用户名: 密码: 验证码:
铝合金中Mg_2Si相演变行为及析出长大机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高倍视频显微镜(HSVM)、电子探针(EPMA)、场发射扫描电镜(FSEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)、常规透射电镜(TEM)、高分辨透射电镜(HRTEM)和三维原子探针(APT)等分析测试手段对铝合金中Mg2Si相的演变行为与析出长大机制进行了研究。研究了Al-Mg2Si-(Si)合金的凝固过程及组织演变规律;分析了Al-4%Mg-0.5%Si-1%Cu合金固溶时效过程中纳米沉淀析出相的演变过程及Ag对演变行为的影响;建立了初生Mg2Si相的生长模型,揭示了其不同形貌间的相互转化机制,实现了对其形核与生长的控制;通过引入Ni以形成NiAl3相改变合金凝固过程,促使了共晶Mg2Si长大方式的改变,从而改善了其微观组织。全文的主要结论如下:
     (1)Al-Mg2Si-(Si)合金凝固过程及组织演变规律
     根据Al-Mg2Si-(Si)合金相图和实验结果:对于亚共晶Al-Mg2Si合金,凝固过程可表示为:L→(α-Al)P+(Al+Mg2Si)E,共晶Mg2Si三维形貌为板片状或棒状;对于过共晶合金,凝固过程可表示为L→Mg2SiP+(Al+Mg2Si)E,初生Mg2Si则呈现出多种形貌:完整八面体、平截八面体、漏斗晶以及粗大的枝晶。过共晶Al-Mg2Si合金中含有少量过剩Si时,在其凝固后期会发生三元共晶反应,其凝固过程可表示为L→Mg2SiP+(Al+Mg2Si)E+(Al+Mg2Si+Si)E。
     (2)Al-4%Mg-0.5%Si-1Cu合金时效硬化过程中纳米析出相的演变及Ag对其演变行为的影响。
     经520℃固溶淬火后,合金中共晶Mg2Si部分固溶于基体中。在200℃等温时效过程中,沉淀析出相主要为短棒状GPB(Guinier-Preston-Bagaryatsky)区和板条状S相(Al2CuMg),固溶的Si则起到了稳定GPB区的作用。Ag的加入显著改变了合金沉淀析出相的演变过程,促使了板块状Z相的形成且沿{111}Al惯析面析出(成分为Al:~38at.%,Mg:~32at.%,Cu:~20at.%,Ag:~10at.%),并抑制GPB区向S相的转变。
     固溶温度从520℃升高至560℃,使得更多的Si固溶到铝基体中(由0.06at.%增加到0.13at.%)。在后续时效过程中,较高固溶含量的Si促进了合金中更高密度GPB的析出,同时Ag的存在促使Z相析出的同时又抑制GPB向S相的转变,高密度的GPB和Z相共同作用使合金表现出更加显著的硬化效应。
     (3)初生Mg2Si生长模型的建立与不同形貌间的相互转化机制。
     从晶体结构分析,Mg2Si属于反萤石结构,倾向于形成表面自由能低的完整八面体。在生长过程中,优先沿着<100>方向生长,<111>方向生长速度最慢,随着晶体的长大,{100}和{110}面逐渐消失,形成八面体的顶点和棱边,密排{111}面被保留下来,成为八面体的显露面。
     在实验的合金熔体环境中,由于传热、传质和杂质元素等因素的影响,Mg2Si<100>和<111>方向的生长相对速度发生改变,从而使得晶体形成八面体漏斗晶、平截八面体或立方体。合金中Mg2Si含量较高时,优先生长方向<100>的生长速率会加快,沿着<100>方向形成一次主干,并在垂直于一次主干的<100>方向形成二次分枝。在生长过程中,生长单元发生部分重叠、聚合现象,从而形成多种形貌特征的Mg2Si树枝晶。
     通过向合金熔体中加入Al-P、Al-Ti-B中间合金,增加Mg2Si的形核质点,降低熔体的过饱和度,实现了初生Mg2Si由粗大枝晶向细小八面体或平截八面体的转变。并由Turnbull-Vonnegut公式计算得到AlP的(220)晶面和Mg2Si的(311)晶面的错配度为6.58%,TiB2的(001)和Mg2Si的(200)晶面的错配度为4.64%,从结构上证明了AlP和TiB2均可作为初生Mg2Si的良好形核衬底。并且进一步试验发现,AlP和TiB2可形成耦合粒子共同作为初生Mg2Si的形核核心,促进Mg2Si的析出。
     (4)Al-Mg2Si-NiAl3合金凝固组织的演变及NiAl3对共晶Mg2Si长大方式的影响
     通过Thermo-calc软件计算得到了Al-Mg2Si-NiAl3伪三元共晶合金相图,并对其凝固过程和微观组织进行了分析。计算得到三元共晶反应成分点为Al-12.1%Mg2Si-8.4%NiAl3,平衡条件下反应温度为587.05℃。在Al-15%Mg2Si-NiAl3体系中,存在两个成分拐点,分别是7.9%NiAl3和13.1%NiAl3。当合金中的NiAl3含量较少时(<7.9%),NiAl3只存在于(Al+Mg2Si+NiAl3)E三元共晶中;而当NiAl3含量位于7.9%与13.1%之间时,会出现(Mg2Si+NiAl3)E二元共晶;继续增加NiAl3含量(>13.1%),初生NiAl3析出。当合金中(Al+Mg2Si)E二元共晶全部转变成(Al+Mg2Si+NiAl3)E三元共晶组织时,共晶NiAl3倾向于形成界面能较低的棒状形貌,诱使形成棒状Mg2Si相来降低总的界面能。棒状NiAl3和Mg2Si两者相间均匀分布在铝基体上,形成独特的双棒状(Al+Mg2Si+NiAl3)E三元共晶组织。
The evolution, precipitation and growth mechanism of Mg2Si in Al alloys were studied by high scope video microscope (HSVM), electron probe micro-analyzer (EPMA), field emission scanning electron microscopy (FSEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), conventional transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), atom probe tomography (APT), etc. The solidification process and microstructure evolution of Al-Mg2Si-(Si) were researched. The nano-precipitates sequence in Al-4%Mg-0.5%Si-1%Cu and the effect of Ag on precipitation phenomena were analyzed. Meanwhile, the growth pattern of primary Mg2Si was established, and the evolution mechanism of different morphologies was revealed which leads to realizeing the control of growth of Mg2Si. Furthermore, the growth of eutectic Mg2Si was transformed by the addition of Ni.
