the surface tension of weld pool and increasethe absorbility to laser beam, enlarging the width of weld metel, reducing themaximum width of solute-depleted zone in bond, but boosting divorced eutectics atthe interdendritic/grain boundary in weld metel. The tensile strength coefficient andthe elongation of the joint with5E06filler wire in alclad-removed status can reach85%and5%, respectively.
     The microstructural development and microhardness property of fiber laser welded Al–Cu–Mg2524-T3in the heat affected zone have been investigated.According to the microstructure features, the heat affected zone of welded joint hasbeen particularly identified into liquation zone, retrogression zone, overaging zoneand secondary aging zone. In the liquation zone, the solute elemetes precipitated intonumerous approximately spherical sub-micronscale S/θ particles, the originalconstituents and grain boundaries liquated, forming the solute-depleted zone; In theretrogression zone, original GPB zone dissolute, solute elemetes segregated andsubsequent a new GPB zone formed; The original GPB zone growed excessively intoshort rod-like nanoscale S phases in the overaging zone, inducing a narrow and smallsoften zone; While in the secondary aging zone, original GPB zone growed into tinyneedle-like S’-phase, strengthening the microhardness.
引文
1. Starke EA, Staley JT. Application of modern aluminum alloys to aircraft. Progress inaerospace sciences,1996,32(2-3):131-172
    2. Williams JC, Starke EA. Progress in structural materials for aerospace systems. ActaMaterialia,2003,51(19):5775–5799
    3. Bucci RJ, Warren CJ, Starke EA. Need for new materials in aging aircraft structures. Journalof aircraft,2000,37(1):122-129
    4. Srivatsan TS, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior ofaluminum alloy2524. Mater Design2002,23(2):129-139
    5. Schumacher J, Zerner I, Neye G, et al. Laser beam welding of aircraft fuselage panels. Proc.of ICALEO2002,04:2567-2576.
    6.左铁钏,肖荣诗,陈铠等著.高强铝合金的激光加工[M].北京:国防工业出版社,2000:25-27,47-165
    7. Xiao RS. Laser beam welding of aluminum alloys. Proc. of SPIE2008;6825(05):1-10
    8. Mendez PF, Eagar TW. New trends in welding in the aeronautic industry.2nd Conference ofNew Manufacturing Trends,2002,1-10
    9.潘复生,张丁非,杨明波等著.铝合金及应用[M].北京:化学工业出版社,2006:107
    10.杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76-80
    11.彭志辉.航空用新型高强度铝合金[J].材料导报,1997,11(6):1619
    12.徐崇义,李念奎.2xxx系铝合金强韧化的研究与发展[J].轻合金加工技术,2005,33(8):13-14
    13.邱惠中.铝锂合金的发展概况及其应用[J].宇航材料工艺,1993,4:38-45
    14.陈亚莉.铝合金在航空领域中的应用[J].有色金属加工,2003,32(2):11-17
    15.颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,12:1925
    16. Heinz A, Hasler A, Keidel C, et al. Recent development in aluminum alloy for aerospaceapplications [J]. Materials Science and Engineering A,2000,280:102-107
    17.刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010,20(9):1705-1715
    18.刘静,冯振海,张雅玲.2024铝合金包铝薄板T3、T361、T81、T861状态热处理工艺制度研究[J].轻合金加工技术,2003,31(8):46-47
    19. Halkaci HS, Turkoz M; Yigit O. Effects of heat treatment conditions on the mechanicalproperties of AA2024alloy [J]. Applied Mechanics and Materials,2012,217-219:1225-1229
