用户名: 密码: 验证码:
自生颗粒增强铝基复合材料汽缸套的制备技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用离心铸造工艺制备了一种新型、轻质的自生颗粒增强铝基复合材料汽缸套,并为实现该铝合金缸套在发动机上的应用开展了系统的实验研究。
     本文首先采用离心铸造法制备了分别含有不同自生颗粒的复合材料Al-18Si-7Mg、Al-18Si-7Ni、Al-18Si-7Ti,采用X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱议(EDS)及光学显微镜(OM)分析了各复合材料微观组织,并检测了各铸件的力学性能。对比研究发现,Al-18Si-7Mg铸件内层中偏聚了大量的初晶Si/Mg_2Si颗粒,形成了颗粒增强层,外层没有颗粒,且内层颗粒体积分数高达24.16%,具有优良的力学性能,适用于制备铝合金缸套。为了使Al-Si-Mg合金缸套应用于发动机上,本文开展了前期的材料成分系统研究、铸件成形工艺研究,中期的铝合金缸套毛坯成形及质量控制研究及后期的铝合金缸套压铸工艺研究、机械加工工艺研究、缸套内表面处理、台架实验等,并采用自制的传热装置对全铝合金汽缸体的传热性能进行了测试,对装配有铝合金缸套的全铝发动机进行了道路实验。
     通过材料成分系统研究,发现Al-xSi-yMg合金中,当x≥12.8+0.49y且y≥5时,合金中同时形成初晶Si、Mg_2Si颗粒;当x<12.8+0.49y且y≥5,合金中只形成初晶Mg_2Si颗粒;当x≥12.8+0.49y且y<5时,合金中只形成初晶Si颗粒;当x<12.8+0.49y且y<5时,合金中不形成初晶颗粒。随着Si含量的增加(Mg含量不变),Al-xSi-Mg铸件增强层厚度在整个铸件厚度所占比例,k,逐渐增加;随着Mg含量的增加(Si含量不变),k值呈现不同的变化趋势:当m(Si)≤20%时,k值随着Mg含量的增加先减小后增大;当m(Si)≥25%时,k值随着Mg含量的增加而增大。
     通过对铸件的成形工艺研究,发现k值随浇温或模温的升高而增大,最大值达0.59;随离心转速增大,k值由1.0逐渐减小至0.53。随着工艺参数的改变,铸件增强层内的初晶Si,Mg_2Si颗粒体积分数及尺寸大小呈现不同的梯度分布,并且,初晶颗粒的形貌也发生较大变化,其圆度值,F,出现极低值0.3~0.5。
     根据不同的缸套尺寸分别离心铸造试制了宗申149cc和109cc风冷发动机缸套毛坯,嘉陵600cc及东风小康1300cc水冷发动机缸套毛坯。实验发现,通过降低浇注温度可以消除铸件中的孔洞及裂纹,通过①自制的氩气“静态喷吹”装置净化熔体,降低熔体中的夹渣、杂质含量和②提高离心转速使铸件中微小的夹渣物聚拢并车削加工,可以消除铸件中的夹渣,实现缸套毛坯的质量可控。
     合适的模具尺寸、铸件尺寸是获得具有理想偏聚层厚度的缸套产品的必要条件。以宗申149cc发动机缸套尺寸为例:设定铸件壁厚为xmm,则铸件的原始偏聚层最小厚度值为0.45xmm,其铸件内表面的车削加工尺寸为b≥3.0mm,加工后剩余偏聚层厚度d≥1.5mm。设定模具内径为ymm,缸套内径粗加工尺寸为62mm,则得模具内径应为79.3mm,铸件壁厚在11.65~13.0mm,其偏聚层厚度为:5.24≤f≤5.85mm,铸件内表面车削值为:3.0≤b≤4.35mm,其剩余偏聚层厚度为:1.5≤d≤2.24mm,铸件外表面的理论车削值为: c=2.15mm。
     将铝合金缸套在工厂里与铝合金缸体进行压铸成形时发现,高压压铸时,铝合金缸套较大的热膨胀量会导致压铸过程中缸体内出现“跑水”,为此,压铸前加工铝合金缸套内孔时要适当缩小尺寸,一般取其加工范围的下偏差。低压压铸时,由于铝合金缸套的压铸预热温度较低,压铸时易造成充型不完整,为此,要适当提高压铸机的工作压力。
     通过计算铝合金缸套-缸体与铸铁缸套-缸体的理论传热值,发现本研究铝合金缸套-缸体的传热能力是铸铁缸套-缸体的2倍以上;首次通过“实验测温-数据曲线拟合法”测算铝合金缸套/铝合金缸体发动机工作时汽缸内表面的温度为231℃,同时得到铸铁缸套/铝合金缸体的内表面为242℃,表明铝合金缸套/铝合金缸体具有优良的传热性能。
     对铝合金缸套内表面进行传统的珩磨处理后发现,其形成的交叉网纹的粗糙度过大,在台架实验中易发生“拉缸”现象。实验发现,将珩磨工艺与自制的SiC—毛毡抛光装置结合起来,能够在铝合金缸套内表面形成合适的网纹。
     采用10wt%的NaOH溶液在25℃条件下对宗申通用109cc空冷发动机铝合金缸套腐蚀处理并进行台架实验,测得其总的(HC+NOx)排放量较铸铁缸套上升了10%,未能有益于减少尾气排放。对腐蚀处理后的嘉陵600cc水冷发动机铝合金缸套进行台架实验,测得发动机的最大功率达22.66kw,最大转矩达44.37N·m,达到了该发动机的设计要求,并且,全铝合金汽缸缸温有明显降低,表明铝合金缸套在该机型上具有应用的可能性。
     对腐蚀处理后的东风小康1300cc水冷发动机铝合金缸套汽缸进行了装车(安装在长安集团公司生产的1.3L“镭蒙”牌轻型面包车上),进行了一年多的道路测试。该车现已完成初期30000公里测试,目前运行良好,有望获得应用。
The centrifugal casting process was adopted to fabricate a new lightweightaluminum matrix composite material cylinder liner reinforced with in-situ particulate,and the system experimental studies were carried out to realize the application of thealuminum alloy cylinder liner in the engine.
     The centrifugal casting process was used to prepare Al-18Si-7Mg, Al-18Si-7Ni andAl-18Si-7Ti composite materials which contain different in-situ particles. The X raydiffraction, scanning electron microscopy, X ray energy spectrometer and opticalmicroscopy were adopted to analyze the microstructures of the composite materials, andthe mechanical properties of them were tested as well.
     It is found that a large number of primary Si/Mg_2Si particles were segregated in theinner layer of Al-18Si-7Mg casting, while no particle was in the outer layer. Themaximum particle volume fraction in the inner layer was up to24.16vol.%, whichcontributed the highest hardness and superior wear resistance for the casting. Thus,among the three alloys, Al-18Si-7Mg was most suitable for use in the preparation ofaluminum alloy cylinder sleeve. In order to make the Al-Si-Mg alloy cylinder liner beapplied in the engine, the preliminary researches of material composition, centrifugalcasting parameters, the metaphase study of the quality control of the fabrication ofcylinder liner blanks and the later stage experiments of the die-casting technology, themachining process, the inner surface processing of the cylinder bore and the bench testof the cylinder liner were implemented. A self-made device was used to measure theheat transfer performance of the aluminum alloy cylinder. A Road test was conducted toexamine the use of the all-aluminum engine assembled Al-Si-Mg alloy cylinder sleeve.