     The main results can be described as follows:
     (1) Solidification process and microstructure evolution of Al-Mg2Si-(Si)
     The solidification process of hypoeutectic Al-Mg2Si alloys can be expressed as L→(α-Al)P+(Al+Mg2Si)E, and eutectic Mg2Si is plate-like or rod-like. In the hypereutectic Al-Mg2Si alloys, primary Mg2Si first precipates from the melt and exhibits various typical morphologies:perfect octahedron, truncated octahedron, hopper and dendrite. Its solidification path is indicated as L→Mg2Sip+(Al+Mg2Si)E. When Si is excess in the alloy, the ternary eutectic reaction occurs and the solidification sequence is considered to be:L→Mg2SiP+(Al+Mg2Si)E+(Al+Mg2Si+Si)E.
     (2) Nano-precipitate formation in Al-4%Mg-0.5%Si-1%Cu and effect of Ag on precipitation phenomena
     After solution treated at520℃and cold water quenched, part of eutectic Mg2Si is dissolved in the matrix. Aged at200℃, the dominated phases are rod-like GPB (Guinier-Preston-Bagaryatsky) zones and lath-like S-phase particles (Al2CuMg). The dissolved Si stabilises GPB zones. Meanwhile, Ag addition obviously changes precipitation sequence and kinetics by promoting the formation of plate-like Z-phase (on {111} Al habit planes) and suppressing the transformation of GPB zone into S-phase. The composition of Z phase is determined to be~38at.%Al,~32at.%Mg,~20at.%Cu and~10at.%Ag.
     The increase of solution temperature from520℃to560℃leads to more Si dissolved into the Al matrix (from0.06at.%to0.13at.%). In the precipitation process, high Si content dissolved in the matrix promotes precipitation of more GPB zones and the existence of Ag prohibits the continuous transformation of GPB zones into S-phase. The Z-phase and increase of number density of GPB zones result in the enhanced age-hardening response.
     (3) Growth pattern of primary Mg2Si and transformation mechanism of morphology
     The intermetallic compound Mg2Si is a face-centered cubic (anti-fluorite type) structure and tends to form their equilibrium shape (faceted octahedron) with minimized total surface free energy. As {100} faces have the highest growth rate and the preferential growth directions are <100>, perfect octahedron Mg2Si is bounded by {111} surfaces, and {100} and {110} planes degrade to corners and edges, respectively.
     The variations of growth conditions, such as mass transfer and adsorption of impurities, usually change the growth rates along the <100> and<111> directions during solidification, which leads Mg2Si to develop into other morphologies, such as hopper, truncated octahedron and cube. In addition, interesting enormous Mg2Si dendrites tend to be formed in alloys with high content of Mg2Si. The primary dendrite trunk is formed along <100> direction of which the growth rate is accelerated, and develops the secondary branches in the <100> directions perpendicular to the main stem. Connection and overlapping of growth units lead to forming various interesting dendrites with inconspicuous crystallographic features of surfaces.
     The coarse Mg2Si dendrites can be turned to numerous fine octahedron or truncated octahedron particles with the addition of Al-P or Al-Ti-B master alloys increasing the Mg2Si crystal nuclei. According to Turnbull-Vonnegut equation, it is calculated that the disregistry between (220) crystal face of A1P and the (311) crystal face of Mg2Si is only6.58%, and the disregistry between (001) crystal face of TiB2and the (200) crystal face of Mg2Si is4.64%. Crystal lattice correspondence indicates A1P and TiB2can act as the nuclei of the primary Mg2Si. Furthermore, it is also found that coupling particles of A1P and TiB2exist in the centre of primary Mg2Si and promote the precipitation of Mg2Si.