    20.王昌臻,潘清林,何运斌,等.2124铝合金热轧厚板的热处理制度[J].中南大学学报(自然科学版),2007,38(3):386392
    21. Nakai M, Eto T. New aspects of development of high strength aluminum alloys for aerospaceapplications [J]. Materials Science and Engineering A,2000,285(1-2):62-68
    22. William C, John L, James T. Aluminum alloy for aircraft structure [J]. Advanced materialsProfesses,2002,160(12):27-29
    23.蒙多尔福著.王祝堂译.铝合金的组织和性能[M].北京:冶金工业出版社,1976:432-441
    24.王祝堂,田荣璋.铝合金及其加工手册(第二版)[M].武汉:中南工业大学出版社,2000:8-14
    25.王顺才,李春志,边为民,颜鸣皐.2024系列铝合金粗大夹杂相的微观结构研究[J].金属学报,1989,25(5):340-345
    26. Walsh JA, Jata KV, Starke EA. The influence of Mn dispersoid content and stress state onductile fracture of2134type Al alloys [J]. Acta Metall,1989,37(9):28612869
    27.张国君,刘刚,丁向东等.含有第二相的高强铝合金疲劳模型[J].稀有金属材料与工程,2004,33(1):35-39
    28. Ber LB. Accelerated artificial ageing regimes of commercial aluminum alloys. I. Al–Cu–Mgalloys [J]. Materials Science and Engineering A,2000,280(1):83–90
    29. Wang SC, Starink MJ. Review of precipitation in Al-Cu-Mg(-Li) alloys[J]. Int Mater Rev,2005,50(4):193-215
    30. Starink MJ, Gao N, Yan JL. The origins of room temperature hardening of Al-Cu-Mg alloys[J]. Materials Science and Engineering A,2004,387-389(1-2):222-226
    31. Wang SC, Starink MJ. The assessment of GPB2/S′′structures in Al-Cu-Mg alloys [J].Materials Science and Engineering A,2004,386(1-2):156–163
    32. Wang SC, Starink MJ, Gao N. Precipitation hardening in Al–Cu–Mg alloys revisited [J].Scripta Materialia,2006,54(2):287–291
    33. Ringer SP, Sakurai T, Polmear IJ. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys[J].Acta Materialia,1997,45(9):3731-3744
    34. Bray GH, Glazov M, Rioja RJ, et al. Effect of artificial aging on the fatigue crackpropagation resistance of2000series aluminum alloys [J]. International Journal of Fatigue,2001,23(S1): S265–S276
    35.刘志义,周杰,刘延斌,等.高温短时人工时效对2524合金疲劳性能的影响[J].中南大学学报(自然科学版),2009,40(1):112-116
    36. Dubourg L, Merati A, Jahazi M. Process optimization and mechanical properties of frictionstir lap welds of7075-T6stringers on2024-T3skin [J]. Materials&Design,2010,31(7):3324-3330
    37. Lesniak D. Weldability Investigations of AlCuMg Alloys for Extrusion Welding[J]. Archivesof Metallurgy and Materials,2012,57(1):7-17
    38. Chen K, Xiao RS, Huang R, et al. Study on the pore control of5083aluminum alloy bydual-beam laser welding [C]//3rd Pacific International Conference on Applications of Lasersand Optics,2008:494-498
    39. Iwase T, Sakamoto H, Shibata K, et al. Dual-focus technique for high-power Nd: YAG laserwelding of aluminum alloys [C]//Advanced High-Power Lasers and Applications.International Society for Optics and Photonics,2000:348-358
    40. Katayama S, Kawahito Y, Mizutani M. Elucidation of laser welding phenomena and factorsaffecting weld penetration and welding defects [J]. Physics Procedia,2010,5(b):9-17
    41. Kawahito Y, Matsumoto N, Abe Y, et al. Relationship of laser absorption to keyhole behaviorin high power fiber laser welding of stainless steel and aluminum alloy[J]. Journal ofMaterials Processing Technology,2011,211(10):1563-1568.