     Through material composition research, it is found that in the Al-xSi-yMg alloy,primary Si and Mg_2Si are formed on the condition of x≥12.8+0.49y, y≥5(15≤x≤30,y≤8); only primary Si particles are formed on the condition of x≥12.8+0.49y, y<5; onlyprimary Mg_2Si particles are formed on the condition of x<12.8+0.49y, y≥5; and noparticle is formed on the condition of x<12.8+0.49y, y<5. With the increase of Sicontent (constant Mg content), the ratio, k, describing the particle accumulation area interms of the whole cross section of the casting, increased gradually. With the increase ofMg content (constant Si content), a different variant rule of k occurred: as m(Si)≤20%, kdecreases first and then increases with the increase of Mg content; as m(Si)≥25%, k increases continuously with the increase of Mg content.
     Through the studies of forming process to the castings, it is found that the value ofk increased gradually to the peak of0.59with the ascendant pouring temperature andmold temperatures; the value of k gradually decreased from1.0to0.53with the increaseof centrifugal speed. With the changed processing parameters, the volume fraction andthe size of primary Si, Mg_2Si particles show different gradient distribution. Themorphologies of particles also produce bigger change, their roundness values, F,appearing a very low value of0.3~0.5.
     According to the different dimensions of cylinder liners, the air-cooled engine of149cc and109cc cylinder blank from Zongshen, and the water-cooled engine of600cccylinder blank from Jialing and1300cc cylinder blank from DFSK were fabricated bycentrifugal casting. It is found that the holes and cracks in castings can be eliminatedthrough reducing the pouring temperature. The slag inclusions and impurities can bereduced by using homemade argon "static blowing" device to purify the melt, and theslag can be collected by improving the centrifugal speed. Thus, the quality control ofcylinder blanks is realized through machining.
     A suitable mold size and casting size are necessary conditions to obtain cylinderliner products having ideal thickness of particle segregation layer. Taking the cylindersize of149cc engine from Zongshen as an example, set the wall thickness of a castingxmm, then, the original minimum thickness of segregation layer in the casting is0.45xmm, the machining dimension of the inner surface is b≥3.0mm, and the remainingthickness value of the segregation layer is d≥1.5mm. Set the inside diameter of the moldis ymm, and the rough machining size of inside diameter of the cylinder liner is knownof62mm. As a result, the inside diameter of the mold should be79.3mm, the wallthickness of the casting ranges from11.65mm to13.0mm, the thickness value of thesegregation layer is5.24≤f≤5.85mm, the cutting value of the inner surface is3.0≤b≤4.35mm, the remaining thickness of the segregation layer is1.5≤d≤2.24mm, and the theory turning value of the outer surface of the castingcasting is c=2.15mm.
     During the process of high pressure die casting, the larger thermal expansion ofaluminum alloy cylinder liner would cause the action of "running water" in the cylinderbody, therefore, the machining dimension of the cylinder bore needs a appropriatereduction. Generally speaking, a lower value in the processing scope is accepted.During the process of low pressure die casting, the cavity tends to be incomplete filled as a result of a low preheated temperature of the aluminum cylinder liner, therefore, theworking pressure of the die casting machine should be appropriate to increase.
     Through the theory calculation of heat transfer of aluminum alloy cylinder sleeve–aluminum block and the cast iron cylinder liner-aluminum cylinder block, it is foundthat the heat transfer ability of aluminum alloy cylinder sleeve is more than twice thanthat of cast iron cylinder liner. Through the “experiment of temperaturemeasurement-data of curve fitting” method, it is the first time to find that thetemperature of the inner surface of the aluminum block is231°C while it is242°C forthe iron cylinder liner-aluminum cylinder block, which proves that aluminum alloycylinder has a better heat transfer performance.
     The traditional honing processing was adopted to machine the inner surface ofaluminum alloy cylinder sleeve, and it is found that the formed cross reticulate is toorough, so that the phenomenon of piston scraping is easy to occur in the bench test.Through experimental exploration, the combination of honing process and a homemadeSiC-felt polishing device is proved to be feasible to produce appropriate reticulates inthe inner surface of aluminum alloy cylinder sleeve.
     Using10wt%NaOH solution to corrode the aluminum alloy cylinder liner used in109cc air-cooled engine from Zongshen at25°C, it is found that the measurement oftotal (HC+NOx) emissions rose by10%than that of cast iron cylinder liner during thebench test, which is not beneficial to exhaust emissions. After the corrosion treatmenton aluminum alloy cylinder liner used in600cc water-cooled engine from Jialing, themeasured maximum engine power and engine torque reach22.66kw and44.37N·m,respectively, in the bench test, which meets the original design demand. Also, thetemperature of the aluminum cylinder is significantly reduced during bench test.
     A road test was carried out on corroded aluminum alloy cylinder liner used in1300cc water-cooled engine from DFSK. The aluminum alloy cylinder liner assembledin an engine has now completed an initial test phase of30000km, and runs well atpresent, which is expected to be applied.
引文
[1] Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—areview [J]. Journal of Materials Science,1991,26(5):1137–1156.
    [2]张玉龙.先进复合材料制造技术手册[M].北京,机械工业出版社,2003.
    [3]王基才,尤显卿,郑玉春,程娟文.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金,2003,20(1):51–55.
    [4] Rohatgi PK, Asthana R, Das S. Solidification, structures, and properties of cast metal-ceramicparticle composites [J]. International Metals Reviews,1986,31:115–139.
    [5]张淑英,孟繁琴,陈玉勇,李庆春.颗粒增强金属基复合材料的研究进展[J].材料导报,1992,(2):66–71.
    [6]张元好,曾大新.颗粒增强金属基复合材料的制备及应用[J].湖北汽车工业学院学报,2002,16(4):24–28.
    [7]李明伟.颗粒增强铝基复合材料的研究与应用[J].热加工工艺,2009,38(8):69–72.
    [8]金鹏,刘越,李曙,肖伯律.颗粒增强铝基复合材料在航空航天领域的应用[J].材料导报,2009,23(6):24–39.
    [9] Koczak MJ, Premkumar MK. Emerging technologies for the in situ production of MMCs [J].Journal of the Minerals Metals&Materials Society,1993,1:44–48.
    [10] Aghajanian MK, Macmillan NH, Kennedy CR, Luszcz SJ, Roy R. Properties andmicrostructures of Lanxide Al2O3-Al ceramic composite materials [J]. Journal of MaterialsScience,1989,24(2):658–670.
    [11]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术,2001,(2):42–45.
    [12]陶杰,赵玉涛,潘蕾,骆心怡.金属基复合材料及其制备技术[M].北京:化学工业出版社,2007.
    [13]中国机械工程学会铸造分会.铸造手册[M].北京:机械工业出版社,2003.
    [14]新野正之,平井敏雄,渡边龙三.倾斜机能材料—宇宙机用超耐热材料应用[J].日本复合材料学会志,1987,13(6):257–264.
    [15]张幸红,韩杰才,董世运等.梯度功能材料制备技术及发展趋势[J].宇航材料工艺,1999,(2):1–4.
    [16] Fukui Y. Fundamental Investigation of Functionally Gradient Material Manufacturing SystemUsing Centrifugal Force [J]. JSME International Journal Series III-Vibration ControlEngineering Engineering for Industry,1991,34(1):144–148.
    [17]于思荣,任露泉,张新平,刘耀辉,何镇明. Al-10%Fe合金梯度材料的组织与性能[J].2000,7(6):5–10.