     (4) Microstructure evolution of Al-Mg2Si-NiAl3alloys and effect of NiAl3on the growth of eutectic NiAl3
     The Al-Mg2Si-NiAl3phase diagram is calculated using Thermo-calc software, and its solidification process and microstructure are analyzed. In Al-Mg2Si-NiAl3pseudo-ternary phase diagram, the composition of ternary eutectic is Al-12.1%Mg2Si-8.4%NiAl3and the calculated temperature in equilibrium state is587.05℃. For Al-15%Mg2Si-NiAl3system, two critical compositions were detected at7.9%and13.1%N1Al3. The NiAl3phase first appears only in the ternary eutectic zone for the composition of NiAl3up to7.9%. With NiAl3contents between7.9%and13.1%, NiAl3appears in both the binary and ternary reactions. Above13.1%NiAl3, it solidifies as a primary phase as well as during the binary and ternary reactions. When (Al+Mg2Si)E binary eutectic completely evolves into (Al+Mg2Si+NiAl3)E ternary eutectic, eutectic NiAl3phase tends to form rods that have lower interfacial energy, compared with lamellar structure. The growth of NiAl3in rod-like manner strongly induces the formation of rod-like Mg2Si in order to decrease the total interfacial energy. Finally, it is formed the unique double rod ternary eutectic structure with rod-like Mg2Si and NiAl3uniformly distributing in Al matrix.
引文
[1]杨遇春.金属间化合物及其应用,有色金属再生与利用,2004;(9):29-30.
    [2]E.E. Schmid, K. Vonoldenburg, G. Frommeyer. Microstructure and properties of as-cast intermetallic Mg2Si-Al alloys, Zeitschrift fur Metallkunde,1990; 81:809-815.
    [3]R.J. Labota, D.R. Mason. The thermal conductivities of Mg2Si and Mg2Ge, Journal of the Electrochemical Society,1963; 110:121-126.
    [4]G.H. Li, U.S. Gill, R.A. Varin. Magnesium silicide intermetallic alloys, Metallurgical and Materials Transactions A,1993; 24A:2383-2391.
    [5]臧树俊,周琦,马勤,安亮.金属间化合物Mg2Si研究进展,铸造技术,2006;27(8):866-870.
    [6]赵珂杰,谢泉,肖清泉,余志强.环境友好半导体Mg2Si薄膜的研究进展,中国光学与应用光学,2010;3(5):446-451.
    [7]A. Anani, R.A. Huggins. Multinary alloy electrodes for solid state batteries Ⅱ. A new Li-Si-Mg alloy negative electrode material for use in high energy density rechargeable lithium cells. Journal of Power Sources,1992:38:363-372.
    [8]T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, I. Nakabayashi. Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion, Journal of Solid State Chemistry,2000; 153:386-390.
    [9]S.W. Song, K.A. Striebel, X.Y. Song, E.J. Cairns. Amorphous and nanocrystalline Mg2Si thin-film electrodes, Journal of Power Sources,2003; 119-121:110-112.
    [10]张倩.Mg2(Si,Sn)基热电材料的合金化和复合化研究,浙江大学博士学位论文,2008.
    [11]M.I. Fedorov, D.A. Pshenay-Severin, V.K. Zaitsev, S. Sano, M.V. Vedernikov. Features of conduction mechanism in n-type Mg2Si1-xSnx solid solution, In proceedings of 22nd international conference on thermoelectrics, New York, IEEE,2003; 142-145.
    [12]M.I. Fedorov, V.K. Zaitsev, I.S. Eremin, E. A. Gurieva, A.T. Burkov, P.P. Konstantinov, M.V. Vedernikov, A. Yu, G.N. Isachenko, A.A. Shabaldin. Transport properties of Mg2X0.4Sn0.6 solid solution (X=Si, Ge) with p-type conductivity, Physics of the Solid State,2006; 48:1486-1490.
    [13]L.M. Zhang, C.B. Wang, H.Y. Jiang, Q. Shen. Thermoelectric properties of Sb-doped Mg2Si by solid state reaction, In proceedings of 22nd international conference on thermoelectrics, New York, IEEE,2003; 146-148.
    [14]Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, Y. Shinohara. Thermoelectric properties of Sb-doped Mg2Si0.5Sn0.5, In proceedings of 25th international conference on thermoelectrics, Vienna, IEEE, 2006; 406-410.
    [15]Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, Y. Shinohara. The effect of Bi doping on thermoelectric properties of Mg2Si0.5Sn0.5, In proceedings of 26th international conference on thermoelectrics, Jeju Island, IEEE,2007; 251-255.
    [16]姜洪义,龙海山,张联盟.用低温固相反应制备P型Mg2Si基热电材料,硅酸盐学报,2004;32(9):1094-1097.
    [17]Y. Noda. H. Kon. Y. Furukawa, N. Otsuka. I.A. Nishida. K. Masumoto. Preparation and thermoelectric properties of Mg2Si1-xGex(x=0-0.4) solid solution semiconductors, Materials Transitions, JIM, 1992; 33(9):845-850.
    [18]M. Nakai, T. Eto. New aspects of development of high strength aluminum alloys for aerospace applications. Materials Science and Engineering A,2000; 285:62-68.
    [19]J.C. Williams, J.R. Starke. Progress in structural materials for aerospace system, Acta Materialia,2003; 51:5775-5799.
    [20]I.J. Polmear. Magnesium alloys and applications, Materials Science and Technology,1994; (10):1-16.
    [21]B.L. Mordike, T. Ebert. Magnesium, properties-applications-potential, Materials Science and Engineering A,2001; 302:37-45.
