用户名: 密码: 验证码:
小鼠类胚胎干细胞来源的转基因前体细胞构建动物乳腺生物反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自胚胎干细胞(Embryonic stem cells,ES细胞)问世以来,ES细胞技术就一直被认为是建立动物乳腺生物反应器的最佳方法。但是奶用家畜的(类)ES细胞系不易建立,其培养技术难以达到建立乳腺生物反应器的要求。此外,现行的乳腺生物反应器的建立往往是通过转基因动物途径实现的,该生产模式难度高、效率低、时间长而且费用高,限制其推广普及。因此,探求一种基于ES细胞的快速建立动物乳腺生物反应器的新方法显得尤为重要。
     体外定向分化的研究一直是干细胞领域研究的热点,理论上ES细胞可以分化为200多种类型的细胞,目前已经获得了ES细胞来源的神经前体细胞、胰岛细胞、角质细胞、上皮前体细胞、心肌细胞、生殖细胞等多种类型的细胞。研究发现,将这些ES细胞来源的前体/干细胞移植后可以在宿主体内微环境诱导下进一步分化为特定细胞,并与周围组织整合,发挥正常生理功能。经过基因修饰后的乳腺上皮细胞被移植到宿主乳腺组织后可长期生存并表达外源基因。因此,利用ES细胞来源的前体/干细胞移植策略结合基因修饰技术构建动物乳腺生物反应器是可行的:以小鼠为动物模型,将稳定转染目的基因(由山羊乳球蛋白基因(β-lactoglobulin,BLG)调控的)的小鼠类ES细胞来源的上皮前体细胞移植到同源小鼠的乳腺组织,随着移植细胞在宿主乳腺组织生存、整合并发挥正常的生理功能,受体动物的乳腺可以分泌含有目的蛋白的乳汁,最终达到快速建立乳腺生物反应器模型的目的。
     本研究将昆明白小鼠早期类ES细胞在体外定向分化为上皮前体细胞,通过稳定转染的方式,将携带编码猪β防御素-1(Porcineβdefensin 1,PBD-1)的基因导入该细胞,然后将稳定整合外源基因的细胞移植到母鼠乳腺组织;利用宿主乳腺组织的微环境,诱导移植的细胞在体内进一步分化为乳腺相关细胞。结果如下:
     (1)从昆明白小鼠超排获得的囊胚中挑选出560枚质量较好的胚胎,分别采用以下两类方式培养:①以不同传代数(0~5代)的小鼠胎儿成纤维细胞(Mouseembryonic fibroblast,MEF)作饲养层培养小鼠胚胎;②添加条件培养基并以第3代MEF作饲养层培养胚胎。比较发现,在第0、1、2、3~5代的饲养层上培养小鼠胚胎,其ICM形成率及类ES细胞的最高传代数无明显差别。以ES细胞上清液条件培养基培养小鼠胚胎,无论是ICM的形成率,还是类ES细胞最高传代数等指标上,都明显优于普通ES细胞培养基。利用RT-PCR检测到ES细胞的特异表达基因Oct-4。ES细胞经AKP染色呈阳性,周围饲养层细胞和分化细胞不染色或轻染。ES细胞特异性抗体Oct-4及SSEA-1免疫荧光反应也呈阳性。此外,体内、体外分化试验发现所分离的昆明白小鼠类ES细胞在体内、体外均具有分化为多种类型细胞的潜能且细胞核型正常,证实其发育的多能性,可以作为后续研究的试验材料。
     (2)将第3代小鼠类ES细胞集落用玻璃针撕成小块(每块含50~100个细胞)接种于MEF饲养层上连续培养10~13 d不传代,在MEF细胞分泌的细胞因子的作用下,小鼠类ES细胞定向分化为上皮样细胞,经过长期传代、纯化培养,建立了稳定的细胞系(目前该细胞系保存于中国典型培养物保藏中心(China Center forType Culture Collection,CCTCC))。RT-PCR检测结果表明,不同传代数小鼠类ES细胞来源的上皮样细胞(第13代和第23代)均不表达Oct-4,其他上皮细胞特异表达基因(K10,K14,K18,K19和Involucrin)在表达量上有一定的差异,但E-cadherin表达差异不明显。为进一步量化不同阶段分化细胞的基因表达水平的差异,用荧光定量PCR对筛选的上皮细胞不同阶段特异表达基因(K14、K19、Involucrin和E-cadherin)进行了定量分析,结果表明,不同代数的上皮样分化细胞(P13和P23)之间,K14和K19两个上皮细胞阶段特异表达基因的mRNA水平发生变化极显著(P<0.01),前者水平增加到7倍,后者下降到原来的十分之一。而Involucrin和E-cadherin的表达水平差异不显著(P>0.05)。经免疫细胞化学染色,广谱角蛋白(PCK)和另外两种上皮细胞特异蛋白标记(K14和K18)均在昆明白小鼠类ES细胞来源的上皮样分化细胞的胞浆着色,流式分析术进一步证实,表达K14、K18和PCK的细胞量分别为51.3%、67.4%和82.7%。表明分化细胞为上皮类型细胞。细胞增殖检测结果表明,80%左右的细胞处于活跃增殖期。综合以上结果得出结论:小鼠类ES细胞来源的上皮样细胞实质为上皮前体细胞。
     (3)采用PCR方法从从猪肝脏组织RNA扩增得到252 bp的PBD-1编码区域,然后从质粒pcDNA3.1-BLG-HNP-1中获取了大小为879 bp的山羊β-乳球蛋白基因(BLG)片段,以其作为乳蛋白基因调控序列,构建了山羊乳腺特异性表达载体pIRES2-EGFP-BLG-PBD-1。经PCR鉴定、限制性内切酶酶切分析和克隆片段序列测定、比较和鉴定。证实成功构建了乳腺特异性表达载体pIRES2-EGFP-BLG-PBD-1,为进一步研究PBD-1蛋白的抗菌活性、抗菌机理及将进一步该载体应用于动物乳腺生物反应器的研究奠定基础。
     (4)利用脂质体介导的方法,将山羊乳腺特异性表达载体pIRES2-EGFP-BLG-PBD-1质粒导入小鼠类ES细胞来源的上皮前体细胞,经过长期高浓度G418筛选,最终建立了稳定转染猪的β防御素-1(porcineβdefensin 1,PBD-1)基因的细胞系。利用半定量RT-PCR方法进一步分析,发现稳定转染后的细胞依然表达上皮特异表达基因E-cadherin、K18、K19、K14和K10(其中K14、K18是上皮细胞发育过程早期出现的标记基因),不表达多能干细胞特异表达基因Oct-4,也不表达上皮细胞晚期标记基因Invoclurin和成纤维细胞特异表达基因FSP1。这些基因的表达模式与细胞转染前相一致。免疫细胞化学鉴定,也证实稳定转染后细胞中上皮细胞特异标记蛋白PCK、K14和K18仍然有很高的表达水平。
     (5)将稳定整合外源基因PBD-1的小鼠类ES细胞来源的上皮前体细胞以不同剂量(10~7个细胞/对乳腺和5×10~3个细胞/对乳腺)移植到不同发育阶段的同品系母鼠第四对乳腺组织内,通过荧光显微镜检测荧光标记(EGFP),证实移植后2周,仅能在高剂量细胞移植组观察到移植细胞的生存,而在移植后5周,只有妊娠中期和妊娠晚期的高剂量细胞移植组可以观察到生存下来的移植细胞,且经PCR检测到外源基因PBD-1的表达。小鼠类ES细胞来源的转基因上皮前体细胞在小鼠乳腺组织微环境的诱导下,进一步分化为CALLA~+或EMA~+阳性细胞(EMA和CALLA分别作为管腔细胞和肌上皮细胞特异的表面标记,用于分离这两种类型的细胞可以达到98%的纯度)。统计结果显示,5周后的分化效果明显优于2周,CALLA~+或EMA~+阳性细胞占生存细胞总数的比例分别达到28.4%和41.7%。此外还发现,移植5周后,受体母鼠乳腺组织经HE染色,与相同发育阶段的未移植昆明白母鼠比较,形态上无明显变化。表明细胞移植后乳腺组织发育正常。
     (6)利用转基因上皮前体细胞移植策略成功建立了小鼠乳腺生物反应器模型。8只受体母鼠移植转基因上皮前体细胞2周后,其中3只(37.5%)母鼠乳汁中检测到外源蛋白PBD-1的表达,表达水平达到514.09±11.47 ng/mL。Western blotting分析得到一条7 ku左右的特异条带,与预期表达的蛋白分子量大小一致,进一步证实移植转基因mES-dK前体细胞2周后,受体母鼠乳汁中成功表达出了目的蛋白PBD-1。
ES cell technology has been the greatest way to product animal mammary gland bioreactor immediately since the first ES cell line was established in 1981. However, ES or ES-like cell line of livestock is difficult to generate and the culture technology which meets the requirement of product animal mammary gland bioreactor could hardly be achieved. In addition, nowadays, the predominant method to generate animal mammary gland bioreactor is to make transgenic animals, which is of great difficulty to implement in practical experiments, and it is definitely a waste of time, money and energy. Therefore, the extension and dissipation of this technique is extremely limited. It is especially important to search a new way to generate animal mammary gland bioreactor quickly.
     Directed differentiation in vitro serves as one of the most popular research areas in stem cells for decades. Theoretically, more than 200 types of cells could be differentiated from Embryonic Stem (ES) cells in vitro. To date, many types of cells including neural precursor cells, islet cell, keratinocyte, epithelial precursor cell, myocardial cell and germocyte, have been derived from ES cells. It was reported that these ES derived precursor cell or stem cell can further differentiate into receipt related type of cells under microenvironmental induction in vivo after they were transplanted into some special tissue or organ, and survived, integrated in vivo and generated normal physiological function. In addition, some literatures reported that, gene-modified mammary epithelial cells can survive for long time in vivo and expressed foreign gene after they were transplanted into receipt breast tissue. In summary, these results indicated that, it is feasible to produce animal mammary gland bioreactor by cell transplantation of mES-like derived transgenic precursor cells.