    42. Zuo TC, Xiao RS, Volz R. Experimental research on the influence of laser-induced plasma onthe beam focusing during high-power CO2laser materials processing [C]//Proceedings ofSPIE, San Jose, USA,1998,3268:62-69
    43. Xiao RS. Laser beam welding of aluminum alloys [C]//Proceedings of SPIE, Beijing, China,2007,6825(05):1-10
    44. Haboudou A, Peyre P, Vannes AB. Study of keyhole and melt pool oscillations in dual beamwelding of aluminum alloys effect on porosity formation [J]. Proc. of SPIE,4831(2003):295-300
    45. Katayama S, Naitom Y, Uchiumi S, et al. Penetration, Porosity Prevention Mechanism andWelding Phenomena in Laser-Arc Hybrid Welding [C]///Lasers and Electro-Optics Europe,2005. CLEO/Europe.2005Conference on. IEEE,2005:661-661
    46. Hu B, Richardson IM. Autogenous laser keyhole welding of aluminum alloy2024[J].Journal of Laser Applications,2005,17(2):70-80
    47.周振丰.金属熔焊原理及工艺(下册)[M].北京:机械工业出版社,1981:149-154
    48.陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991:261-337,362-384,454-466
    49. Ghaini FM, Sheikhi MJ, Torkamany J, et al. The relation between liquation and solidificationcracks in pulsed laser welding of2024aluminium alloy [J]. Materials Science andEngineering A,2009,519(1-2):167–171
    50. Hung C, Kou S. Liquation Cracking in Partial-Penetration Aluminum Welds: Effect ofPenetration Oscillation and Backfilling. Welding Journal,2003,82(7):184-194
    51. Pumphrey WI, Moore DC. Cracking during and after Solidification in someAluminum-Copper-Magnesium Alloys of High Purity [J]. Journal of the institute of metals,1948,73:425-438
    52. Hu B, Richardson IM. Mechanism and possible solution for transverse solidification crackingin laser welding of high strength aluminium alloys [J]. Materials Science and Engineering A,429(2006):287–294
    53. Martukanitz RP, Jan R. A Fundamental Study of Laser Beam Welding Aluminum-LithiumAlloy2195for Cryogenic Tank Applications [R], NASA Contractor Report201614, Sep.1996:28-38
    54. Pickens JR. Recent Developments in the Weldability of Lithium-Containing AluminumAlloys [J]. Journal of Materials Science,25(1990):3035-3047
    55. Chaturvedi MC, Chen DL. Effect of specimen orientation and welding on the fracture andfatigue properties of2195Al–Li alloy [J]. Materials Science and Engineering: A,2004,387:465-469.
    56. Chen DL, Chaturvedi MC. Effects of welding and weld heat-affected zone simulation on themicrostructure and mechanical behavior of a2195aluminum-lithium alloy [J]. Metallurgicaland Materials Transactions A,2001,32(11):2729-2741
    57. Janaki Ram GD, Mitra TK, Raju MK, et al. Use of inoculants to refine weld solidificationstructure and improve weldability in type2090Al-Li alloy[J]. Materials Science andEngineering: A,2000,276(1):48-57
    58.顾根富,高伟等.微量钇稀土合金化对高强铝合金LY12CZ焊接热裂纹倾向性的影响[J].金属科学与工艺,1987(06):106-113
    59.徐国富,杨军军,金头男,等.微量稀土Er对Al-5Mg合金组织与性能的影响[J].中国有色金属学报,2006,16(05):768-774
    60.杨军军,聂祚仁,金头男,等.稀土元素铒对Al-4Cu合金组织与性能的影响[J].中国稀土学报,2002,20(S1):159-162
    61.肖代红,黄伯云.稀土铒对Al-Cu-Mg-Ag-Zr合金微观组织与时效行为的影响[J].机械工程材料,2008,32(4):43-46
    62.肖荣诗,陈铠,陈涛.激光制造技术的现状及发展趋势[J].电加工与模具,2009,04(sl):18-22
    63.左铁钏.现代激光制造及其未来发展[J].北京工业大学学报,2004,30(2):260-264
    64.左铁钏,陈虹.21世纪的绿色制造——激光制造技术及应用[J].机械工程学报,2009,45(10):106-110
    65.谢建新,肖荣诗.材料先进制备与成形加工技术[M].北京:科学出版社,2007
    66. Sibillano T, Rizzi D, Ancona A, et al. Spectroscopic monitoring of penetration depth in CO2Nd:YAG and fiber laser welding processes [J]. Journal of Materials Processing Technology,2012,212(4):910–916
    67. Kawahito Y, Matsumoto N, Katayama S, et al. Characterization of plasma induced duringhigh power fiber laser welding of stainless steel [J]. Science and Technology of Welding andJoining,2008,13(8):744-748
    68.陈铠,肖荣诗,张盛海,等.高强铝合金激光粉末焊接过程[J].焊接学报,2006,27(10):33-36
    69. ASTM. Standard Test Methods for Tension Testing Wrought and Cast Aluminum-andMagnesium-Alloy Products [S]. ASTM, B557M-10,2010
    70. Ko DS, Kim SD, Jang WK, et al. TEM Observation of Electron-Beam Induced PhaseTransformation of Al7Cu2Fe [J]. Microscopy and Microanalysis,2007,13(S2):1096-1097
    71. Wang SC, Starink MJ. Precipitates and intermetallic phases in precipitation hardeningAl–Cu–Mg–(Li) based alloys [J]. International Materials Reviews,2005,50(4):193-215.