    [22]刘正,王越,王中光,李锋,申志勇.镁基轻质材料的研究与应用.材料研究学报,2000;14(5):449-456.
    [23]刘子利,丁文江,袁广银,朱燕萍.镁铝基耐热铸造镁合金的进展,机械工程材料,2001;25(11):1-4.
    [24]田荣璋,王祝堂.铝合金及其加工手册第二版,中南大学出版,2000.
    [25]D. Lassance, D. Fabregue, F. Delannay, T. Pardoen. Micromechanics of room and high temperature fracture in 6xxx Al alloys, Progress in Materials Science,2007; 52:62-129.
    [26]秦庆东Mg2Si/Al复合材料组织控制的研究及其力学与磨损特性,吉林大学博士学位论文,2008.
    [27]王伟.B对过共晶Mg-Si二元合金中Mg2Si生长形态的影响,吉林大学硕士学位论文,2007.
    [28]郑子樵,梁叔全.梯度功能材料的研究与展望,材料科学与工程学报,1992;10(1):1-6.
    [29]李智慧,何小凤,李运刚.功能梯度材料的研究现状.河北理工大学学报,2007;29(1):45-51.
    [30]翟彦博.离心铸造自生颗粒增强铝基骤变梯度功能复合材料气缸套的制备技术研究,重庆大学博士学位论文,2009年.
    [31]J. Zhang, Y.Q. Wang. B.L. Zhou, X.Q. Wu. Functionally Al/Mg2Si in situ composites prepared by centrifugal casting, Journal of Materials Science Letters,1998; 17:1677-1679.
    [32]张健,王玉庆,吴欣强,周本濂.离心铸造原位Al/Mg2Si复合材料组织与性能的研究,铸造,1998;(9):1-3.
    [33]J. Zhang, Z. Fan, Y. Wang, B. Zhou. Hypereutectic aluminium alloy tubes with graded distribution of Mg2Si particles prepared by centrifugal casting, Materials and Design,2000; 21: 149-153.
    [34]李克,于俊,疏达,杜朝晖,孙宝德,周尧和.电磁分离法制备原位Al/Mg2Si功能梯度复合材料,上海交通大学学报,2004;38(9):1433-1437.
    [35]C.J. Song, Z.M. Xu, G. Liang, J.G. Li. Study of in-situ Al/Mg2Si functionally graded materials by electromagnetic separation method, Materials Science and Engineering A,2006; 424: 6-16.
    [36]C.J. Song, Z.M. Xu, J.G. Li. Fabrication of in situ Al/Mg2Si functionally graded materials by electromagnetic separation method, Composites:Part A,2007; 38:423-433.
    [37]J.S. Benjamin. Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions,1970; 1:2943-2951.
    [38]A. Calka, A.P. Radlinski. Formation of amorphous Fe-B alloys by mechanical alloying, Applied Physics Letters,1991; 58(2):119-121.
    [39]Z.Y. Ma, X.G. Ning, Y.X. Lu, J. Bai, L.S. Wen, S.J. Wu, G. Jangg, H. Daninger. In-situ Al4C3 dispersoid and SiC particle mixture-reinforced aluminum composite, Scripta Metallurgica et Materialia,1994; 31(2):131-135.
    [40]N.Q. Wu, S. Lin, J.M. Wu, Z.Z. Li. Mechanosynthesis mechanism of TiC powders, Materials Science and Technology,1998; 14:287-291.
    [41]M. Riffel, J. Schliz. Mechanical alloying of Mg2Si, Scripta Metallurgica et Materialia,1995; 32(12):1951-1956.
    [42]X.P. Niu, L.Lu. Formation of magnesium silicide by mechanical alloying, Advanced Performance Materials,1997; 3:275-283.
    [43]L. Lu, M.O. Lai, M.L. Hoe. Formation of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying, Nanostructured Materials,1998; 10(4): 551-563.
    [44]G. Frommeyer, S. Beer, K.Vonoldenburg. Microstructure and mechanical properties of mechanically alloyed intermetallic Mg2Si-Al Alloys, Zeitschrift fur Metallkunde,1994; 85: 372-377.
    [45]周琦,刘建军,臧树俊,马勤,易育强.高能球磨过程中Mg2Si的形成及其影响因素的研究,兰州理工大学学报,2006;32(5):24-26.
    [46]L. Lu, K.K. Thong, M.Gupta. Mg-based composite reinforced by Mg2Si, Composites Science and Technology,2003; 63:627-632.
    [47]A.G. Merzhanov, I.P. Borovinskaya. Self-propagating high-temperature synthesis of inorganic compounds, Doklady Akademii Nauk SSSR,1972; 204(2):366-369
    [48]A.G Merzhanov, I.P. Borovinskaya. A new class of combustion processes, Combustion Science and Technology,1975; 10:195-200
    [49]J.J. Moore, H.J. Feng. Combustion synthesis of advanced materials:Part 1. reaction parameters, Progress in Materials Science,1995; 39:243-273.
    [50]S.C. Tjong, Z.Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites, Materials Science Engineering R,2000; 29:49-113.
    [51]N.D. Corbin. J.W. McCauley. Self-Propagating High Temperature Synthesis (SHS):Current Status and Future Prospects, MTL MS 86-1, USAMTL, Watertown, MA,1986.