     Consequently, we propose a hypothesis with a model animal of mouse. We suppose that after stably transfected with a mammary-specific expression plasmid containing beta-lactoglobulin (BLG) gene promoter or whey acidic protein (WAP) orβ-casein, the mES derived epithelial precursor cells were transplanted into the mammary gland tissue, if the foreign cells would have survived, integrated in the recipient mammary gland and played normal physiological function there, the interest protein should be secreted into milk by mammary gland, that is, animal mammary gland bioreactor was generated.
     In this research, mES (at passage three) derived epithelial precursor cells stably transfected with a mammary-specific expression plasmid containing beta-lactoglobulin (BLG) gene promoter and foreign gene PBD-1 (porcineβdefensin 1) were transplanted into the mammary gland tissue during pregnancy. These cells can survive and integrate in the recipient mammary gland under the microenvironmental induction and further differentiate into mammary related type of cells. The main results are as follows:
     1. 560 collected 3.5- to 4-d old embryos were cultured in DMEM as follows. Method one: MEF (Mouse embryonic fibroblast) cells at different passages (from passage 0 to 5) were used as feeder cells. Method two: the third passage of MEF cells were used as feeder cells and cultured embryos with conditioned medium. On day 5, ICM (Inner cell mass)-outgrowth were isolated from blastocysts and plated on new feeder cells. Three to five days later, these cultures from ICMs have a high ratio of nucleus to cytoplasm, prominent nucleoli, and typical colony with ES cells' morphological characteristics. They have three dimensional prominent, round or elliptic colonies, with smooth and strongly refractive edges, and have no clear boundaries of cells within a colony. When two methods were compared, Method two is significantly better than Method one on the form ratio of ICM and passage number. These cells were subsequently characterized by RT-PCR and found to be positive for mouse pluripotent embryonic stem cell specific markers Oct-4. In addition, these cells expressed alkaline phosphatase, and staining intensity for SSEA-1 and Oct-4 in brown color while feeder layer failed to stain as control. These cells were diploid chromosome number, and they can differentiate into many types of cells in vitro and in vivo. This validated the pluripotent of mES-like cells obtained in our experiments. Therefore, they can be used as test material later.
     2. To initiate differentiation, mES-like cell colonies (passage 3) were dispersed to small clumps, containing approximately 50 to 100 cells, thus allowed to grow on mitotically inactivated MEF feeder cells. For the additional 10-13 d of culture, the epithelial-like polygonal cells appeared around the disc-like colonies. They migrated and spreaded until cells were confluent with a typical paving stone-like appearance. These cells were called mES-derived keratinocytes (mES-dK) in this experiment. After the first six passages of co-culture with MEF feeder layers, mES-dK cells were plated onto a new flask without MEF feeder layers. The mES-dK cell line was generated and preservated in CCTCC (China Center for Type Culture Collection). RT-PCR results indicated that, K14, K18, K10, Involucrin and E-cadherin were found to be up regulated in the cells during the differentiation, whereas Oct-4 and K19 were down regulated (compared to pre-differentiation levels). To further assess the expression level during the differentiational process, we also analyzed the expression patterns of K14, K19, Involucrin, and Ecadherin by quantitative real-time PCR during the course of differentiation of mES cells into keratinocyte-like cells. The K14 transcript increased dramatically within 50 d (from mES cells to passage 13) after further differentiation in mES cells committed by removing MEF feeder layers. This level rose to about seven-fold (from passage 13 to 23). On the other hand, expression of K19 RNA rose dramatically during the initial phase (from mES cells to passage 13) and dropped back to a lower level (from passage 13 to 23). It is interesting to note that the expression patterns of Involucrin and E-cadherin transcripts both stayed at the similar level between 13 and 23 passages. Immunocytochemistry showed that almost all mES-dK cells were stained with pCK, K14, and K18, which are epithelial cell surface markers. To check if the keratinocyte-like cells were proliferating, we analyzed the cells by flowing cytometry for BrdU-incorporation and for keratins (K14, K18, and pCK) expression, the majority of cells are positive in both cases (80.5%, 51.3%, 67.4% and 82.7%, respectively). Thus we conclude that the epithelial-like cells are proliferating and presumed it may be an epithelial progenitor lineage.