    [18] Rajan TPD, Pillai RM, Pai BC. Functionally graded Al–Al3Ni in situ intermetallic composites:Fabrication and microstructural characterization [J]. Journal of Alloys and Compounds,2008,453(1-2):L4–L7.
    [19]王渠东,金俊泽.离心铸造Al-Cr合金自生梯度复合材料[J].铸造,1996,4:8–12.
    [20] Watanabe Y, Eryu H, Matsuura K. Evaluation of three-dimensional orientation of Al3Tiplatelet in Al–based functionally graded materials fabricated by a centrifugal casting technique[J]. Acta Materialia,2001,49(5):775–783.
    [21] Watanabe Y, Oike S. Formation mechanism of graded composition in Al–Al2Cu functionallygraded materials fabricated by a centrifugal in situ method [J]. Acta Materialia,2005,53(6):1631–1641.
    [22] El-Hadad S, Sato H, Watanabe Y. Wear of Al/Al3Zr functionally graded materials fabricatedby centrifugal solid-particle method [J]. Journal of Materials Processing Technology,2010,210(15):2245–2251.
    [23] Watanabe Y, Nakamura T. Microstructures and wear resistances of hybrid Al–(Al3Ti+Al3Ni)FGMs fabricated by a centrifugal method [J]. Intermetallics,2001,9(1):33–43.
    [24] Watanabe Y, Kurahashi M, Kim IS, Miyazaki S, Kumai S, Sato A, Tanaka S. Fabrication offiber-reinforced functionally graded materials by a centrifugal in situ method from Al-Cu-Feternary alloy [J]. Composites Part A-Applied Science and Manufacturing,2006,37(12):2186–2193.
    [25] Melgarejo ZH, Suarez OM, Sridharan K. Microstructure and properties of functionally gradedAl–Mg–B composites fabricated by centrifugal casting [J]. Composites Part A-AppliedScience and Manufacturing,2008,39(7):1150–1158.
    [26]徐自立,魏伯康,林汉同.离心铸造Al-Fe-Si合金自生FGM的研究[J].特种铸造及有色合金,2001,(3):16–17.
    [27] Baker I, Sun Y, Kennedy FE, Munroe PR. Dry sliding wear of eutectic Al-Si [J]. Journal ofMaterials Science,2010,45(4):969–978.
    [28] Dwivedi DK. Adhesive wear behaviour of cast aluminium–silicon alloys: Overview [J].Materials and Design,2010,31:2517–2531.
    [29] Gupta M, Lavernia EJ. Effect of processing on the microstructural variation and heat-treatmentresponse of a hypercutectic Al-Si alloy [J]. Journal of Materials Processing Technology,1995,54(1-4):261–270.
    [30]李润霞,于洪江,袁晓光,李荣德.热处理对过共晶A1-Si合金组织与性能的影响[J].热加工工艺,2009,38(14):121–123.
    [31] Diana A Lados, Diran Apelian, Libo Wang. Solution treatment effects on microstructure andmechanical properties of Al-(1to13pct)Si-Mg cast alloys [J]. Metallurgical and MaterialsTransactions B,2011,42B:171–180.
    [32] Wu Yaping, Wang Shujun, Li Hui, Liu Xiangfa. A new technique to modify hypereutecticAl–24%Si alloys by a Si–P master alloy [J]. Journal of Alloys and Compounds,2009,477:139–144.
    [33] Zuo Min, Liu Xiangfa, Dai Hongshang, Liu Xiangjun. Al-Si-P master alloy and itsmodification and refinement performance on Al-Si alloys [J]. Rare Metals,2009,28(4):412–417.
    [34] Liao Hengcheng, Zhao Lei, Xi Xiao. Effect of phosphor addition on eutectic solidification andmicrostructure of an Al-13%Si alloy [J]. China Foundry,2011,8(4):418–423.
    [35] Witthaya Eidhed. Effects of solution treatment time and Sr-modification on microstructure andmechanical property of A1-Si piston alloy [J]. Journal of Materials Science and Technology.2008,24(1):29–32.
    [36] Liao Hengcheng; Bi Juanjuan; Zhang Min; Ding Ke, Jiang Yunfeng, Cai Mingdong. Effect ofstrontium and solidification rate on eutectic grain structure in an Al-13wt%Si alloy [J]. ChinaFoundry,2009,6(3):226–231.
    [37] Chen Zhongwei, Zhang Ruijie. Effect of strontium on primary dendrite and eutectictemperature of A357aluminum alloy [J]. China Foundry,2010,7(2):149–152.
    [38] Kores Stanislav, Voncina Maja, Kosec Borut. Effect of cerium additions on the A1Si17castingalloy [J]. Materiali in Tehnologije,2010,44(3):137–140.
    [39] Dong Xugang, Zhou Jie, Jia Yaojun. Influence of Sr on microstructure and mechanicalproperties of ZL114cast alloy [J]. China Foundry,2011,8(4):401–406.
    [40]陈继飞,杨军军.稀土La对Al-Si合金的变质作用机理研究[J].铸造技术,2008,29(5):658–661.
    [41] Xing Pengfei, Gao Bo, Zhuang Yanxin, Liu Kaihua, Tu Ganfeng. Effect of erbium onproperties and microstructure of Al-Si eutectic alloy [J]. Journal of Rare Earths,2010,28(6):927–930.
    [42] Xing PF, Gao B, Zhuang YX, Liu KH, Tu GF. On the modification of hypereutectic Al-Sialloys using rare earth Er [J]. Acta Metallurgica Sinica-English Letters,2010,23(5):327–333.
    [43]张坚,赵龙志,赵明娟,熊光耀.稀土Pr对Al-16%Si组织的影响[J].热加工工艺,2011,40(5):61–63.
    [44] Shi WX, Gao B, Tu GF, Li SW. Effect of Nd on microstructure and wear resistance ofhypereutectic Al–20%Si Alloy [J]. Journal of Alloys and Compounds,2010,508:480–485.
    [45]董光明,廖恒成,孙国雄,韩正铜. Sb变质后Al-Si合金共晶组织的不均匀性[J].特种铸造及有色合金,2011,31(5):418–420.
    [46]庞金辉,崔庆玲,王明星,刘志勇,刘忠侠,宋天福.硼对Al-20Si合金初晶硅的细化作用[J].特种铸造及有色合金,2010,30(1):85–87.
    [47] Dai Hongshang, Liu Xiangfa. Effects of individual and combined additions of phosphorus,boron and cerium on primary and eutectic silicon in an Al-30Si alloy [J]. Rare Metals,2009,28(6):651–655.
    [48] Campbell J, Tiryakioglu M. Review of effect of P and Sr on modification and porositydevelopment in Al-Si alloys [J]. Materials Science and Technology,2010,26(3):262–268.
    [49]赵品,逯允海. P+Sr+Ce复合变质对高硅耐热铝合金组织与性能的影响[J].中国稀土学报,2005,23(4):471–475.
    [50]孔凡校. P、Sr、RE变质对过共晶Al-Si合金组织形态的影响[J].有色金属,2011,(12):46–49.
    [51] Kasprzak W, Sokolowski JH, Yamagata H, Sahoo M, Kurita H. The effect of the melttemperature and the cooling rate on the microstructure of the Al-20Si alloy used for monolithicengine blocks [J]. International Journal of Metalcasting,2009,3(3):55–73.