    [52]D. Horvitz, L. Klinger, I. Gotman. New approach to measuring the activation energy of thermal explosion and its application to Mg-Si system, Scripta Materialia,2004; 50:631-634.
    [53]臧树俊Al/Mg2Si复合材料的制备与表征,兰州理工大学硕士学位论文,2006.
    [54]H. Tatsuoka, N. Takagi, S. Okaya, Y. Sato, T. Inaba, T. Ohishi, A. Yamamoto, T. Matsuyama, H. Kuwabara. Microstructures of semiconducting silicide layers grown by novel growth techniques, Thin Solid Films,2004; 461:57-62.
    [55]M. Brause, B. Braun, D. Ochs, W. Maw-Friedrichs. V. Kempter. Surface electronic structure of pure and oxidized non-epitaxial Mg2Si layers on Si (111), Surface Science,1998; 398: 184-194.
    [56]A. Vantomme, G. Langouche, J.E. Mahan. J.P. Becker. Growth mechanism and optical properties of semiconducting Mg2Si thin films, Microelectronic Engineering,2000; 50:237-242.
    [57]R.G. Morris, R.D. Redin, G.C. Danielson. Semiconducting Properties of Mg2Si Single Crystals, Physical Review,1958; 109:1909-1915.
    [58]M. Yoshinaga, T. Iida, M. Noda, T. Endo, Y. Takanashi. Bulk crystal growth of Mg2Si by the vertical Bridgman method, Thin solid films,2004; 461:86-89.
    [59]D. Tamura, R. Nagai, K. Sugimoto, H. Udono, I. Kikuma, H. Tajima, I. J. Ohsugi. Melt growth and characterization of Mg2Si bulk crystals, Thin Solid Films,2007; 515:8272-8276.
    [60]M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, Y. Takanashi. Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics, Journal of Crystal Growth,2007; 304:196-201.
    [61]李月珠.快速凝固技术和材料,国防工业出版社,1993.
    [62]周尧和,胡壮麒,介万奇.凝固技术,机械工业出版社,1998.
    [63]陈光,傅恒志.非平衡凝固新型金属材料,科学出版社,2004.
    [64]M. Mabuchi, K. Kubota, K. Higashi. High strength and high strain rate superplasticity in a Mg-Mg2Si composite, Scripta Metallurgica et Materialia,1995; 33:331-335.
    [65]M. Mabuchi, K. Higashi. Strengthening mechanisms of Mg-Si alloys, Acta Materialia 1996; 44:4611-4618.
    [66]J. Zhang, Z. Fan, Y.Q. Wang, B.L.Zhou. Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys, Journal of Materials Science Letters,2000; 19:1825-1828.
    [67]M.F. Ourfali,I. Todd, H. Jones. Effect of solidification cooling rate on the morphology and number per unit volume of primary Mg2Si particles in a hypereutectic Al-Mg-Si alloy, Metallurgical and Materials Transactions A,2005; 36:1368-1371.
    [68]Q.D. Qin, Y.G. Zhao. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification, Journal of Alloys and Compounds,2008; 462:L28-L31.
    [69]R. Vissers, M.A. van Huis. J. Jansen. H.W. Zandbergen, C.D. Marioara, S.J. Andersen. The crystal structure of the β'phase in Al-Mg-Si alloys, Acta Materialia,2007; 55:3815-2823.
    [70]J. Zander, R. Sandstrom. One parameter model for strength properties of hardenable aluminium alloys, Materials and Design,2008; 29:1540-1548.
    [71]C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo. Precipitation kinetics and transformation of metastable phases in AlMgSi alloys, Acta Materialia,2006; 17:4621-4631.
    [72]D.J. Chakrabarti, D.E. Laughlin. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Progress in Materials Science,2004; 49:389-410.
    [73]L. Arnberg, B. Aurivillius. The crystal structure of aluminum-copper-magnesium-silicon [A] CuMgSi, (h-AlCuMgSi)x2·12x7, Acta Chemica Scandinavica Series A,1980; 34A:1-5.
    [74]C. Wolverton. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys, Acta Matrialia,2001; 49:3129-3142.
    [75]L.F. Mondolfo. Aluminum alloys:structure and properties, Boston:Butterworths,1979. p. 644-651.
    [76]李海,王秀丽,史志欣,王芝秀,郑子樵Al-Mg-Si-(Cu)铝合金在连续升温中的析出行为,中国有色金属学报,2011;21(9):2028-2034.
    [77]W.F. Miao, D.E. Laughlin. Effect of Cu content and pre-ageing on precipitation characteristics in aluminum alloy 6022, Metallurgical and Materials Transactions A,2000; 31(2): 361-371.
    [78]L. Kovarik, P.I. Gouma, C. Kisielowski, S.A. Court, M.J. Mills. A HRTEM study of metastable phase formation in Al-Mg-Cu alloys during artificial aging, Acta Materialia,2004; 52: 2509-2520.
    [79]M. Mabuchi, K. Kubota, K. Higashi. Effect of hot extrusion on mechanical propertites of a Mg-Si-Al alloy, Materials Letters,1994; 19:247-250.