    72.李春志,王顺才,金延. Al20Cu2Mn3相中孪晶的高分辨电子显微术研究[J].金属学报,1992,28(1): A1-A5
    73. Gao N, Starink MJ, Kamp N, et al. Application of uniform design in optimisation of threestage ageing of Al–Cu–Mg alloys[J]. Journal of materials science,2007,42(12):4398-4405
    74. Wang SC, Lefebvre F, Starink MJ, et al. VPPA welds of Al-2024alloys: analysis andmodelling of local microstructure and strength [J]. Materials Science and Engineering: A,2006,431(1),123-136
    75. Zhao H, White D R, DebRoy T. Current issues and problems in laser welding of automotivealuminium alloys [J]. International Materials Reviews,1999,44(6):238-266.
    76. Cao X, Wallace W, Immarigeon JP, et al. Research and progress in laser welding of wroughtaluminum alloys. ii. metallurgical microstructures, defects, and mechanical properties. MaterManuf Process,2003,18,23-49
    77. Chen K, Yang WX, Xiao, RS. Direct laser welding of an Al-Li alloy plate without priorsurface cleaning [J]. Lasers in Engineering,2011,22,361-369
    78. Kang YC, Chan SL. Tensile properties of nanometric Al2O3particulate-reinforced aluminummatrix composites [J]. Materials chemistry and physics,2004,85(2-3):438-443.
    79. Kheder ARI, Marahleh GS, Al-Jamea DMK. Strengthening of Aluminum by SiC, Al2O3andMgO [J]. Jordan Journal of Mechanical and Industrial Engineering,2011,5(6):533-541.
    80.胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:124
    81.哈尔滨焊接研究所.焊接裂缝金相分析图谱[M].哈尔滨:黑龙江科学技术出版社,1981:10-26.
    82. Rocha-Rangel E, Becher PF, Lara-Curzio E. Influence of carbon on the interfacial contactangle between alumina and liquid aluminum [J]. Surface and interface analysis,2003,35(2):151-155.
    83. Kawahito Y, Matsumoto N, Abe Y, Katayama S. Laser absorption of aluminium alloy in highbrightness and high power fibre laser welding [J]. Welding International,2012,26(4),275-281
    84. Bachmann M, Avilov V, Gumenyuk A, et al. Numerical simulation of full-penetration laserbeam welding of thick aluminium plates with inductive support [J]. Journal of Physics D:Applied Physics,2012,45(3):035201-035213.
    85. Baker H, Okamoto H. ASM handbook [M]. Alloy Phase Diagrams, ASM International, USA,1992:336.
    86. Du Q, Eskin D G, Katgerman L. Modeling macrosegregation during direct-chill casting ofmulticomponent aluminum alloys [J]. Metallurgical and materials transactions A,2007,38(1):180-189.
    87.王顺才,李春志,边为民,颜鸣皋.2024系列铝合金粗大夹杂相的微观结构研究[J].金属学报,1989,25(05):340-345
    88. Chande T, Mazumder J. Estimating effects of processing conditions and variable propertiesupon pool shape, cooling rates, and absorption coefficient in laser welding [J]. Journal ofapplied physics,1984,56(7):1981-1986.
    89. Kurz W, Bezencon C, Gaumann M. Columnar to equiaxed transition in solidificationprocessing [J]. Science and technology of advanced materials,2001,2(1):185-191
    90. Du Q, Jacot A. A two-dimensional microsegregation model for the description ofmicrostructure formation during solidification in multicomponent alloys: Formulation andbehaviour of the model [J]. Acta materialia,2005,53(12):3479-3493
    91. Huang C, Kou S. Partially melted zone in aluminum welds—planar and cellular solidification.Welding Journal,2001,80(2):46-53
    92. Huang C, Kou S. Partially melted zone in Aluminum welds-liquation mechanism anddirectional solidification [J]. Welding journal,2000,79(5):113s-120s
    93. Guo H, Chaturvedi MC, Richards NL, et al. Interdependence of character of grain boundaries,intergranular segregation of boron and grain boundary liquation in simulated weldheat-affected zone in inconel718[J]. Scripta Materialia,1999,40(3):383–388
    94. Kuo M, Fournelle R A. Diffusion induced grain boundary migration (DIGM) and liquid filmmigration (LFM) in An Al-2.07wt%Cu alloy [J]. Acta metallurgica et materialia,1991,39(11):2835-2845.