    [52]郄喜望,李捷,马晓东,张忠涛,李廷举.超声场作用下Al-Si合金的除气效果及晶粒细化[J].金属学报.2008,44(4):414–418.
    [53]赵君文,吴树森,毛有武,安萍.超声振动对过共晶A1-Si合金半固态浆料凝固组织的影响[J].中国有色金属学报.2008,18(9):1628–1633.
    [54] Yu SR, Feng HK, Li YL, Gong LY. Study on the properties of Al–23%Si alloy treated byultrasonic wave [J]. Journal of Alloys and Compounds,2009,484:360–364.
    [55]程兆虎,程和法,黄笑梅,杨俊,于浩.高能超声波处理高硅铝硅合金的组织和力学性能[J].有色金属,2011,(7):35–38.
    [56] Ding Hongsheng, Zhang Yong, Jiang Sanyong, Chen Ruirun, Zhao Zhilong, Guo Jingjie, XuDaming, Fu Hengzhi. Influences of pulse electric current treatment on solidificationmicrostructures and mechanical properties of Al-Si piston alloys [J]. China Foundry,2009,6(1):24–31.
    [57] He Lijia, Wang Jianzhong, Qi Jingang, Du Huiling, Zhao Zuofu. Influences of electric pulseon solidification structure of LM-29Al-Si alloy [J]. China Foundry,2010,7(2):153–156.
    [58]于盛睿,曾义和,冯浩,曹利钢.交流电场作用下铝硅共晶合金凝固组织和力学性能的变化[J].热加工工艺,2010,39(9):47–50.
    [59]连峰,李廷举.强磁场对Al-Si合金中共晶硅生长的影响[J].轻合金加工技术,2009,37(10):17–20.
    [60]黄立国,付大军,高志玉.电磁场对A1-18%Si过共晶合金初晶Si相形貌的影响[J].材料工程,2010,(1):32–35,41.
    [61] Zhang Zhiqing, Li Qiulin, Chen Dandan, Liu Wei, Liu Qing. Investigation on primary siliconprecipitation mechanism in Al-Si eutectic alloy under electromagnetic field [J]. Rare MetalMaterials and Engineering,2011,40(z2):322–328.
    [62]曾斌,刘奇元,李玲芳.液淬和变质工艺对过共晶铝硅合金的影响[J].轻金属,2009,(10):44–47.
    [63]李军文,王雪.液面振荡条件下强冷对Al-Si合金凝固组织的影响及其模拟试验[J].金属材料与冶金工程,2009,37(2):18–22.
    [64]余建波,任忠鸣,任维丽,邓康,钟云波,王洪亮.强磁场下电磁振荡对Al-Si过共晶合金凝固中初生硅分布和形貌的影响[J].金属学报.2007,43(9):994–998.
    [65]黄立国,付大军,高志玉.电磁振荡对A1-Si过共晶合金凝固组织的影响[J].热加工工艺.2009,38(11):5–7.
    [66] Yu Jianbo; Ren Zhongming; Deng Kang. Refinement and migrating behaviors in Al-Sihypereutectic alloys solidified under electromagnetic vibration [J]. Acta MetallurgicaSinica-English Letters,2011,24(4):301–308.
    [67] Han Yecong, Li Qiulin, Liu Wei, He Yanjie. Effect of electromagnetic vibration on theagglomeration behavior of primary silicon in hypereutectic Al-Si alloy [J]. Metallurgical andMaterials Transactions A,2012,43A:1400–1404.
    [68]陈洪波.机械搅拌工艺对Al-25%Si合金半固态组织演变的影响[J].铸造技术,2011,32(5):646–649.
    [69]田琴,朱涛,雷源源,杨明,万明攀.搅拌时间对铝硅合金初生相形貌和尺寸的影响[J].有色金属,2011(9):52–55.
    [70] Robles Hernández FC, Sokolowski JH. Comparison among chemical and electromagneticstirring and vibration melt treatments for Al-Si hypereutectic alloys [J]. Journal of Alloys andCompounds,2006,426(1-2):205–212.
    [71] Lu DH, Jiang YH, Guan GS, Zhou RF, Li ZH, Zhou R. Refinement of primary Si inhypereutectic Al-Si alloy by electromagnetic stirring [J]. Journal of Materials ProcessingTechnology,2007,189(1-3):13–18.
    [72] Ordonez S, Bustos O, Colas R. Thermal and microstructure analysis of an A356aluminiumalloy solidified under the effect of magnetic stirring [J]. International Journal of Metalcasting,2009,3(3):37–41.
    [73] Kang CG, Lee SM. The effect of solid fraction and indirect forging pressure on mechanicalproperties of wrought aluminum alloy fabricated by electromagnetic stirring [J]. InternationalJournal of Advanced Manufacturing Technology,2009,42(1-2):73–82.
    [74] Du Yongsheng, Zhang Hongxia, Zhang Xuefeng, Liu Yongzhuang, Chen Shiming. Effect ofmagnetic suspension force in electromagnetic stirring on microstructure of Al-Si alloy [J].Rare Metal Materials and Engineering,2009,38(z3):88–90.
    [75] Jong-Kyu Baek, Hae-Wook Kwon. Effect of squeeze cast process parameters on fluidity ofhypereutectic Al-Si alloy [J]. Journal of Materials Science and Technology,2008,24(1):7–11.
    [76] Chiang Kota, Liu Nunming, Tsai Techang. Modeling and analysis of the effects of processingparameters on the performance characteristics in the high pressure die casting process of Al-Sialloys [J]. International Journal of Advanced Manufacturing Technology,2009,41(11-12):1076–1084.
    [77] Li Runxia, Yu Fuxiao, Zuo Liang. Effect of hot extrusion process on microstructure andmechanical properties of hypereutectic Al-Si alloys [J]. China Foundry,2011,8(1):145–149.
    [78] Dong Tianshun, Cui Chunxian, Liu Shuangjin, Yang Lijun, Sun Jibin. Influence of rapidsolidification of Cu-P intermediate alloy on wear resistance of Al-Si alloy [J]. Rare MetalMaterials and Engineering,2008,37(4):686–688.
    [79]王爱琴,谢敬佩,刘忠侠,李继文,王文焱.快速凝固A1-Si合金的组织形态及相结构[J].材料热处理学报,2008,29(2):99–102.
    [80] Zuo M, Liu XF, Sun QQ, Jiang K. Effect of rapid solidification on the microstructure andrefining performance of an Al–Si–P master alloy [J]. Journal of Materials ProcessingTechnology,2009,209:5504–5508.
    [81] Mahmoud TS, Shaban OM, Zakaria HM, Khalifa TA. On effect of FSP on microstructural andmechanical characteristics of A390hypereutectic Al-Si alloy [J]. Materials Science andTechnology,2010,26(9):1120–1124.
    [82] Srivastava VC, Mandal RK, Ojha SN. Evolution of microstructure in spray formed Al–18%Sialloy [J]. Materials Science and Engineering A,2004,383(1):14–20.
    [83] Min Ryou, Chul-Hyun Kim, Myung-Ho Kim. Microstructure and mechanical properties ofhyper-eutectic Al-Si alloys fabricated by spray casting [J]. Journal of Materials Science andTechnology,2008,24(1):48–50.
    [84] Chengsong Cui, Alwin Schulz, Ellen Matthaei-Schulz, Hans-Werner Zoch. Characterization ofsilicon phases in spray-formed and extruded hypereutectic Al–Si alloys by image analysis [J].Journal of Materials Science,2009,44:4814–4826.