    [80]M. Mabuchi, K. Kubota, K. Higashi. Tensile strength, ductility and fracture of Magnesium-silicon alloys, Journal of Materials Science,1996; 31:1529-1535.
    [81]M. Mabuchi, K. Kubota, K. Higashi. Elevated temperature mechanical properties of magnesium alloys containing Mg2Si, Materials Science and Technology,1996; 12:35-39.
    [82]Z.M. Zhang, C.J. Xu, X.F. Guo, S.Z. Jia. Reciprocating extrusion of in situ Mg2Si reinforced Mg-Al based composite, Acta Metallurgica Sinica (English Letters),2008; 21:169-177.
    [83]边秀房,刘相法,马家骥.铸造金属遗传学,山东科技出版社,1999.
    [84]Q.D. Qin, Y.G. Zhao, Y.H. Liang, W. Zhou. Effects of melt superheating treatment on microstructure of Mg2Si/Al-Si-Cu composite, Journal of Alloys and Compounds,2005; 399: 106-109.
    [85]Z.H. Gu, H.Y. Wang, N. Zheng, M. Zha, L.L. Jiang, W. Wang, Q.C.Jiang. Effect of melt superheating treatment on the cast microstructure of Mg-1.5Si-lZn alloy, Journal of Materials Science,2008; 43:980-984.
    [86]Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou, Y.H. Liang. Effect of holding temperature on semisolid microstructure of Mg2Si/Al composite, Journal of Alloys and Compounds,2006; 416: 143-147.
    [87]Q.D. Qin, Y.G. Zhao. P.J. Cong, W. Zhou, B. Xu. Semisolid microstructure of Mg,Si/Al composite by cooling slope cast and its evolution during partial remelting process, Materials Science and Engineering A,2007; 444:99-103.
    [88]Q.D. Qin, Y.G. Zhao, W. Zhou, P.J. Cong. Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite. Materials Science and Engineering A, 2007; 447:186-191.
    [89]Q.D. Qin, W.X. Li, K.W. Zhao, S.L. Qiu, Y.G. Zhao. Effect of modification and aging treatment on mechanical properties of Mg2Si/Al composite, Materials Science and Engineering A, 2010; 527:2253-2257.
    [90]艾秀兰,李英民.磷元素对Al-Mg2Si合金显微组织的影响.大连铁道学院学报,2005;26(1):80-82.
    [91]Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou, Q.C. Jiang. In-situ Mg2Si/Al-Si-Cu composite modified by strontium, Journal of Materials Science,2005; 40:1831-1833.
    [92]K.Y. Nam. D.H. Song, C.W. Lee, S.W. Lee, Y.H. Park, K.M. Cho, I.M. Park. Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium and antimony,7th International Symposium on Eco-materials Processing and Design. Chengdu, PEOPLES R CHINA,2006; 238-241.
    [93]Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong, W. Zhou. Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite, Journal of Alloys and Compounds,2008; 454:142-146.
    [94]G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding. Microstructure refinement of Mg-Al-Zn-Si alloys, Materials Letters,2002; 56:53-58.
    [95]L.H. Liao, X.Q. Zhang, H.W. Wang, X.F. Li, N.H. Ma. Influence of Sb on damping capacity and mechanical properties of Mg2Si/Mg-9Al composite materials, Journal of Alloys and Compounds,2007; 430:292-296.
    [96]孙丰泉,王小东,严有为.Sb对原位Mg2Si/Mg复合材料组织的影响,特种铸造及有色
    合金,2005;25(1):18-20.
    [97]任波,张天清,刘忠侠,杨明生,陈冲,贺素霞,王明星,刘智勇,翁永刚.Sb对原位Mg2Si/Al-5Si复合材料显微组织的影响,特种铸造及有色合金,2006;26(12):819-821.
    [98]宋佩维,郭学锋,井晓天,葛利玲.Sb对Mg-4Al-2Si合金显微组织和力学性能的影响,特种铸造及有色合金,2007;27(2):88-91.
    [99]J. Zhang, Z. Fan, Y. Wang, B. Zhou. Microstructural refinement in Al-Mg2Si in situ composites, Journal of Materials Science Letters,1999; 18:78-784.
    [100]E.J. Guo, B.X. Ma, L.P. Wang. Modification of Mg2Si morphology in Mg-Si alloys with Bi, Journal of Materials Processing Technology,2008; 206:161-166.
    [101]R. Hadian, M. Emamy, N. Varahram, N. Nemati. The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite, Materials Science and Engineering A,2008; 490: 250-257.
    [102]H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, J.G. Wang, J.B. Li. Modification of Mg2Si in Mg-Si alloys with K2TiF6, KBF4 and KBF4+K2TiF6, Journal of Alloys and Compounds,2005; 387: 105-108.
    [103]H.Y. Wang, W. Wang, M. Zha, N. Zheng, Z.H. Gu, D. Li, Q.C. Jiang. Influence of the amount of KBF4 on the morphology of Mg2Si in Mg-5Si alloys. Materials Chemistry and Physics, 2008; 108:353-358.
    [104]N. Zheng, H.Y. Wang, Z.H. Gu, W. Wang, Q.C. Jiang. Development of an effective modifier for hypereutectic Mg-Si alloys, Journal of Alloys and Compounds,2008; 463:L1-L4.
