用户名: 密码: 验证码:
钠盐梯度下苄嘧磺隆的湿地微界面生物地球化学过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业非点源污染与湿地缺水退化是生态环境面临的两大难题,湿地对农田退水的水资源利用和水质净化是解决该问题的有效途径。研究农田退水中的除草剂残留对湿地系统的影响和污染消减机理,搞清除草剂与湿地各组分的相互关系,解决湿地保护、恢复与净化功能利用中的一些根本性的科学问题及关键技术问题,将为缺水退化的芦苇湿地利用农田退水、湿地生态工程控制农业非点源污染的实用技术提供科学依据。
     论文在评述土壤-植物系统中的关键微界面过程、阐述磺酰脲类除草剂的环境行为和钠盐的生态效应的基础上,以芦苇湿地为研究对象,围绕盐碱地区的钠盐胁迫下芦苇湿地系统对BSM的耐性和净化效能、BSM在湿地生态系统微界面的消减过程、以及根表铁膜和根分泌物对其的影响等内容,开展了钠盐梯度下BSM在芦苇湿地中的生物地球化学过程的控制模拟研究。主要得到以下成果:
     实地调查和采样分析结果证明盐碱地灌区水稻田磺酰脲类除草剂的施用会引起农田排水中除草剂的残留,吉林省月亮泡灌区水稻田农田退水中的BSM残留量达到1.68~3.77μg/L。原位控制试验揭示盐碱(Na~+25mmol/l)芦苇湿地90天对土壤BSM(0.05mg/kg~0.50mg/kg)去除率能达到65%以上,低浓度的BSM去除率更高,净化功能明显。
     从揭示芦苇湿地对农田退水除草剂的耐性出发,深入探讨了钠盐胁迫下湿地芦苇两种繁殖方式对BSM的响应,开展了BSM对盐碱芦苇湿地土壤生化环境的影响研究。发现芦苇种子的响应与受胁迫时种子膜透性的改变关系较大,种子萌发率、发芽整齐度、发芽速率、活力均受到钠盐(Na~+50mmol/l)的抑制,BSM(0.05mg/l~0.50mg/l)能够缓解芦苇种子受钠盐的抑制,但缓解作用随着BSM浓度的增加逐渐减弱;芦苇种子幼芽生长受影响较小,低浓度BSM也能缓解钠盐对芦苇的株高、生物量的抑制。同时发现盐碱芦苇湿地土壤微生物量碳、氮均受到BSM的抑制,抑制率在20%以上,BSM能够提高盐碱湿地土壤蔗糖酶活性能力但未达到差异显著水平。整个芦苇湿地生态系统表现出一定耐受性。
     以芦苇湿地土壤、不同土壤胶体为材料,通过批量平衡试验研究了湿地土壤对BSM的吸附、解吸过程,探讨了湿地土壤对BSM的不可逆吸附能力。发现芦苇沼泽湿地土壤对BSM(0.10~20.0mg/l)吸附率在70%以上,单次解吸后残留率仍能维持在60%以上,残存率随BSM浓度增加而减小并趋于稳定是由吸附率降低和解吸率增加共同作用的结果。DMM模型能够很好的拟合BSM在芦苇湿地土壤上的吸附、解吸过程的热力学等温线,在BSM>1.0mg/l表现出较好的线性,而在低浓度(≤1.0mg/l)下非线性特征较强;动力学过程上,湿地土壤上对BSM的吸附量、解吸量在短时间内增长剧烈,但120min都能基本平衡。湿地土壤中有机质含量高则吸附量大且不易解吸,提取的土壤胶体比原土壤吸持BSM的能力提高25%以上,是土壤吸附的主要因素,不同土壤胶体类型和表面电荷性状对胶体吸持能力影响较大,吸附量腐植酸、蒙脱石-ca2+胶体>针铁矿+腐植酸复合胶体>针铁矿胶体>蒙脱石-K+>高岭石胶体,而解吸量相反。同时发现钠盐胁迫抑制湿地土壤对BSM的吸附而促进解吸,在湿地土壤及组分、土壤胶体对BSM的吸附、解吸过程中都有明显体现,且蒙脱石-ca2+胶体受钠盐影响最大。迟滞系数较好的反映了湿地土壤对BSM吸附的不可逆部分,也受钠盐抑制,同时迟滞系数随平衡浓度的增大而减小,是与平衡浓度相关的参数。