     3. The whole cDNA sequence encoding PBD-1 which was amplified by PCR from hepatic cDNA of porcine. BLG gene was amplified from the vector of pcDNA3.1-BLG-HNP-1 and inserted into a eukaryotic expression plasmid pIRES2-EGFP-PBD-1. The recombinant colonies were identified by the methods of restriction enzyme digestion, PCR and sequencing. These results showed that, the mammary gland special expression vector pIRES2-EGFP-BLG-PBD-1 was successfully constructed. The establishment of mammary gland special expression vector pIRES2-EGFP-BLG-PBD-1 serve as a foundation in research on antimicrobial activities and its mechanism of the defensins, and it plays a pivotal role in further research for the establishment of animal mammary bioreactor.
     4. The pIRES2-EGFP-BLG-PBD-1 plasmid was transfected into mES-dK cells by Lipofectamine 2000. Stably transfected clones were selected using G418 at 2000μg/mL for first 5 weeks and surviving cells were maintained in 1000μg/mL G418. RT-PCR results indicated that, the transgenic mES-dK precursor cells expressed foreign genes PBD-1 and BLG, and the epithelial cell markers, K10, K14, K18 and K19, but did not express Oct-4, Invoclurin or Fibroblast special protein 1(FSP1). Immunocytochemistry showed that majority of mES-dK cells were stained with pCK, K14, and K18, which are used to mark epithelial cell surface.
     5. Transgenic mES-dK cells were transplanted at different dose into inguinal #4 glands of Kunming white mice. Each animal received a 0.1ml injection of either vehicle (medium) alone or suspension of 5×10~3 or 1×10~7 transgenic mES-dK cells. Survival cells were mainly found in high dose cell graft groups two weeks after transplantation, and five weeks after operation, cells were only found in mid-pregnant group and late-pregnant group with the high dose cell graft. RT-PCR results indicated that, foreign gene PBD-1 was expressed in transplanted mammary gland tissue. Transgenic mES-dK cells further differentiated into EMA~+ or CALLA~+ cells, which were the exclusive surface markers of luminal and myoepithelial cells, respectively, and can be used to separate the cell types to the degree of 98% purity, and the largest percentage of EMA-positive grafted cell was 41.7% and CALLA-positive grafted cell was 28.4% at the 5-week survival period, respectively. In order to determine whether there were some changes on the structure of mammary gland after transplantation with mES-dK cells, HE staining of mammary gland was performed simultaneously. However, there was not significant difference about morphological characteristics of the mammary gland before and after the transplantation.
     6. We produced a mouse model of animal mammary bioreactor by precursor cell transplantation of transgenic mES-dK cells. Two weeks later, 37.5% (3/8) female transplanted mice had PBD-1 expression in their milk. The pBD-1 concentration was measured with an ELISA kit and the PBD-1 contents in milk reached 514.09±11.47 ng/mL. Western blotting analysis further confirmed that PBD-1 protein (7 ku) was secreted in the milk 2 weeks after transplantation.
引文
1.安立龙,杨奇,雷安民,窦忠英.哺乳类动物胚胎干细胞多能性和全能性研究进展.西北农业学报,1999,8:113-116
    2.安立龙,杨奇,冯秀亮,杨春荣,雷安民,高志民,窦忠英,邱怀.牛类胚胎干细胞的分离与克隆.中国农业科学,2001a,34:465-468
    3.安立龙,高志敏,杨奇,冯秀亮,窦忠英,雷安民,杨春荣,邱怀.添加物和消化液对牛和小鼠类胚胎干细胞克隆效率的影响.西北农林科技大学学报(自然科学版),2001b,29:5-10
    4.丛笑倩.外源TGF-β_1基因在小鼠细胞中的表达及其对细胞分化的影响.实验生物学报,1995,28:173-189
    5.从笑倩,姚鑫.ES细胞分化为血管样结构的机理探讨—TGF-β1在血管形成中的作用.实验生物学报,1996,29:273-285
    6.窦忠英,华进联.胚胎干细胞的研究与应用.动物医学进展,2000,22:1-4
    7.高建军,颜景斌,黄英,曾溢滔.山羊β-乳球蛋白基因的克隆及其在转基因小鼠乳汁中的高效表达.遗传,2003,25:499-503
    8.高天祥,田竟生.医学分子生物学.北京:科学出版社,1999,252
    9.黄淑帧,陈美珏,黄英,张克忠,李华,卢大儒,陆建英,陈云弟,邱信芳,薛京伦,曾溢滔.乳汁中分泌有活性的人凝血因子Ⅸ的转基因羊的研制.科学通报,1998,7:112-113
    10.黄英,黄缨,黄赞,颜景斌,马湛卢,盛敏,任兆瑞,曾溢滔,黄淑帧.山羊β-酪蛋白基因启动区指导人血清白蛋白在转基因小鼠乳汁中的高效表达.科学通报,2000,45:2081-2085
    11.姜丽华,卢海蓉,黄德新,易俊波,李凌云,林枫.猪β防御素-1基因在毕赤酵母中的分泌表达.生物工程学报.2006,22:1036-1039
    12.姜晓丹,徐如祥,张旺明,邹雨汐,蔡颖谦,杜谋选.绿荧光蛋白标记人骨髓源性神经干细胞的体外实验研究.中国临床康复,2003,7:3439-3442
    13.刘爱军,黄锦桃,李海标.胚胎干细胞源性表皮干细胞对小鼠全层皮肤缺损的修复.解剖学报,2007,38:296-299
    14.刘兵,侯春梅,吴英,张双喜,毛宁.小鼠胚胎干细胞来源的HPP-CFC体外和体内造血活性分析.生物工程学报,2003,19:312-317
    15.刘建忠,李宁,熊远著,安晓荣,王莉莉,陈永福.人肥胖基因(Obese)转基因小鼠动物模型的建立.农业生物技术学报,2000,8:31-36
    16.刘金龙,郑月茂,王玉洁,张涌.奶牛β-酪蛋白基因5′和3′调控区的克隆及序列分析.西北农林科技大学学报(自然科学版),2003,32:99-103
    17.刘述,谢瑶,陈系古,姚志彬.小鼠胚胎干细胞植入大鼠脑内分化的研究.中国临床康复,2003,7:2258-2259
    18.卢一凡,邓继先,肖成祖,马清钧.转基因动物乳腺定位表达重组蛋白质的研究现状.高技术通讯,1998,2:59-62
    19.孟国良,汤富酬,尚克刚,薛友纺.5个品系小鼠胚胎干细胞系建立的方法学比较.遗传学报,2003,30:933-942
    20.孟虹艳,李培锋,朱建国,华修国,杨志彪.猪β防御素-1的研究进展.中国畜牧兽医,2007,34:50-52
    21.秦茂林,蔡文琴,姚忠祥.昆明种系小鼠胚胎干细胞的分离培养及特性鉴定.第三军医大学学报,2001,23:1071-1073