    [85] Achelis L, Uhlenwinkel V, Ristau R, Krug P. Transient temperatures and microstructure ofspray formed aluminium alloy Al-Si sheets [J]. Materialwissenschaft und Werkstofftechnik,2010,41(7):498–503.
    [86] Raju K, Harsha AP, Ojha SN. Microstructural features, wear, and corrosion behaviour of spraycast Al-Si alloys [J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal ofEngineering Tribology,2011,225(J3):151–160.
    [87]张凤巍,李智,王建华,苏旭平.熔体混合对过共晶Al-Si合金细化的研究[J].热加工工艺,2009,38(19):49–55.
    [88] Barekar NS, Babu NH, Dhindaw BK, Fan Z. Effect of intensive shearing on morphology ofprimary silicon and properties of hypereutectic Al-Si alloy [J]. Materials Science andTechnology,2010,26(8):975–980.
    [89] Barekar NS, Dhindaw BK, Fan Z. Improvement in silicon morphology and mechanicalproperties of Al-17Si alloy by melt conditioning shear technology [J]. International Journal ofCast Metals Research,2010,23(4):225–230.
    [90]李润霞,于洪江,袁晓光,黄宏军,陈玉金. Cr和Mo对过共晶Al-Si合金组织与性能的影响[J].铸造,2009,58(8):839–842.
    [91]司乃潮,马得勇,吴勤方,孙少纯,刘光磊,华雄飞.合金元素对Al-Si合金力学性能及组织的影响[J].有色金属,2011,(9):47–51.
    [92] Taghiabadi R, Ghasemi HM. Dry sliding wear behaviour of hypoeutectic Al-Si alloyscontaining excess iron [J]. Materials Science and Technology,2009,25(8):1017–1022.
    [93] Zedan Y, Samuel FH, Samuel AM, Doty HW. Effects of Fe intermetallics on the machinabilityof heat-treated Al-(7-11)%Si alloys [J]. Journal of Materials Processing Technology,2010,210(2):245–257.
    [94] Zor Sibel, Zeren Muzaffer, Ozkazanc Hatice, Karakulak Erdem. Effect of Cu content on thecorrosion of Al-Si eutectic alloys in acidic solutions [J]. Anti-corrosion Methods and Materials,2010,57(4):185–191.
    [95] Wang Jiefang, Xie Jingpei, Yan Shuqing, Liu Zhongxia, Weng Yonggang, Wang Mingxing,Song Tianfu. Influence of titanium content on wear resistance of electrolytic low-titaniumeutectic Al-Si piston alloys [J]. China Foundry,2008,5(3):162–166.
    [96]王渠东,丁文江,金俊泽.离心铸造过共晶Al-Si合金自生表面复合材料[J].复合材料学报,1998,15(3):7–11.
    [97]徐自立.离心铸造过共品A1-Si合金自生梯度功能材料的研究[J].航空工程与维修,2001,(5):24–26.
    [98]谭银元.离心铸造Al-16wt%Si合金自生梯度复合材料[J].复合材料学报,2002,19(5):47–51.
    [99]于思荣,张新平,何镇明,刘耀辉.初始Si含量对离心法制备过共晶Al-Si合金FGM中初晶硅分布的影响[J].复合材料学报,2003,20(6):16–20.
    [100]臧树俊,周琦,马勤,安亮.金属间化合物Mg2Si研究进展[J].铸造技术,2006,27(8):866–867.
    [101]DORé X, COMBEAU H, RAPPAZ M. Modelling of microsegregation in ternary alloys:Application to the solidification of Al-Mg-Si [J]. Acta Materialia,2000,48:3951–3962.
    [102]Harald Feufel, Tilo G decke, Hans Leo Lukas, Ferdinand Sommer. Investigation of theAl-Mg-Si system by experiments and thermodynamic calculations [J]. Journal of Alloys andCompounds,1997,247:31–42.
    [103]Raghavan V. Al-Mg-Si (Aluminum-Magnesium-Silicon)[J]. Journal of Phase Equilibria andDiffusion,2007,28(2):189–191.
    [104]Zhang J, Fan Z, Wang YQ, Zhou BL. Equilibrium pseudobinary Al-Mg2Si phase diagram [J].Materials Science and Technology,2001,17:494–496.
    [105]Lin Xuedong, Liu Changming, Zhai Yanbo, Kai Wang. Influences of Si and Mg contents onmicrostructures of Al–xSi–yMg functionally gradient composites reinforced with in situprimary Si and Mg2Si particles by centrifugal casting [J]. Journal of Materials Science,2011,46:1058–1075.
    [106]刘政,谢敏,封志芳,肖明.熔体过热处理对过共晶Al-Si-Mg合金中Mg2Si相的影响[J].金属热处理,2010,35(10):63-66.
    [30]Zhang J, Fan Z, Wang YQ, Zhou BL. Effect of cooling rate on the microstructure ofhypereutectic Al-Mg2Si alloys [J]. Journal of Materials Science Letters,2000,19(20):18251828.
    [108]Cai M, Lorimer GW. Effect of equal channel angular extrusion on the microstructures andproperties of two extruded Al-Si-Mg alloys [J]. Journal of Science and Technology,2005,21(5):623–629.
    [109]贾树卓,郭学锋,徐春杰,张忠明,吕涛.往复挤压制备Mg2Si/Mg-Al复合材料组织及时效行为研究[J].兵器材料科学与工程,2007,30(5):44–47.
    [110]Bian Liping, Liang Wei, Xie Guoyin, Zhang Wenli, Xue Jinbo. Enhanced ductility in anAl–Mg2Si in situ composite processed by ECAP using a modified BC route [J]. MaterialsScience and Engineering A,2011,528:3463–3467.
    [111]Pedersen L, Arnberg L. The effect of solution heat treatment and quenching rates onmechanical properties and microstructures in AlSiMg foundry alloys [J]. Metallurgical andMaterials Transactions A,2001,32A:525–532.
    [112]贾树卓,徐春杰,郭学锋,郑水云,张忠明,吕涛.热处理对原位自生Mg2Si/Mg-Al基复合材料组织与性能的影响[J].材料热处理学报,2006,27(6):25–28.
    [113]Qin QD, Li WX, Zhao KW, Qiu SL, Zhao YG. Effect of modification and aging treatment onmechanical properties of Mg2Si/Al composite [J]. Materials Science and Engineering A,2010,527:2253–2257.
    [114]刘政,陈明,石凯.热处理对Mg2Si/Al-Si复合材料组织及性能的影响[J].铸造,2010,59(7):665–669.
    [115]林继兴,高光亮,牛丽媛,潘贻辉. Ca、Sc对原位Mg2Si/Mg-Al复合材料组织的影响[J].热加工工艺,2010,39(24):122-127.
    [116]Zhao YG, Qin QD, Zhou W, Liang YH. Microstructure of the Ce-modified in situMg2Si/Al-Si-Cu composite [J]. Journal of Alloys and Compounds,2005,389(1-2):L1L4.
    [117]Emamy M, Jafari Nodooshan HR, Malekan A. The microstructure, hardness and tensileproperties of Al–15%Mg2Si in situ composite with yttrium addition [J]. Materials and Design,2011,32:45594566.
    [118]刘晓清,李伯龙,李红梅,聂柞仁.稀土Er对Al-Mg-Si合金铸态微观组织的影响[J].热加工工艺,2008,37(7):13.