     采用多隔层毫米级根箱法模拟芦苇根际环境,研究了BSM消减行为在芦苇毫米级根际土壤中伴随根系分泌物梯度递减效应的微域响应规律。发现BSM的根际消减存在距离根系不同远近的差异,消减效率总的有近根际>根室>远根际的趋势,在近根际BSM的最佳消减发生在距根室2mm左右,并非根系密集、分泌物较多的根室,近根际微域中适宜的根系分泌物水平能最大诱导和激发加速BSM消减的相关微生物和酶活性;钠盐、BSM双因素下土壤可识别的碳链长度在C12到C20的PLFAs有52种,指示了BSM对微生物群落结构的显著影响,揭示了BSM0.130mg/l、钠盐50mmol/l高复合污染下特有的微生物标记物ISO17:1G、19:0cyclo c11-12、18:2w6c、20:4w6c、18:1w9t Alcohol、16:1w7c、ANTEISO17:1AT9、19:1(w8?) Alcohol等。
     通过水培模拟,围绕根系分泌物的响应机制,探讨了湿地芦苇对钠盐、BSM诱导下根系低分子分泌物的特异性。发现BSM(2.5mg/l、5.0mg/l、10.0mg/l、50mmol/l)、钠盐胁迫诱导的分泌物未引起环境pH的显著变化,诱导根系增强含碳有机物、总糖、氨基酸等低分子有机物的分泌,且诱导作用随BSM浓度增大而增强。同时钠盐与BSM对湿地芦苇根系分泌总糖和氨基酸存在一定的负交互作用,特别是在诱导根系分泌总糖时这种拮抗作用达到差异显著水平。
     模拟生成湿生植物特有的根表铁膜,探讨了钠盐对根表铁膜形成的影响以及根表铁膜的存在对芦苇BSM污染响应的可能影响。发现低浓度Fe~(2+)(0~20mg/l)促进芦苇生长,在Fe~(2+)20mg/l以上会对芦苇生长有抑制作用,同钠盐胁迫对芦苇地下部生长的抑制在Fe~(2+)高浓度时还会有协同的显著交互作用。芦苇根表铁膜量主要受环境中Fe~(2+)浓度影响,Fe~(2+)增加显著增加根表铁膜量,与生物量关系较小,钠盐胁迫诱导的芦苇根系分泌物有促进根表铁膜的形成的可能。根表对BSM的吸附量受根表铁膜量的影响很大,根表铁膜量与BSM的吸附量呈极显著的线性正相关,钠盐胁迫对芦苇根表铁膜吸附BSM的影响主要是通过抑制生物量显示,提高了单位根系干物质的吸附量。
Agricultural non-point pollution and wetlands degradation for lack of water are twodifficult problems in ecological environment. An effective way to solve these problems is torestore wetlands with the water resources of farmland drainage and to purify drainage byengineering wetland. However, the effect of herbicide residues from drainage on wetlandsystem and its dissipation process are still not clear. Understanding the behavior of herbicideand its environment risk, which is important to the ecological conservation, restoration andutilization of wetland, requires an assessment of the processes influencing its fate, transport,bioactivity and persistence in wetland. Investigation of the ecological impact andenvironment behavior of herbicide in wetland and the controlling key factors involved arethus necessary and effective.