    22.邱观婷,黄冰,唐仕波,胡洁,刘志雄.探讨保持胚胎干细胞全能性的体外培养条件.中山医科大学学报,2000,21:100-103
    23.曲莉芝,顾为望,李晋红,张玉勋,丘添武,罗凤娟.免疫抑制诱发大鼠结肠小袋纤毛虫病的研究.上海实验动物科学,1999,19:41-42
    24.萨姆布鲁克J,拉塞尔DW,黄培堂等译.分子克隆实验指南(第三版).北京:科学出版社,2002
    25.尚克刚,李子玉,吴鹤龄.建立小鼠胚胎多能干细胞系(ES细胞系)的几个主要影响因素.遗传学报,1992,19::491-496
    26.尚克刚,胡新立.小鼠囊胚的不同遗传背景对形成ES细胞集落的影响.北京大学学报(自然科学版),1993,29:196-201
    27.尚克刚,胡新立,李子玉.饲养层对维持新建ES细胞系的影响.北京大学学报(自然科学版),1994,30:500-507
    28.施渭康.胚胎性干细胞定向诱导分化—新崛起的细胞工程.细胞生物学杂志,2000,22:161-167
    29.宋红卫,郑月茂,张明烽,唐爽,张涌.山羊BLG基因5'调控序列克隆及其调控GFP基因细胞的表达.西北农林科技大学学报(自然科学版),2005,33:12-18
    30.孙怀昌,陈刚,张磊,宋红芹,施伟庆.动物乳腺特异表达载体的构建及其表达特性研究.扬州大学学报(农业与生命科学版),2003,24:1-4
    31.薛庆善.体外培养的原理与技术.北京:科学出版社,2001,233-234
    32.杨帆,陈燕忠.利用乳腺生物反应器生产人乳铁蛋白.广东药学院学报,2001,17:123-124
    33.徐曼妮,厉曙光,赵建阳,成国祥.乳腺生物反应器表达载体的检测方法.生物技术通报,2003,5:23-26
    34.杨帆,吴文彦,杨红.转基因动物乳腺生物反应器与基因工程药物.细胞生 物学,2002,24:14-19
    35.杨敏,江峰,杨建华,王裕,马杰.胚胎干细胞来源神经前体细胞在缺氧缺血性脑损伤海马内的分化.上海交通大学学报(医学版),2006,26:733-737
    36.杨炜峰.山羊胚胎干细胞和胚胎生殖细胞的分离培养与鉴定.[博士学位论文].杨凌:西北农林科技大学,2006
    37.袁建民,胡建宏,李青旺,贾永红,王立强.动物乳腺生物反应器研究进展.中国农学通报,2006,22:20-24
    38.章静波,宗书东,马文丽.干细胞.北京:中国协和医科大学出版社,2003,53-57
    39.张靖溥,劳为德,成勇,成国祥,徐少甫.牛αs1-酪蛋白-乙肝病毒表面抗原融合基因在转基因羊中的表达.生物工程学报,1997,13:154-159
    40.张仁礼,李海标.胚胎干细胞源表皮样干细胞分化潜能的初步研究.解剖学报,2004,35:65-68
    41.钟贞,杨健,李平,谭理,应其龙,宋后燕.胚胎干细胞来源的内皮细胞构建内皮化血管支架.复旦学报(医学版),2007,34:335-339
    42.周光纪,徐海伟,屈纪富,杨丽.胚胎干细胞来源的巢蛋白阳性细胞向胰岛素分泌细胞分化的实验研究.生物医学工程与临床,2007,11:143-147
    43.周云,林爱星,刘建喜,冯继东,严阿勇,侯健,陈永福.指导外源基因在动物乳腺特异性表达载体的构建.农业生物技术学报,2000,8:392-395
    44.Aiuti A,Slavin S,Aker M,Ficara F,Deola S,Mortellaro A,Morecki S,Andolfi G,Tabucchi A,Caducei F,Marinello E,Cattaneo F,Vai S,Servida P,Miniero R,Roncarolo MG,Bordignon C.Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.Science,2002,5577:2410-2413
    45.Ali N N,Edgar A J,Samadikuchaksaraei A.Derivation of type Ⅱ alveolar epithelial cells from murine embryonic stem cells.Tissue Eng,2002,8:541-550
    46.Altschuler R A,O'Shea K S,Miller J M.Stem cell transplantation for auditory nerve replacement.Hearing Research,2008,242:110-116
    47.Arnhold S,Lenartz D,Kruttwig K,Klinz F J,Kolossov E,Hescheler J,Sturm V,Andressen C,Addicks K.Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1-positive neurons and glia after transplantation into adult rat striatum.J Neurosurg,2000,93:1026-1032
    48.Amit M,Shariki C,Margulets V,Itskovitz-Eldor J.Feeder layer-and serum-free culture of human embryonic stem cells.Biol Reprod,2004,70:837-845
    49.Anderson W F,Blaese R M,Culver K.The ADA human gene therapy clinical protocol:points to consider response with clinical protocol.Hum Gene Ther,1990,1:331-362
    50.Avital I,Feraresso C,Aoki T,Hui T,Rozga J,Demetriou A,Muraca M.Bone marrow-derived liver stem cell and mature hepatocyte engraftment in livers undergoing rejection.Surgery,2002,132:384-390
    51.Baba S,Heike T,Yoshimoto M,Umeda K,Doi H,Iwasa T,Lin X,Matsuoka S,Komeda M,Nakahata T.Flk1+ cardiac stem/progenitor cells derived from embryonic stem cells improve cardiac function in a dilated cardiomyopathy mouse model.Cardiovascular Research,2007,76:119-131
    52.Bagutti C,Hutter C,Chiquet E R.Dermal fibroblast-derived growth factors restore the ability of β1 integrin-deficient embryonal stem cells to differentiate into keratinocytes.Dev.Biol,2001,231:321-333
    53.Bagutti C,Wobus A M,F(a|¨)ssler R,Watt F M.Differentiation of Embryonal Stem Ceils into Keratinocytes:Comparison of Wild-Type and β1 Integrin-Deficient Cells.Dev Biol,1996,179:184-196
    54.Baharvand H,Matthaei I K.Culture condition difference for Establishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains.In Vitro Cellular& Developmental Biology,2004,40:76-81
    55.Bawden W S,Passey R J,Mackinlay A G.The genes encoding the major milk-specific proteins and their use in transgenic studies and protein engineering.Biotechnology and genetic Engineering Reviews,1994,12:89-137
    56.Behr R,Heneweer C,Viebahn C,Denker H W,Thie M.Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells:a model for processes involved in gastrulation.Stem cells,2005,23:805-816
    57.Bemstein A,Breitman M.Genetic ablation in transgenic mice.Mol Biol Med,1989,6:523-530
    58.Brinster R L.The effect of cells transferred into the mouse blastocyst on subsequent development.J.Exp.Med,1974,104:1049-1056
    59.Brulet P,Babinet C,Kemler R,Jacob F.Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation.Proc.Natl.Acad.Sci.USA,1980,77:4113-4117
    60.Cai S,Ma Q,Yu X.Expression of human VEGF(121) cDNA in mouse bone marrow stromal cells.Chin Med J,2002,115:914-918
    61.Chamberlain J R,Schwarze U,Wang P R,Hirata R K,Hankenson K D,Pace J M,Underwood R A,Song K M,Sussman M,Byers P H,Russell D W.Gene targeting in stem cells from individuals with osteogenesis imperfecta.Science,2004,303:1198-1201
    62. Chen Y, Wang Y, Sun Y, Zhang L, Li W. Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet, 2001, 39:365-370
    