    [119]刘萍稀土Pr对过共晶Al-18%Si-Mg合金组织与性能影响的研究[J].铸造,2007,56(1):2630.
    [120]金祥龙,郑秀媛,姜锋,陈伟. Al-Sr中间合金变质对铝镁硅型材组织与性能的影响[J].热加工工艺,2011,40(21):4749.
    [121]Li C, Liu X, Wu YJ. Refinement and modification performance of Al-P master alloy onprimary Mg2Si in Al-Mg-Si alloys [J]. Journal of Alloys and Compounds,2008,465:145150.
    [122]Zhao YG, Qin QD, Zhao QY, Liang YH, Jiang QC. In situ Mg2Si/Al-Si composite modified byK2TiF6[J]. Materials Letter,2004,58:2192–2194.
    [123]Emamy M, Khorshidi R, Honarbakhsh Raouf A. The influence of pure Na on themicrostructure and tensile properties of Al-Mg2Si metal matrix composite [J]. MaterialsScience and Engineering A,2011,528:4337–4342.
    [124]Ren Bo, Liu Zhongxia, Zhao Ruifeng, Zhang Tianqing, Liu Zhiyong, Wang Mingxing, WengYonggang. Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Sicomposites [J]. Transactions of Nonferrous Metals Society of China,2010,20(8):1367–1373.
    [125]靖青秀,毛建辉.稀土锶盐混合变质及热处理对原位复合Al/Mg2Si/Si材料组织的影响[J].轻合金加工技术,2007,35(9):3941.
    [126]林继兴.复合变质对原位Mg2Si/Al-Si复合材料组织优化研究[J].轻合金加工技术,2008,36(11):1114,20.
    [127]Liu Zheng, Lin Jixing, Jing Qingxiu. Effect of mixed rare earth oxides and CaCO3modification on the microstructure of an in-situ Mg2Si/Al-Si composite [J]. Rare Metals,2009,28(2):169174.
    [128]靖青秀,黄晓东.不同Mg、Si含量的原位自生Mg2Si/Al基复合材料凝固组织的研究[J].轻合金加工技术,2007,35(10):4450.
    [129]林继兴,高光亮,牛丽媛,李勇,刘兰云.复合变质对不同镁量原位Mg2Si/Al复合材料组织的影响[J].热加工工艺,2008,37(3):3739,42.
    [130]胥锴,刘徽平,王甫,袁帮谊,张新建.原位自生Mg2Si/Al基复合材料的制备及其生长机制探讨[J].轻金属,2009,(3):5761.
    [131]金云学,付学慧,郭宇航,张艳. Mg含量对过共晶铝硅合金组织和性能的影响[J].江苏科技大学学报(自然科学版),2009,23(5):392398.
    [132]林继兴.复合变质与热处理对不同Mg量增强过共晶Al-Si合金自生复合材料耐磨性的影响[J].铸造技术,2009,30(3):374376.
    [133]Zhang J, Fan Z, Wang YQ, Zhou BL. Microstructural evolution of the in situ Al-15wt.%Mgcomposite with extra Si contents [J]. Scripta Materialia,2000,42:1101–1106.
    [134]Zhang J, Fan Z, Wang YQ, Zhou BL. Effect of cooling rate on the microstructure ofhypereutectic Al-Mg2Si alloys [J]. Journal of Materials Science Letters,2000,19:1825–1828.
    [135]Li Chong, Wu Yuying, Li Hui, Liu Xiangfa. Microstructural formation in hypereutecticAl–Mg2Si with extra Si [J]. Journal of Alloys and Compounds,2009,477:212–216.
    [136]Yavuz Sun, Hayrettin Ahlatci. Mechanical and wear behaviors of Al-12Si-xMg compositesreinforced with in situ Mg2Si particles [J]. Materials and Design,2011,32:2983–2987.
    [137]Nasiri N, Emamy M, Malekan A. Microstructural evolution and tensile properties of the in situAl–15%Mg2Si composite with extra Si contents [J]. Materials and Design,2012,37:215–222.
    [138]杨淼,曹志强,陈东风,张婷.电磁搅拌对半固态Al-20%Mg2Si合金组织的影响[J].铸造,2007,56(1):79–81.
    [139]金曼,孙保良,邵光杰.添加锆对Al-Mg-Si合金时效组织和性能的影响[J].机械工程材料,2006,30(4):60–63.
    [140]Hadian R, Emamy M, Varahram N, Nemati N. The effect of Li on the tensile properties of castAl–Mg2Si metal matrix composite [J]. Materials Science and Engineering A,2008,490:250–257.
    [141]杨银,沈健,闫晓东,许小静.合金元素对Al-Mg-Si铝合金铸态组织的影响[J].热加工工艺,2010,39(21):41–44.
    [142]Emamy M, Nemati N, Heidarzadeh A. The influence of Cu rich intermetallic phases on themicrostructure, hardness and tensile properties of Al-15%Mg2Si composite [J]. MaterialsScience and Engineering A,2010,527(12):2998–3004.
    [143]Mortaza Azarbarmas, Masoud Emamy, Mostafa karamouz, Mohammad Alipour, JafarRassizadehghani. The effects of boron additions on the microstructure, hardness and tensileproperties of in situ Al–15%Mg2Si composite [J]. Materials and Design,2011,32:5049–5054.
    [144]Mortaza Azarbarmas, Masoud Emamy, Jafar Rassizadehghani, Mohammad Alipour, Mostafakaramouz. The influence of beryllium addition on the microstructure and mechanicalproperties of Al–15%Mg2Si in-situ metal matrix composite [J]. Materials Science andEngineering A,2011,528:8205–8211.
    [145]Zhang Jian, Wang Yuqing, Zhou Benlian, Wu Xingqiang. Functionally graded Al-Mg2Si in-situcomposites, prepared by centrifugal casting [J]. Journal of Materials Science Letters,1998,17:1677–1679.
    [146]Zhang J, Wang YQ, Zhou BL. Microstructure and tensile properties of graded Al-Mg2Si in situcomposites fabricated by centrifugalcasting [J]. Materials Science and Technology,1999,15(11):1236–1240.
    [147]Zhang Jian, Fan Zhongyun, Wang Yuqing, Zhou Benlian. Hypereutectic aluminium alloy tubeswith graded distribution of Mg2Si particles prepared by centrifugal casting [J]. Materials&Design,2000,21(3):149–153.
    [148]刘雁.离心铸造法制备Mg2Si(Si)/Al梯度复合材料及其耐磨性的研究[D].长春:吉林大学,2009.
    [149]Zhai Y B, Liu CM, Wang K, Zou MH, Xie Y. Characteristics of two Al based functionallygradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles incentrifugal casting [J]. Transactions of Nonferrous Metals Society of China,2010,20(3):361–70.
    [150]HAO Xuhong, LIU Changming, PAN Dengliang. Microstructure and mechanical behavior ofin situ primary Si/Mg2Si locally reinforced aluminum matrix composites Piston by centrifugalcasting [J]. Chinese Journal of Mechanical Engineering,2011,22(5):1–5.
    [151]张宝生,程荆卫,朱景川,阚志良,吴培莲,尹钟大.离心铸造内生强化Al3Ni/Al功能梯度材料[J].哈尔滨工业大学学报,1998,30(2):99–103.
    [152]《轻金属材料加工手册》编写组.轻金属材料加工手册[M].北京:北京出版社,1979.