     This dissertation is aimed to revealthe ecological impacts of bensulfuron methyl (BSM), inreed wetland under salt stress, understand the interface behavior of BSM in the soil-watersystem, determining the possibility to supply the dry wetlands by farmland drainage withBSM residues, identifying the potential contributions of soil componts and its colloids toBSM retention, evaluating the dissipation of BSM in the rhizosphere and the correspondingmicrobiological and biochemical resopnses, and analysing the influence of iron plaque androot exudates, to develop strengthening wetland treatment techniques to decrease BSMcontamination. The information derived from this work will contribute to a betterunderstanding the interactions and their impacts on the environmental behavior of organicand inorganic combined contaminants in the flooded soil-plant system. The main experimentand conclusions are as follows:
     It was proved by field survey and sampling investigation that, the application ofsulfonylurea herbicides in saline and alkali paddy field can cause the problem of herbicidesresidues in gricultural drainage, and the BSM in gricultural drainage was up to1.68~3.77μg/L in Yueliangpao irrigation district of Jilin Province. The in-situ test revealed that thepurification function of saline reed wetland to BSM was obvious, and the removal rate of BSM (0.05mg/kg~0.50mg/kg) by saline reed wetland (Na+25mmol/l) after90days canachieve﹥65%and can be more efficient when the concentration of BSM was lower.
     Information of the resistance of reed wetland to BSM from drainage under salt stress wasgained by in-situ and laboratory simulated experiments with sexual and asexual reproductionof reeds. The results indicated that the response of reed seeds were closely related to themembrane permeability of seed under stress, the seed germination rate, germination vigor,germination index and vigor index all were inhibited by salt stress (Na+50mmol/l),meanwhile the BSM (0.05mg/l~0.50mg/l) can alleviate this inhibition, but the inhibitionfunction weakened gradually along with the increasing BSM concentration; the influence onreed plumule was little, and BSM at low concentration can also alleviate the inhibition reedheight and biomass under salt stress. At the same time, it was discovered that the soilmicrobial biomass carbon and nitrogen were inhibited by BSM, and the inhibition rate wasabove20%, but BSM can improve the invertase activity though it was not significant at0.05level. In general, the entire reed wetland ecosystem showed tolerance to BSM under saltstress, to some extent.
     The adsorption and desorption of BSM on reed wetland soil and different colloids of puresoil minerals and humic acids were measured to obtained the potential contributions of thesematters to BSM retention in wetland under salt stress.Above70%BSM(0.10~20.0mg/l)canbe adsorbed by reed wetland soil, the residual rate still could maintain﹥60%after singledesorption, and the residual rate increased along with the BSM concentration and tended tobe stable, which was the combined result of the increasing adsorption rate and decreasingdesorption rate. The adsorption and desorption isotherms of BSM by reed wetland soil,predicted accurately by the dual-mode model (DMM), showed good linearity at BSM>1.0mg/l, but the misalignment characteristic was more obvious at the low concentration(BSM≤1.0mg/l). In dynamics process, the adsorption and desorption quantity of BSM allincreased sharply in a short time, but both process can be basically balanced after120min. Byremoving organic carbon from the wetland soils with H_2O_2, the adsorption decreased anddesorption increased. The colloid improved adsorption rate by>25%, which extracted fromthe original soil, played an important role in the process of BSM adsorption. The adsorptionaffinity for BSM by different colloids was in the order: humic acid colloid,montmorillonite-ca~(2+)colloid>goethite+humic acid compound colloid> goethite colloid>montmorillonite-K+colloid> kaolinite colloid, but the desorption affinity was completelyopposite. It was also discovered that the salt stress inhibited adsorption and promoted desorption of BSM on all soil components and all kinds of soil colloids, especially themontmorillonite-ca~(2+)colloid. The irreversible process of adsorption-desorption of BSM inreed wetland soil was strongly indicated by hysteresis index (HI), which also inhibited by saltstress, and hysteresis index decreased with the increasing balanced concentration.
     The rhizophere effects on the dissipation of BSM was investigated with a speciallydesigned rhizobox where reeds were planted for90days in the soil with BSM at differentconcentration, the soil in the box was divided into six separate compartments at variousdistances from the root surface. Obtained results indicated that the dissipation of BSM wasvaried along with the distance from the reed root, the dissipation gradient of BSM followedthe order: near-rhizosphere> root compartment> far-rhizosphere soil zones, and the largestand most rapid loss of BSM in soil was observed at about2mm from the root zone other thanat the root zone. The increase in soil microbial biomass and the activity of soil invertase wererelated to the enhanced dissipation of BSM. Further investigation was conduced usingphospholipid fatty acids (PLFAs) profiles to follow the millimeter spatial response of the soilmicrobial community, the results showed52PLFAs with carbon chain length from C12toC20were identified under the combined exposure of salt and BSM, the microbial communitywas affected by BSM significantly, and some unique microbial markers were induced by thecombined exposure of salt (0.130mg/l) and BSM (50mmol/l), such as ISO17:1G,19:0cycloc11-12,18:2w6c,20:4w6c,18:1w9t Alcohol,16:1w7c, ANTEISO17:1AT9,19:1(w8?)Alcohol and so on.