    63. Chen Y, Amende I, Hampton T G, Yang Y, Ke Q, Min J Y, Xiao YF, Morgan J P. Vascular Endothelial Growth Factor Promotes Cardiomyocyte Differentiation of Embryonic Stem Cells. Am J Physiol Heart Circ Physiol, 2006,291:1653-1658
    
    64. Cheng J, Dutra A, Takesono A. Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis, 2004, 39:100-104
    
    65. Chiang S K, Chang H H, Ou Y W, Intawicha P, Cheng S P, Chen L R, Lee K H, Giles J, Ju J C. Successful induction of antisera against rabbit embryos for isolation of the ICM and putative embryonic stem cells. Reprod Domest Anim, 2008,43:43:181-188
    
    66. Christelle C, Beatrice N, Jocelyne H. Embryonic stem cells generate airway epithelial tissue. Am J Respir Cell Mol Biol, 2005, 32:87-92
    
    67. Clark A J. The Mammary Gland as a Bioreactor: Expression, Processing, and Production of Recombinant Proteins. Journal of Mammary Gland Biology and Neoplasia, 1998, 3:337-350
    
    68. Clark A T, Bodnar M S, Fox M, Rodriquez R T, Abeyta M J, Firpo M T, Pera R A. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Human Molecular Genetics, 2004,13:727-739
    
    69. Clarke D L, Johansson C B, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J. Generalized potential of adult neural stem ceils. Science, 2000, 288:1660-1663
    
    70. Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res, 2004,297:444-460
    
    71. Colombo E, Giannelli S G, Galli R, Tagliafico E, Foroni C, Tenedini E, Ferrari S, Ferrari S, Corte G, Vescovi A, Cossu G, Broccoli V. Embryonic stem-derived versus somatic neural stem cells:A comparative analysis of their developmental potential and molecular phenotype. Stem cells, 2006,24:825-834
    
    72. Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne J, Dani C, Aberdam D. Reconstituted skin from murine embryonic stem cells. Current Biology, 2003,13:849-853
    
    73. Coraux C, Nawrocki R B, Hinnrasky J. Embryonic stem cells generate airway epithelial tissue. Am. J. Respir. Cell Mol. Biol, 2005, 32:87-92
    
    74. Dani C, Smith A G, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G Differentiation of embryonic stem cells into adipocytes in vitro. J.Cell Sci, 1997, 110,1279-1285
    
    75. Doetschl F, Garcia-Verdugo J M, Alvarez-Buvlla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neuroscience, 1997,17:5046-5061
    
    76. Doetsohman T, Williams P, Maeda N. Establishment of hamster blastocyst-derived stem (ES) cells. Devel Biol, 1988,127:224-227
    
    77. Dragoo J L, Lieberman J R, Lee R S. Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg, 2005,115:1665-1673
    
    78. Duan H F, Wu C T, Wu D L, Lu Y, Liu H J, Ha X Q, Zhang Q W, Wang H, Jia X X, Wang L S. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther, 2003, 8:467-474
    
    79. Elahi S, Brownlie R, Korzeniowski J, Buchanan R, O'Connor B, Peppier M S, Halperin S A, Lee S F, Babiuk L A, Gerdts V. Infection of newborn piglets with Bordetella pertussis: a new model for pertussis. Infect Immun, 2005, 73:3636-3645
    
    80. Evans E W, Beach F G, Moore K M, Jackwood M W, Glisson J R, Harmon B G Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet Microbiol, 1995,47:295-303
    
    81. Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981,292:154-156
    
    82. Failchild P, Brook F, Gardner R, Graca L, Strong V, Tone Y, Tone M, Nolan K, Waldmann H. Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr.Biol, 2000,10:1515-1518
    
    83. Fair J H, Cairns B A, Lapaglia M A, Caballero M, Pleasant W A, Hatada S, Kim H, Gui T, Pevny L, Meyer A A, Stafford D W, Smithies O, Frelinger J A. Correction of factor IX deficiency in mice by embryonic stem cells differentiated in vitro. Proc Natl Acad Sci USA, 2005,102:2958-2963
    
    84. Ferrer F A, Rodriguez R. Gene therapy for urologic cancer. Curr Urol Rep, 2002, 3:75-81
    
    85. Folch J M, Coll A, Banchez A. Complete sequence of the caprine beta-lactoglobulln gene. J Dairy Sci, 1994, 77:3493-3497
    
    86. Frimberger D, Morales N, Shamblott M, Gearhart J, Gearhart J, Lakshmanan Y. Human embryoid body-derived stem cells in bladder regeneration using rodent model. Urology, 2005,65:827-832
    
    87. Fuchs J R, Hannouche D, Terada S, Zand S, Vacanti J P, Fauza D O. Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells, 2005, 23:958-964
    
    88. Furue M, Okamoto T, Hayashi Y, Okochi H, Fujimoto M, Myoishi Y, Abe T, Ohnuma K, Sato G H, Asashima M, Sato J D. Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In Vitro Cellular&Developmental Biology, 2005,41:19-28
    
    89. Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat Rev Immunol, 2003, 3:710-720
    
    90. Ganz T, Selsted M E, Szklarek D, Harwig S S, Daher K, Bainton D F, Lehrer R I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest, 1985, 76:1427-1435
    
    91. Geeta R, Ramnath R L, Rao H S, Chandra V. One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem Biophys Res Commun, 2008, 373:258-264
    
    92. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427:148-154
    
    93. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F. Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep, 2002, 3:753-759
    
    94. Gordon K, Lee E, Vitale J A, Smith A E, Westphal H, Hennighausen L. Production of human plasminogen activation in transgenic mice milk. Biotechnology, 1987, 5:1183-1187
    
    95. Green H, Easley K, Iuchi S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl. Acad. Sci. USA, 2003,100:15625-15630
    
    96. Guan Y Q, Chen B, Liu P, Zou C L, Zhang Y. Efective labeling of stem cell transplantation in vivo: the application value of green fluorescent protein plasmid labeling. Zhongguo Linchimrtg Kangfu, 2004, 8:2506-2508
    
    97. Gutierrez-Adan A, Pintado B. Efect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos. Transgenic Res, 2000, 9:81-89
    