    [153]Yoshimi Watanabe, Ryuho Sato, Koichi Matsuda, Yasuyoshi Fukui. Evaluation of particle sizeand particle shape distributions in Al-Al3Ni FGMs fabricated by a centrifugal in-situ method[J].2004,11(2-3):185–199.
    [154]Rajan TPD, Pai BC. Formation of solidification microstructures in centrifugal cast functionallygraded aluminium composites [J]. Transactions of The Indian Institute of Metals,2009,62(4-5):383–388.
    [155]Rajan TPD, Pillai RM, Pai BC. Functionally graded Al–Al3Ni in situ intermetallic composites:Fabrication and microstructural characterization [J]. Journal of Alloys and Compounds,2008,453:L4–L7.
    [156]Fuhui Y, Yamanaka N, Enokida Y. Bending strength of an Al-Al3Ni functionally gradedmaterial [J]. Composites Part B,1997,28:37–43.
    [157]Song CJ, Xu ZM, Li JG. In-situ Al/Al3Ni functionally graded materials by electromagneticseparation method [J]. Materials Science and Engineering A,2007,445–446:148–154.
    [158]丁宇涛,龙思远,蒋德平,朱志兵.凝固速率对Al-Ni合金组织特征的影响[J].材料导报,2006,20:458–459.
    [159]李喜,任忠鸣,王晖,邓康,徐匡迪.强磁场下Al-Ni合金凝固初生相Al3Ni的取向行为[J].中国有色金属学报,2006,16(3):476–481.
    [160]Li Xi, Fautrelle Yves, RenZhongming. Effect of a high magnetic field on the microstructure indirectionally solidified Al–12wt%Ni alloy [J]. Journal of Crystal Growth,2007,306:187–194.
    [161]García-Hinojosa JA, González CR, González GM, Houbaert Y. Structure and properties ofAl–7Si–Ni and Al–7Si–Cu cast alloys nonmodified and modified with Sr [J]. Journal ofMaterials Processing Technology,2003,143–144:306–310.
    [162]Rohatgi PK, Sharma RC, Prabhakar KV. Microstructure and Mechanical Properties ofUnidirectionally Solidified AI-Si-Ni Ternary Eutectic [J]. Metallurgical Transactions A,1975,6A:569–575.
    [163]Ohmi T, Ueda M, Itoh Y, Matsuura K, Kudoh M. Solidification structure of functionally gradedhypereutectic Al-Ni alloys produced by centrifugal duplex casting [J]. Journal of the JapanInstitute of Metals,2000,64(7):483–489.
    [164]吕循佳,刘昌明,林雪冬.离心铸造原位初生Si/Al3Ni颗粒增强铝基复合材料[J].特种铸造及有色合金,2012,32(4):373–377.
    [165]赵玉厚,严文,苗瑞霞,李建平,董晟全.原位增强体Al3Ti形成热力学及合金元素对其形貌影响[J].铸造技术,2005,26,(6):481–485.
    [166]Yu Huashun, Chen Hongmei, Sun Liming, Min Guanghui. Preparation of Al-Al3Ti in situcomposites by direct reaction method [J]. Rare Metals,2006,25(1):32–36.
    [167]霍小卫,王树奇,陈康敏.熔体内原位制备Al3Ti增强铝基复合材料的研究[J].特种铸造及有色合金,2007,27(7):547–550.
    [168]Watanabe Y, Yamanaka N, Fukui Y. Wear behavior of Al-Al3Ti composite manufactured by acentrifugal method [J]. Metallurgical and Materials Transactions A,1999,30A(12):3253–3261.
    [169]Yoshimi Watanabe, Hiroyuki Eryu, Kiyotaka Matsuura. Evaluation of three-dimensionalorientation of Al3Ti platelet in Al-based functionally graded materials fabricated by acentrifugal casting technique [J]. Acta Materialia,2001,49(5):775–783.
    [170]李健,陈体军,郝远,袁承人.离心铸造法制备Al3Ti/Al原位自生功能梯度复合材料[J].热加工工艺,2007,36(5):31–34.
    [171]徐萌,陈刚,赵玉涛,王军,周丹,轩动华.稀土对Al-Ti-B合金中Al3Ti颗粒形貌的影响[J].材料导报,2009,23(z2):39–44.
    [172]陈登斌,赵玉涛,祝海燕,郑梦,陈刚,张钊.稀土钇及复合稀土对Al3Ti/7055复合材料微观组织的影响[J].江苏大学学报(自然科学版),2011,32(4):456–459.
    [173]刘文才,翁永刚,杜晓晗,刘志勇,王明星,刘忠侠,宋天福,左秀荣,杨昇.电解加钛改进活塞合金ZL108的疲劳裂纹扩展性能[J].轻金属,2006(6):45–49.
    [174]谢敬佩,郭国庆,王杰芳,王文焱,李洛利. Ti含量对电解低钛ZL108合金耐磨性的影响[J].特种铸造及有色合金,2005,25(7):403–405.
    [175]Chen XG, Fortier M. Formation of primary TiAlSi intermetallic compounds in Al-Si foundryalloys [J]. Materials Forum,2004,28:659–665.
    [176]Daud AR, Saheb. Characterisation of phases and lattice parameter measurement in the Al-richcorner of the Al-Si-Ti system [J]. Japanese Journal of Applied Physics Part2-Letters,2002,41(4A): L405-L407.
    [177]Raghavan V. Al-Si-Ti (Aluminum-Silicon-Titanium)[J]. Journal of Phase Equilibria andDiffusion,2005,26(6):624–628.
    [178]Chul-Jin Choi, Joong Keun Park. Effect of Si addition on mechanical alloying behavior andcreep properties of Al-10Ti-xSi Alloys [J]. Metals and Materials,1999,5:179–184.
    [179]Daud AR, Saheb. Characterisation of phases and lattice parameter measurement in the Al-richcorner of the Al-Si-Ti system [J]. Japanese Journal of Applied Physics Part2-Letters,2002,41(4A):L405–L407.
    [180]Muzaffer Zeren, Erdem Karakulak. Influence of Ti addition on the microstructure and hardnessproperties of near-eutectic Al–Si alloys [J]. Journal of Alloys and Compounds,2008,450:255–259.
    [181]Gao Tong, Li Pengting, Li Yunguo, Liu Xiangfa. Influence of Si and Ti contents on themicrostructure, microhardness and performance of TiAlSi intermetallics in Al–Si–Ti alloys [J].Journal of Alloys and Compounds,2011,509:8013–8017.
    [182]张云电.薄壁缸套生产技术[M].北京:国防工业出版社,2000.
    [183]汪立亮,徐淼.内燃机气缸套新材料的开发[J].小型内燃机,2000,29(4):41–44.
    [184]陈刚,贺跃辉,沈培智.发动机活塞和缸套材料及其加工工艺研究现状[J].粉末冶金材料科学与工程,2009,14(4):205–212.
    [185]河南省中原内配股份有限公司.多元合金化铸态贝氏体灰铸铁气缸套[P].中国,200710055115.2008-02-06.
    [186]河南省中原内配股份有限公司.准铸态贝氏体灰铸铁气缸套及制造方法[P].中国,200710189606.2008-02-13.