    [105]Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, Q.C. Jiang. In situ Mg2Si/Al-Si composite modified by K2TiF6, Materials Letters,2004; 58:2192-2194.
    [106]J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou. Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering A,2000; 281: 104-112.
    [107]Y.G. Zhao, Q.D. Qin, W. Zhou, Y.H. Liang. Microstructure of the Ce-modified in situ Mg2Si/Al-Si-Cu composite, Journal of Alloys and Compounds,2005; 389:L1-L4.
    [108]Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma, J.G. Wang. Modification of Mg2Si in Mg-Si alloys with yttrium, Materials Science and Engineering A,2005; 392:130-135.
    [109]L.P. Wang, E.J. Guo, B.X. Ma. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys, Journal of Rare Earths,2008; 26:105-109.
    [110]艾秀兰,李英民.稀土元素对Al-Mg2Si合金组织及性能的影响,铸造,2005;54(3):238-240.
    [111]J.J. Kim, D.H. Kim, K.S. Shin,N.J. Kim. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition, Scripta Materials,1999; 41:333-340.
    [112]G.Y. Yuan, M.P. Liu, W.J. Ding, A. Inoue. Microstructure and mechanical properties of Mg-Zn-Si-based alloys, Materials Science and Engineering A,2003; 357:314-320.
    [113]黄晓锋,王渠东,曾小勤,朱燕萍,卢晨,丁文江.钕对Mg-5A1-1Si高温蠕变及组织性能的影响,中国稀土学报,2004;22(3):361-364.
    [114]贾树卓,徐春杰,郭学锋,郑水云,张忠明,吕涛.热处理对原位自生Mg2Si/Mg-Al基复合材料组织与性能的影响,材料热处理学报,2006;27(6):25-28.
    [115]宋佩维,郭学锋,井晓天,张忠明,徐春杰Mg-4Al-2Si合金固溶处理过程中Mg2Si相颗粒的球状化,材料工程,2007;(3):34-37.
    [116]刘政,陈明,石凯.热处理对Mg2Si/Al-Si复合材料组织及性能的影响,铸造,2010;59(7):665-669.
    [117]M. Emamy, N. Nematib, A. Heidarzadeha. The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15% Mg2Si composite, Materials Science and Engineering A,2010; 527:2998-3004.
    [118]B. Gault, M.P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley, S.P. Ringer. Advances in the calibration of atom probe tomographic reconstruction, Journal of Applied Physics 2009; 105:034913.
    [119]M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, S.P. Ringer. Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques, Ultramicroscopy,2009; 109:815-824.
    [120]H.L. Lukas, J. Weiss. E.-Th Henig. Strategies for the Calculation of Phase Diagrams, Calphad,1982; 6:229-251.
    [121]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学,冶金工业出版社,1999.
    [122]沙维Thermo-Calc热力学计算系统及其在材料研究中的应用,材料科学与工程学报,1992:10(2):40-43.
    [123]B. Sundman, B. Jansson, J.O.Andersson. The Thermo-Calc databank system, Calphad,1985; 9:153-190.
    [124]N. Saunders. TTA1, TT Al-based Alloys Database, Guildford:ThermoTech Ltd. Surrey Technology Center; 2002.
    [125]《铸造有色金属及熔炼》联合编写组.铸造有色合金及熔炼,国防工业出版社,1980.
    [126]长崎诚三,平林真.二元合金状态图集,冶金工业出版社,2004.
    [127]J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou. Equilibrium pseudobinary Al-Mg2Si phase diagram. Materials science and technology,2001; 17:494-496.
    [128]J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou. Microstrutural evolution of the in situ Al-15wt.% Mg2Si composite with extra Si contents, Scripta Materials,2000; 42:1101-1106.
    [129]N. Nasiri, M. Emamy, A. Malekan. Microstructural evolution and tensile properties of the in situ Al-15%Mg2Si composite with extra Si contents, Materials and Design,2012; 37:215-222.
    [130]龚磊清.铸造铝合金金相图谱,中南大学出版社,1987.
    [131]M. Murayama, K. Hono, M. Saga, M. Kikuchi. Atom probe studies on the early stages of precipitation in AlMgSi alloys, Materials Science and Engineering A,1998; 250(1):127-132.
    [132]L. Zhen, W.D. Fei, S.B. Kang, H.W. Kim. Precipitation behavior of AlMgSi alloys with high silicon content, Journal of Materials Science,1997; 32(7):1895-1902.
    [133]陈江华,刘春辉AlMgSi(Cu)合金中纳米析出相的结构演变,中国有色金属学报,2011;21(10):2352-2360.
    [134]C. Ravic, C. Wolverton. First principles study of crystal structure and stability of AlMgSi(Cu) precipitates, Acta Materialia,2004; 52:4213-4227.
    [135]J. Buha, R.N. Lumley, A.G. Crosky, K. Hono. Secondary precipitation in an AlMgSiCu alloy, Acta Materialia,2007,55:3015-3024.
    [136]A.W. Zhu, B.M. Gable, G.J. Shiflet, E.A. Starke Jr. Trace element effects on precipitation in Al-Cu-Mg-(Ag, Si) alloys:a computational analysis, Acta Materialia,2004; 52:3671-3679.