    98. Haase I, Knaup R, Wartenberg M, Sauer H, Hescheler J, Mahrle G. In vitro differentiation of murine embryonic stem cells into keratinocyte-like cells. Eur J Cell Biol, 2007, 86:801-805
    99.Hager B,Bickenbach J R,Fleckman P.Long-term culture of murine epidermal keratinocytes.J.Invest.Dermatol,1999,112:971-976
    100.Harris S,Ali S,Anderson S,Archibald A L,Clark A J.Complete nucleotide sequence of the genomlc ovine laetoglobulin gene.Nucleic Acids Res,1988,16:10379-10380
    101.Hegert C,Krarner J,Hargus G,M(u|¨)ller J,Guan K,Wobus A M,M(u|¨)ller P K,Rohwedel J.Diferentiation plasticity of chondrocytes derived from mouse embryonic stem cells.J Cel Sci,2002,115:4617-4628
    102.Honig G R,Li F,Lu S J,Vida L.Hematopoietic differentiation of rhesus monkey embryonic stem cells.Blood Cells Mol Dis,2004,32:5-10
    103.Houdebine L M,Attal J.Internal ribosome entry sites(IRES):reality and use.Transgenic Res,1999,8:157-177
    104.H(u|¨)bner K,Fuhrmann G;Christenson L K,Kehler J,Reinbold R,De La Fuente R,Wood J,Strauss J F,Boiani M,Sch(o|¨)ler H R.Derivation of oocytes from mouse embryonic stem cells.Sciene,2003,300:1251-1256
    105.Hwang N S,Varghese S,Elisseeff J.Controlled differentiation of stem cells.Advanced Drug Delivery Reviews,2008,60:199-214
    106.Iannsecone P M,Taborn G U,Garton R L.Pluripotent embryonic stem cells from the rat are capable of producing chimeras.Dev Biol,1994,163:288-292
    107.Iuchi S,Dabelsteen S,Easley K,Rheinwald J G;Green H.Immortalized keratinocyte lines derived from human embryonic stem cells Proc Natl Acad Sci USA,2006,103:1792-1797
    108.Jackson R J,Howell M T,Kaminski A.The novel mechanism of initiation of picornavirus RNA translation.Trends Biochem Sci,1990,15:477-483
    109.Jakobovits A,Moore A L,Green L L,Vergara G J,Maynard-Currie C E,Austin H A,Klapholz S.Germ-line transmission and expression of a human-derived yeast artifical chromosome.Nature,1993,362:255-258
    110.Jin H K,Carter J E,Huntley G W,Schuchman E H.Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span.J Clin Invest,2002,109:1183-1191
    111.Kakegawa R,Teramura T,Takehara T,Anzai M,Mitani T,Matsumoto K,Saeki K,Sagawa N,Fukuda K,Hosoi Y.Isolation and culture of rabbit primordial germ cells.J Reprod Dev,2008,54:352-357
    112.Kanda S,Shiroi A,Ouji Y,Birumachi J,Ueda S,Fukui H,Tatsumi K,Ishizaka S,Takahashi Y,Yoshikawa M.In vitro differentiation of hepatocyte-like cells from embryonic stem cells promoted by gene transfer of hepatocyte nuclear factor 3 beta. Hepatol Res, 2003,26:225-231
    
    113. Kawasaki H, Suemori H, Mizuseki K. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci USA, 2002, 99:1580-1585
    
    114. Kim D Y, Park SH, Lee S U, Choi D H, Park H W, Paek S H, Shin H Y, Kim E Y, Park S P, Lim J H. Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neuroscience Research, 2007, 58:164-175
    
    115. Klimanskaya I, Chung Y, Meisner L, Johnson J, West M D, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet, 2005, 365:1636-1641
    
    116. Kordon E C, Smith G H. An entire functional mammary gland may comprise the progeny from a single cell. Development, 1998,125:1921-1930
    
    117. Kumar S, Mahendra G, Nagy T R, Ponnazhagan S. Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther, 2004,15:1197-1206
    
    118. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther, 2004, 9:189-197
    
    119. Lehrer R I, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol, 2002, 14:96-102
    
    120. Li X, Chen Y, Scheele S, Annan E, Haffner-Krausz R, Ekblom P, Lonai P. Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol, 2001,153:811-822
    
    121. Li X Y, Jia Q, Di K Q, Gao S M, Wen X H, Zhou R Y, Wei W, Wang L Z. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation. Cell Tissue Res, 2007, 8:607-614
    
    122. Lim J W, Bodnar A. Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics, 2002, 2:1187-1203
    
    123. Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S, Wang G, Ding M, Deng H. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells. Biochem Biophys Res Commun, 2006,346:131-139
    
    124. Lopez Valle C A, Germain L, Rouabhia M, Xu W, Guignard R, Goulet F, Auger F A. Grafting on nude mice of living skin equivalents produced using human collagens.Transplantation, 1996, 62:317-323
    
    125. Lu J, Hou R, Booth C J, Yang S H, Snyder M. Defined culture conditions of human embryonic stem cells. Proc Natl. Acad. Sci.USA, 2006,103:5688-5693
    
    126. Ludwig T E, Levenstein M E, Jones J M, Berggren W T, Mitchen E R, Frane J L, Crandall L J, Daigh C A, Conard K R, Piekarczyk M S, Lianas R A, Thomson J A. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol, 2006,24:185-187
    
    127. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001,292:1389-1394
    
    128. Ma J, Wang Y, Yang J, Yang M, Chang KA, Zhang L, Jiang F, Li Y, Zhang Z, Heo C, Suh YH. Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochemistry International, 2007,51:57-65
    
    129. Maga E A, Murray J D. Mammary gland expression of transgenes and the potential for altering the properties of milk. Biotechnology, 1995,13:1452-1456
    
    130. Maitra A, Arking D E, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler D J, Liu Y, Brimble S N, Noaksson K, Hyllner J, Schulz T C, Zeng X, Freed W J, Crook J, Abraham S, Colman A, Sartipy P, Matsui S, Carpenter M, Gazdar A F, Rao M, Chakravarti A. Genomic alterations in cultured human embryonic stem cells. Nat Genet, 2005, 37:1099-1103
    
    131. Makino H, Hasuda H, Ito Y. Immobilization of Leukemia Inhibitory Factor (LIF) to Culture Murine Embryonic Stem Cells. J Biosci Bioeng, 2004, 98:374-379
    
    132. Marchetti S, Gimond C, Iljin K, Bourcier C, Alitalo K, Pouysségur J, Pages G Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci, 2002,115:2075-2085
    
    133. Martin D I, Fiering S, Groudine M. Regulation of beta-globin gene expression: strainghtening out the locus. Curr Opin Genet Dev, 1996, 6:488-495
    
    134. Martine G R. Isolation of a pluripotent cell-line from early mouse embryonic cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78:7634-7638
    
    135. Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70:841-847
    
    136. May C, Rivella S, Callegari J, Heller G, Gaensler K M, Luzzatto L, Sadelain M. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 2000,406:82-86
    
    137. McDonald J W, Liu X Z, Qu Y, Liu S, Mickey S K, Turetsky D, Gottlieb D I, Choi D W. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat med, 1999, 5:1410-1412
    
    138. McKnight R A, Spencer M, Wall R J, Hennighausen L. Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol Reprod Dev, 1996,44:179-184
    
    139. Menard C, A Hagege A, Agbulut O, Barro M, Morichetti M C, Brasselet C, Bel A, Messas E, Bissery A, Bruneval P, Desnos M, Puceat M, Menasche P. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet, 2005; 366:1005-1012
    