    [187]张世荣.表面加工工艺对气缸套使用寿命的影响[J].天津工业大学学报,2002,21(4):78–80
    [188]李梅广,孙宏飞,赵剑波,孔红杰.表面技术在内燃机气缸套中的新进展[J].农业装备与车辆工程,2005,(3):41–44
    [189]薛茂权.汽缸套的研究与应用进展[J].铸造工艺,2008,(1):20–22
    [190]白木,周洁.铝材在汽车制造技术中的应用[J].有色设备,2002,(2):17–20
    [191]马鸣图,柏建仁.汽车轻量化材料及相关技术的研究进展新材料产业[J].2006,(6):37–42.
    [192]路炜.提高发动机铝合金件耐磨性的表面处理工艺[J].电镀与精饰,2007,174(3):25–27.
    [193]马鸣图,石力开,熊柏青,张永安,唐新民.喷射沉积成型铝合金在汽车发动机缸套上的应用[J].汽车工艺与材料,2001,(2):16–19.
    [194]赵玉谦,方世杰.粉末冶金高强铝合金在汽车工业中的应用[J].汽车工艺与材料,2004,(9):1–5.
    [195]Azetsu K, Hayashi T. Development of aluminium PM composites for cylinder liners [J].Powder Metallurgy,2001,48(5):426-431.
    [196]张大童,李元元,周照耀,张文.快速凝固/粉末冶金(RS/PM)高硅铝合金材料的研究[J].材料科学与工艺,1999,(z7):41-44.
    [197]喷射成形技术的应用及产业化发展趋势[J].兵器材料科学与工程200225367-69
    [198]Leatham AG, Lawley A. The Osprey process: principles and application, Intentional Journal ofPowder Metallurgy,1993,29(4):323
    [199]弗兰兹吕克特,彼得·斯托克,罗兰德·比德曼.超共晶硅铝合金汽缸衬筒及其制造方法[P].中国,CN1129743A.
    [200]秦丽柏,孙廷富,张树勇,任政,胡莲卡,黄文淑,李岩,张华,刘环恩.高硅铝合金缸套材料摩擦学性能研究[J].兵器材料科学与工程,2010,33(6):
    [201]孙廷富,郭珉,郭安振,米文宇,陈大辉,乔立,李岩,吕绯,彭建中,李进军.高硅铝合金缸套研制[J].兵器材料科学与工程,2010,33(1):60-62.
    [202]孙廷富,郭珉,辛海鹰.高硅铝合金缸套材料及其制备方法[P].中国, CN101457318A.
    [203]党兴.等离子喷涂Al2O3与ZrO2及其复合涂层的耐磨性能研究[D].山东大学,2008.
    [204]Kima WJ, Ahna SH, Kima HG, Kima JG, Ozdemir Ismail, Tsunekawa Y. Corrosionperformance of plasma-sprayed cast iron coatings on aluminum alloy for automotivecomponents [J]. Surface&Coatings Technology,2005,200:1162–1167.
    [205]Daimler Chrysler AG. Coating of cylinder walls of internal-combustion engine withaluminum-silicon alloys or aluminum/silicon composites [P]. US Pat,US6080360.2000-06-27.
    [206]Gérard Barbezat. Advanced thermal spray technology and coating for lightweight engineblocks for the automotive industry [J]. Surface&Coatings Technology,2005,200:1990–1993.
    [207]Uozato Susumu, Nakata Kazuhiro, Ushio Masao. Corrosion and wear behaviors of ferrouspowder thermal spray coatings on aluminum alloy. Surface&Coatings Technology,2003;169-170:691–694.
    [208]Uozato Susumu, Nakata Kazuhiro, Ushio Masao. Evaluation of ferrous powder thermal spraycoatings on diesel engine cylinder bores [J]. Surface&Coatings Technology,2005,200:2580–2586.
    [209]董晓强,张阳.等离子弧内孔喷涂在发动机气缸强化中的应用[J].焊接技术,2010,39(10):1–4.
    [210]中国科学院力学研究所.铝合金缸体内壁陶瓷涂层的等离子体电解沉积方法及装置[P].中国, CN02160209.3.2002-12-31.
    [211]Sankyo Tokin Kogyo YK. Bottomed aluminum (alloy) cylinder having metal electroplating oninner wall surface [P]. JP, JP09324299.1996-06-03.
    [212]上海康适达轮圈有限公司.铝合金发动机汽缸内壁镍陶(Ni-SiC)复合电镀工艺[P].中国,CN99113478.8.1999-02-12.
    [213]三阳工业股份有限公司.全铝复合电镀汽缸的制造方法[P].中国, CN01130934.2.2001-08-27.
    [214]重庆阿波罗机电技术开发公司.一种发动机全铝合金缸体[P].中国, CN2581703Y.2002-11-15.
    [215]蒋百灵,朱静,白力静.铝合金微弧氧化陶瓷层在润滑条件下的抗磨性能研究[J].摩擦学学报,2004,24(3):220–224.
    [216]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29(1):23–29.
    [217]Watanabe Y, Yamanaka N, Fukui Y. Control of composition gradient in a metal-ceramicfunctionally graded material manufactured by the centrifugal method [J]. Composites Part A:Applied Science and Manufacturing,1998,29(5–6):595–601.
    [218]Nowtny H, Huschka H. Studies of the Partial Systems Al-TiSi2, Al-ZrSi2, Al-WSi2[J].Monatsh Chem,1957,88:494–501.
    [219]Schob O, Nowtny H, Benesovsky F. DieDreistoffe (Titan, Zirkonium,Hafnium)–Aluminium–Siliziu [J]. Planseeber Pulvermet,1962,10:65–71.
    [220]胡德林,张帆.三元合金相图[M].西安:西北工业大学出版社,1995.
    [221]Li Shunpu, Zhao Shengxu, Pan Mingxiang, Zhao Deqian, Chen Xichen, Barabash OM,Barabash RI. Solidification and Structural Characteristics of α(Al)-Mg2Si Eutectic [J].Materials Transactions, JIM,1997,38(6):553–559.
    [222]翟彦博.离心铸造自生颗粒增强铝基骤变梯度功能复合材料气缸套的制备技术研究[D].重庆大学,2009.
    [223]罗启全.铝合金熔炼与铸造[M].广州:广东科技出版社,2002.
    [224]刘政,刘小梅,陈明,谢敏. Mg2Si含量对过共晶Al-Si复合材料组织及性能的影响[J].特种铸造及有色合金,2011,31(10):899–903.
    [225]Li C, Wu YY, Li H, Liu XF. Morphological evolution and growth mechanism of primaryMg2Si phase in Al–Mg2Si alloys [J]. Acta Materialia,2011,59:1058–1067.
    [226]Du SC, Bygden J, Seetharaman S. A Model for Estimation of Viscosities of Complex Metallicand Ionic Melts [J]. Metallurgical and Materials Transactions B-Process Metallurgy andMaterials Processing Science,1994,25(4):519–525.
    [227]杨世铭.传热学[M].北京:高等教育出版社,2005.
    [228]范育辉.柴油发动机缸盖、缸套温度场测试系统研究[D].中北大学,2009.
    [229]徐亚飞,毕玉华,申立中,雷基林,刘学渊,王启峰,胡江,刘立东,张维.4100QBZL柴油机湿式气缸套温度场试验研究[J].拖拉机与农用运输车,2007,34(1):57–59,69.
    [230]弗兰兹·吕克特,彼得·斯托克,罗兰德·比德曼.超共晶硅铝合金汽缸衬筒及其制造方法[P].中国,CN1129743A.1996-08-28.
    [231]Bin F,沈永生.铝机体缸孔保护材料的抗拉缸性[J].国外内燃机,1994,(3):47-53,62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700