    [137]L.P. Sun, D.L. Irving, M.A. Zikry, D.W. Brenner. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al|Ω interface in a Al-Cu-Mg-Ag alloy, Acta Materialia.2009; 57:3522-3528.
    [138]S.P. Ringer, T. Sakurai, I.J. Polmear. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys, Acta Materialia,1997; 45:3731-3744.
    [139]K. Raviprasad, C.R. Hutchinson, T. Sakurai. S.P. Ringer. Precipitation processes in an Al-2.5Cu-1.5Mg (wt.%) alloy microalloyed with Ag and Si, Acta Materialia,2003; 51: 5037-5050.
    [140]L. Kovarik, M.K. Miller, S.A. Court, M.J. Mills. Origin of the modified orientation relationship for S(S")-phase in AI-Mg-Cu alloys, Acta Materialia,2006; 54:1731-1740.
    [141]H.D. Chopra, B.C. Muddle, I.J. Polmear. The structure of primary strengthening precipitates in an Al-1.5wt% Cu-4.0wt% Mg-0.5wt% Ag alloy, Philosophical Magazine Letters,1996; 73: 351-358.
    [142]安阁英.铸件形成理论,机械工业出版社,1990.
    [143]胡汉起.金属凝固原理,机械工业出版社,2000.
    [144]1. Sunagawa. Crystals growth, morphology and perfection, Cambridge:Cambridge University Press,2005.
    [145]G.H. Liu, K.X. Chen, H.P. Zhou, J.J. Tian, C. Pereira, J.M.F. Ferreira. Fast Shape Evolution of TiN Microcrystals in Combustion Synthesis, Crystal Growth & Design,2006; 6(10): 2404-2411.
    [146]P. Hartman. Crystal growth:an introduction. Amsterdam:North-Holland Publishing Co., 1973.
    [147]S. Takeuchi, T. Hashimoto, K. Suzuki. Plastic deformation of Mg2Si with the C1 structure, Intermetallics,1996; 4:S147-S150.
    [148]M.R.J. van Buuren, F. Voermans, H. van Kempen. Bonding in Mg2Si studied with X-ray photoelectron spectroscopy, Journal of Physical Chemistry,1995; 99:9519-9522.
    [149]B.H. Yu, D. Chen, Q.B. Tang, C.L. Wang, D.H. Shi. Structural, electronic, elastic and thermal properties of Mg2Si, Journal of Physics and Chemistry Solids,2010; 71:758-763.
    [150]R. Saravanan, M. Charles Robert. Local structure of the thermoelectric material Mg2Si using XRD, Journal of Alloys and Compouds,2009; 479:26-31.
    [151]B. Sadigh, M. Dzugutov, S.R. Elliot. Vacancy ordering and medium-range structure in a simple monatomic liquid, Physical Review B,1999; 59:1-4.
    [152]W.M. Wang, X.F. Bian, J.Y. Qin, S.I. Syliusarenko. The atomic-structure changes in Al-16 pet Si alloy above liquidus, Metallurgical and Materials Transactions A,2000; 31:2163-2168.
    [153]R.Y. Wang, W.H. Lu, L.M. Hogan. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth. Journal of Crystal Growth,1999; 207:43-54.
    [154]R.E. Napolitano, H. Meco, C. Jung. Faceted solidification morphologies in low-growth-rate Al-Si eutectics, JOM Journal of the Minerals Metals and Materials Society,2004; 56:16-21.
    [155]C.L. Xu, H.Y. Wang, C. Liu. Q.C. Jiang. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth,2006; 291:540-547.
    [156]仲维卓,华素坤.晶体生长形态学,科学出版社,1999.
    [157]H.E. Buckley. Crystal growth, New York:John Wiley & Sons,1951.
    [158]R.Y. Wang, W.H. Lu, L.M. Hogan. Faceted growth of silicon crystals in Al-Si alloys, Metallurgical and Materials Transactions A,1997; 28:1233-1243.
    [159]B. Chalmers. Principles of solidification, New York:John Wiley,1964.
    [160]M.C. Flemings Solidification processing. New York:McGraw-Hill,1974.
    [16]]刘智恩.材料科学基础.西北工业大学出版社,2007.
    [162]D. Turnbull, B. Vonnegut. Nucleation catalysis. Industrial & Engineering Chemistry,1952; 44:1292-1298.
    [163]B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metallurgical Transaction,1970; 1:1987-1995.
    [164]L.N. Yu. X.F. Liu, H.M. Ding, X.F. Bian. A new nucleation mechanism of primary Si by peritectic-like coupling of A1P and TiB2 in near eutectic Al-Si alloy, Journal of alloys and compounds,2007; 432:156-162.
    [165]P.S. Mohanty, J.E. Gruzleski. Mechanism of grain refinement in aluminium, Acta Metallurgica et Materialia,1995; 43:2001-2012.
    [166]L. Ratke, J. Alkemper. Ordering of the fibrous eutectic microstructure of Al-Al3Ni due to accelerated solidification conditions, Acta Materialia,2000; 48:1939-1948.
    [167]P. Barczy, V. Mertinger, Z. Gacsi, N. Babcsan, M. Meier. Melt motions during unidirectional solidification of Al-Al3Ni eutectics, Materials Science and Engineering A,1993; 173:137-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700