    140. Micci M A, Learish R D, Li H, Abraham B P, Pasricha P J. Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract. Gastroenterology, 2001, 21:757-766
    
    141. Miyasaki K T, Lehrer R I. Beta-sheet antibiotic peptides as potential dental therapeutics. Int J Antimicrob Agents, 1998, 9:269-280
    
    142. Morizane A, Takahashi J, Shinoyama M, Ideguchi M, Takagi Y, Fukuda H, Koyanagi M, Sasai Y, Hashimoto N. Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. J Neurosci Res, 2006, 83:1015-1027
    
    143. Murray A W, Szostak J W. Construction of artificial chromosomes in yeast. Nature, 1983,305:189-193
    
    144. Nagafuchi S, Katsuta H, Kogawa K, Akashi T, Kondo S, Sakai Y, Tsukiyama T, Kitamura D, Niho Y, Watanabe T. Establishment of an embryonic stem (ES) cell line derived from a non-obese diabetic (NOD) mouse: in vivo differentiation into lymphocytes and potential for germ line transmission. FEBS Lett, 1999, 455:101-104
    
    145. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder J C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cell. Proc Natl Acad Sci USA, 1993, 90:8424-8428
    146.Nakajima-Nagata N,Sakurai T,Mitaka T,Katakai T,Yamato E,Miyazaki J,Tabata Y,Sugai M,Shimizu A.In vitro induction of adult hepatic progenitor cells into insulin-producing cells.Biochem Biophys Res Commun,2004,318:625-630
    147.Nakamura K,Ito Y,Kawano Y,Kurozumi K,Kobune M,Tsuda H,Bizen A,Honmou O,Niitsu Y,Hamada H.Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model.Gene Ther,2004,11:1155-1164
    148.Nayernia K,Li M,Jaroszynski L,Khusainov R,Wulf G,Schwandt I,Korabiowska M,Michelmann H W,Meinhardt A,Engel W.Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells.Hum Mol Genet,2004,13:1451-1460
    149.Ogawa K,Matsui H,Ohtsuka S,Niwa H.A novel mechanism for regulating clonal propagation of mouse ES cells.Genes Cells,2004,9:4710-477
    150.Oshima R G.Developmental expression of murine extra-embryonic endodermal cytoskeletal proteins.J.Biol.Chem,1982,257:3414-3421
    151.Palaeios R,Golunski E,Samaridis J.In vitro generation ofhematopoietic stem cells from an embryonic stem cell line.Proc Natl Acad Sci USA,1995,92:7530-7534
    152.Palmiter R D,Brinster R L,Hammer R E,Trumbauer M E,Rosenfeld M G,Birnberg N C,Evans R M.Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.Nature,1982,300:611-615
    153.Park S S,Shin S W,Park D S,Oh H W,Boo K S,Park H Y.Protein purification and cDNA cloning of a cecropin-like peptide from the larvae of fall webworm (Hyphantria cunea).Insect Biochem Mol Biol,1997,27:711-720
    154.Park Y,Lee D G,Jang S H,Woo E R,Jeong H G,Choi C H,Hahm K S.A Leu-Lys-rich antimicrobial peptide:activity and mechanism.Biochim Biophys Acta,2003,1645:172-182
    155.Perrier A L,Tabar V,Barberi T,Rubio M E,Bruses J,Topf N,Harrison N L,Studer L.Derivation of midbrain dopamine neurons from human embryonic stem cells.Proc Natl Acad Sci USA,2004,101:12543-12548
    156.Piedrahita J A,Anderson G B,Bo ndurant R H.On the isolation of embryonic stem cells:Comparative behavior of murine,porcine and ovine embryos.Thereiogenology,1990,34:879-901
    157.Piers K L,Brown M H,Hancock R E.Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria.Gene,1993,134:7-13
    158.Prunieras,M,Regnier,M,Woodley,D.Methods for cultivation of keratinocytes with an air-liquid interface.J.Clin.Invest,1983,81:28s-33s
    159. Qiu C, Hanson E, Olivier E, Inada M, Kaufman D S, Gupta S, Bouhassira E E. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol, 2005, 33:1450-1458
    
    160. Rasmussen T P. Embryonic stem cell differentiation:A chromatin perspective. Reprod Biol Endocrinol, 2003,1:100
    
    161. Reubinoff B E, Itsykson P, Turetsky T, Pera M F, Reinhartz E, Itzik A, Ben-Hur T. Neural progenitors from human embryonic stem cells. Nat Biotechnol, 2001, 19:1134-1140
    
    162. Reubinoff B E, Pera M F, Fong C Y, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000, 18:399-404
    
    163. Rice R H, Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell, 1979,18:681-694
    
    164. Richards M, Fong C Y, Chan W K, Wong P C, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002,20:933-936
    
    165. Rijnkels M, Rosen J M. Adenovirus-Cre-mediated recombination in mammary epithelial early progenitor cells. J Cell Sci, 2001,114:3147-3153
    
    166. Rikimaru K, Moles J P, Watt F M. Correlation between hyperproliferation and suprabasal integrin expression in human epidermis reconstituted in culture. Exp Dermatol, 1997, 6:214-221
    
    167. Rodewald H R, Paul S, Haller C, Bluethmann H, Blum C. Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature, 2001, 414:763-768
    
    168. Rohwedel J, Maltsev V, Bober E, Arnold H H, Hescheler J, Wobus A M. Muscle cell differentiation of embryonic stem cells refects myogenesis in vivo:developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol, 1994,164:87-101
    
    169. Ropeter-Scharfenstein M, Neubert N, Prelle K, Holtz W. Identification, isolation and culture of pluripotent cells from the porcine inner cells mass. J Anim Breed Genet, 1995,113:427-436
    
    170. Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like culture over several passages. Reprod Dev Biol, 1992,20:134-141
    171.Salgado S,Garcia J,Vera J,Siller F,Bueno M,Miranda A,Segura A,Crijalva G,Segura J,Orozco H,Hernandez-Pando R,Fafutis M,Aguilar L K,Aguilar-Cordova E,Armendariz-Borunda J.Liver cirrhosis is reverted by urokinase-type plasminogen activator gene therapy.Mol Ther,2000,2:545-551
    172.Schulz T C,Noggle S A,Palmadni G M,Weiler D A,Lyons I G,Pensa K A,Meedeniya A C,Davidson B P,Lambert N A,Condie B G.Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.Stem Cells,2004,22:1218-1238
    173.Shackleton M,Vaillant F,Simpson K J,Stingl J,Smyth G K,Asselin-Labat M L,Wu L,Lindeman G J,Visvader J E.Generation of a functional mammary gland from a single stem cell.Nature,2006,439:84-88
    174.Shamblott M J,Axelman J,Wang S,Bugg E M,Littlefield J W,Donovan P J,Blumenthal P D,Huggins G R,Gearhart J D.Derivatin of pluripotent stem cells from cultured human permordial germ cell.Proc Natl Acad Sci USA,1998,95:13726-13731
    175.Shen F H,Visger J M,Balian G,Hurwitz S R,and Diduch D R.Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-Ⅰ localize to a fracture site and potentiate healing.J Orthop Trauma,2002,16:651-659
    176.Shi J,Zhang G,Wu H,Ross C,Blecha F,Ganz T.Porcine epithelial beta-defensin 1is expressed in the dorsal tongue at antimicrobial concentrations.Infect Immun,1999,67:3121-3127
    177.Shi Y T,Huang Y Z,Tang F,Chu J X.Mouse embryonic stem cell-derived feeder cells support the growth of their own mouse embryonic stem cells.Cell Biol Int,2006,30:1041-1047
    178.Shimozaki K,Nakashima K,Niwa H,Taga T.Involvement of Oct3/4 in the enhancement of neuronal differentiationof ES cells in neurogenesis-inducing cultures.Development,2003,130:2505-2512
    179.Smith A G;Hooper M L.Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells.Dev Biol,1987,121:1-9
    180.Smith G H,Gallahan D,Zwiebel J A,Freeman S M,Bassin R H,Callahan R.Long-term in vivo expression of genes introduced by retrovirus mediated transfer into mammary epithelial cells.Journal of Virology,1991,65:6365-6370
    181.Smukler S R,Runciman SB,Xu S,vander Kooy D.Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol, 2006,172:79-90
    