    95.田志凌,许良红,彭云,等.高强铝合金焊接接头无析出物区的形成机理[J].金属学报,2008,44(1):91-97
    96.雷卡林著,王绍水译.材料的激光加工[M].北京:科学出版社,1982
    97. Du Y, Chang YA, Huang BY, et al. Diffusion coefficients of some solutes in fcc and liquidAl: critical evaluation and correlation [J]. Materials Science and Engineering: A,2003,363(1):140-151
    98. Kuo M. Diffusion-induced grain boundary migration (DIGM) and liquid film migration(LFM) in an aluminum-copper alloy [D]. Marquette University, PhD dissertation,1990:1-15,78
    99.周善佑.晶界迁移的驱动力与约束力[J].上海金属.有色分册,1991,12(2):50-54
    100.周善佑.晶界迁移的驱动力与约束力(续)[J].上海金属.有色分册,1991,12(3):46-51
    101. Cahn JW. On spinodal decomposition. Acta Metallurgica,1961,9(9):795-801
    102. Barker S W, Purdy G R. On liquid film migration in aluminium–copper alloys [J]. Actamaterialia,1998,46(2):511-524.
    103. Upmanyu M, Smith R W, Srolovitz D J. Atomistic simulation of curvature driven grainboundary migration [J]. Interface Science,1998,6(1-2):41-58.
    104.马兹.希拉特著,赖和仪,刘国勋译.合金扩散和热力学[M].北京:冶金工业出版社,1984,6:89-90
    105.徐祖耀.材料热力学(第四版)[M].北京:高等教育出版社,2009:201-203
    106. Savage WF, Aronson AH. Preferred orientation in the weld fusion zone [J]. Welding Journal,1966,45(2):85s-89s.
    107. Wessel JK. The Handbook of Advanced Materials: Enabling New Designs [M].Wiley-Interscience,2004:69
    108. Royset J, Ryum N. Scandium in aluminium alloys [J]. International Materials Reviews,2005,50(1):19-44.
    109. Nie ZR, Fu JB, Zou JX, et al. Advanced aluminum alloys containing rare-earth erbium[C]//Materials Forum.2004,28:197-201.
    110.聂祚仁,文胜平,黄晖,等.铒微合金化铝合金的研究进展[J].中国金属学报,2011,21(10):2361-2370
    111.季小兰,邢泽炳,聂祚仁,等. Er对Al-4.7Mg-0.7Mn合金组织与性能的影响[J].稀有金属,2006,30(4):462465.
    112.宫博,文胜平,黄晖,聂祚仁.退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化[J].金属学报,2010,46(7):850-856
    113.邢泽炳,林双平,文胜平,聂祚仁.微量铒、锆在AA5083合金中的存在形式及作用机制[J].中国稀土学报,2011,29(2):158-162
    114.邦达列夫著,王永海,张发明,高革译.变形铝合金的细化处理[M].北京:冶金工业出版社,1988:1,43-54
    115.崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988:54
    116. Xiao YD, Ni WX, Li W, et al. Decomposition processing and precipitation hardening ofrapidly solidified Al-Cr-Y-Zr alloy [J]. Transactions of Nonferrous Metals Society of China,2002,12(1):16-20
    117. Katayama S, Nagayama H, Mizutani M, et al. Fibre laser welding of aluminium alloy[J].Welding International,2009,23(10):744-752.
    118. Ludovico A D, Daurelio G, De Filippis L A C, et al. Laser welding of the AA2024-T3aluminum alloy by using two different laser sources (Nd: YAG or CO2)[C]//2004DL over.International Society for Optics and Photonics,2005:887-894.
    119. Zhao H, White D R, DebRoy T. Current issues and problems in laser welding of automotivealuminium alloys [J]. International Materials Reviews,1999,44(6):238-266.
    120. Kermanidis A T, Zervaki A D, Haidemenopoulos G N, et al. Effects of temper condition andcorrosion on the fatigue performance of a laser-welded Al–Cu–Mg–Ag (2139) alloy [J].Materials&Design,2010,31(1):42-49.
    121. Liu C, Northwood D O, Bhole S D. Tensile fracture behavior in CO2laser beam welds of7075-T6aluminum alloy [J]. Materials&design,2004,25(7):573-577.
    122. Zervaki AD, Haidemenopoulos GN. Computational kinetics simulation of the dissolution andcoarsening in the HAZ during laser welding of6061-T6Al-alloy [J]. Welding Journal,2007,86(8):211s-221s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700