    182. Solter D, Knawles B B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc.Natl Acad Sci USA, 1978, 75:5565-5569
    
    183. Soundararajan P, Miles G B, Rubin L L, Brownstone R M, Rafuse V F. Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons. J Neurosci, 2006, 26:3256-3268
    
    184. Steiner H. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta, 1988, 939:260-266
    
    185. Steven L C. Embryology of testicular teratomas in strain 129 mice. J Natl Cancer Inst, 1958,20:1257-1275
    
    186. Stojkovic P, Lako M, Stewart R. An autogenetic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem cells, 2005, 23:306-314
    
    187. Strauss W M, Dausman J, Beard C, Johnson C, Lawrence J B, Jaenisch R. Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(1) collagen locus. Science, 1993,259:1904-1907
    
    188. Strojek R M, Reed M A, Hoover J L, Wagner T E. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33:901-913
    
    189. Studeny M, Marini F C, Champlin R E, Zompetta C, Fidler I J, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-P delivery into tumor. Cancer Res, 2002, 62:3603-3608
    
    190. Sukoyan M A, Golubitss A N, Zhelezova A I. Isolation and cultivation of blastocyst derived stem cell lines from American mink (Mustela visor). Mci Reprod Dey, 1992,33:418-431
    
    191. Takada T, Iida K, Awaji T, Itoh K, Takahashi R, Shibui A, Yoshida K, Sugano S, Tsujimoto G Selective production of transgenic mice using green fluorescent protein as a marker. Nat Biotechnol, 1997,15:458-461
    
    192. Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clini Invest, 2005,115:102-109
    193. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006, 126:663-676
    
    194. Tang J, Xu H W, Fan X T, Li Z F, Li D B, Yang L, Zhou G J. Targeted migration and differentiation of engrafted neural precursor cells in amyloid beta-treated hippocampus in rats. Neurosci Bull, 2007,23:263-270
    
    195. Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. Embryonic stem cell lines derived from human blastocysts. Science, 1998,282:1145-1147
    
    196. Thouzeau C, Le Maho Y, Froget G, Sabatier L, Le Bohec C, Hoffmann J A, Bulet P. Spheniscins, avian beta-defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J Biol Chem, 2003,278:51053-51058
    
    197. Tian X, Morris J K, Linehan J L, Kaufman D S. Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp Hematol, 2004, 32:1000-1009
    
    198. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA, 2003,100:11457-11462
    
    199. Trivedi H L, Mishra V V,Vanikar A V, Modi P R, Shah V R, Shah P R, Firoz A. Embryonic stem cell derived and adult hematopoietic stem cell transplantation for tolerance induction in a renal allograft recipient:--a case report. Transplant Proc. 2006,38:3103-3108
    
    200. Vallier L, Reynolds D, Pedersen R A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol, 2004, 275:403-421
    
    201. Vassilieva S, Guan K, Pich U, Wobus A M. Establishment of SSEA1 and Oct-4 expressing rat embryonic stem-like cell lines and effects of cytokines of the IL-6 family on clonal growth. Exp Cell Res, 2000,258:361-373
    
    202. Wall R J, Kerr D G, Bodioli K R. Transgenic dairing cattle: genetic engineering on a large scale. J.Dairy Sci, 1997, 80:2213-2224
    
    203. Wang J, Zhao H P, Lin G, Xie C Q, Nie D S, Wang Q R, Lu G X. In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines. Cell Biol Int, 2005, 29(8):654-661
    
    204. Weissman I L. Stem cells: units of development, units of regeneration, and units in evolution. Cell, 2000a, 100:157-168
    205. Weissman I L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 2000b, 287:1442-1446
    
    206. Whitelaw C B,Harris S, McClenaghan M, Simons J P, Clark A J. Position- independent expression of the ovine laetoglobulin gene in transgenic mice. Biochem J, 1992,286:31-39
    
    207. Wieprecht T, Dathe M, Epand R M, Beyermann M, Krause E, Maloy W L, MacDonald D L, Bienert M. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry, 1997, 36:12869-12880
    
    208. Wobus A M, Holzhausen H, Jakel P, Schoneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp.Cell Res, 1984,152:212-219
    
    209. Wright G, Carver A, Cottom D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology, 1991, 9:830-834
    
    210. Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter M K. Immortalizaed fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem cells, 2004,22:972-980
    
    211. Yamane T, Dylla S J, Muijtjens M, Weissman I L. Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. Proc Natl Acad Sci USA, 2005,102:3312-3317
    
    212. Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS ONE, 2008, 3:e3453
    
    213. Yao S, Chen S, Clark J, Hao E, Beattie G M, Hayek A, Ding S. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA, 2006, 103:6907-6912
    
    214. Yeom Y I, Fuhrmann G, Ovitt C E, Brehm A, Ohbo K, Gross M, Hubner K, Scholer H R. Germline regulatory element of Oct-4 specific for the tofiipotent cycle of embryonal ceils. Development, 1996,122:881-894
    
    215. Yoon B S, Yoo S J, Lee J E, You S, Lee H T, Yoon H S. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 2006, 74:149-159
    
    216. Zambidis E T, Peault B, Park T S, Bunz F, Civin C I. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive,and definitive stages resembling human yolk sac development.Blood,2005,106:860-870
    217.Zhang G,Hiraiwa H,Yasue H,Wu H,Ross C R,Troyer D,Blecha F.Cloning and characterization of the gene for a new epithelial beta-defensin.Genomic structure,chromosomal localization,and evidence for its constitutive expression.J Biol Chem,1999,274:24031-24037
    218.Zhou J X,Chen S Y,Liu W M,Cao Y J,Duan E K.Enrichment and identification of human 'fetal' epidermal stem cells.Hum Reprod,2004,19:968-974
    219.Zhou Y,L(u|¨) B J,Xu P,Song C F.Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells.Chin Med J,2005,118:204-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700