     The results drawn from a hydroponics experiment to investigate the response of rootexudates of reed to BSM under salt stress showed that, the pH in environment was notaffected significantly by the root exudates with the induction by BSM (2.5mg/l,5.0mg/l,10.0mg/l,50mmol/l) under salt stress (50mmol/l), but the induction strengthened thesecretion of total organic carbon (TOC), total sugar and the amino acid from reed root, andthe induction function enhanced gradually along with the increasing BSM concentration.Simultaneously, the induction of BSM and salt were antagonistic in the total sugar and aminoacid of root exudates, especially in total sugar significantly.
     A special hydroponics experiment was conducted to elucidate the effects of iron plaquefrom root surface on the response of reed to BSM under salt stress. The Fe~(2+)at lowerconcentration (0-20mg/l) can promote the growth of reed, however Fe~(2+)at higherconcentration (>20mg/l) inhibited the growth, and the inhibition of BSM and salt to the rootgrowth of reed presented synergistic effects significantly. The mass of iron plaque on reedroot surface was greatly affected by the Fe~(2+)concentration in environment, and the iron plaque mass increased significantly with Fe~(2+)concentration increasing rather than the reedbiomass. The root exudates of reed induced by salt stress might stimulate the formation ofiron plaque on root surface. The iron plaque mass substantially influenced the adsorption ofBSM on root surface, and both presented a significantly positive correlation. The effect ofsalt stress on the adsorption of BSM by iron plaque on root surface was reflected in theimprovement of adsorption efficiency, because of the inhibition of root biomass.
引文
①吉林省发展改革委员会,《吉林省增产百亿斤商品粮能力建设总体规划》,2008
    ②黑龙江省发展改革委员会,《黑龙江省千亿斤粮食生产能力战略工程规划》,2008
    A, A.-S.S., R, C.S.M., N, S.A.M., A, A.H., M, A.,2006. TOXICITY OF TWO HERBICIDES2,4-D DIMETHYLAMINE AND BENSULFURON METHYL TO RICE FIELDCHIRONOMUS KIIENSIS (TOKUNAGA)(DIPTERA:CHIRONOMIDAE).湿地科学,241-246.
    Abusharar, T.M., Bingham, F.T., Rhoades, J.D.,1987a. Reduction in Hydraulic Conductivityin Relation to Clay Dispersion and Disaggregation. Soil Science Society of AmericaJournal51,342-346.
    Abusharar, T.M., Bingham, F.T., Rhoades, J.D.,1987b. STABILITY OF SOILAGGREGATES AS AFFECTED BY ELECTROLYTE CONCENTRATION ANDCOMPOSITION. Soil Science Society ofAmerica Journal51,309-314.
    Ai, H.X., Zhou, J.T., Lu, H., Guo, J.B.,2009. Responses of a novel salt-tolerant Streptomycesalbidoflavus DUT_AHX capable of degrading nitrobenzene to salinity stress.Biodegradation20,67-77.
    Alford, E.R., Pilon-Smits, E.A.H., Paschke, M.W.,2010. Metallophytes-a view from therhizosphere. Plant and Soil337,33-50.
    Alkorta, I., Garbisu, C.,2001. Phytoremediation of organic contaminants in soils. BioresourceTechnology79,273-276.
    Barzegar, A.R., Nelson, P.N., Oades, J.M., Rengasamy, P.,1997. Organic matter, sodicity, andclay type: Influence on soil aggregation. Soil Science Society of America Journal61,1131-1137.
    Bhatia, N.P., Orlic, I., Siegele, R., Ashwath, N., Baker, A.J.M., Walsh, K.B.,2003. Elementalmapping using PIXE shows the main pathway of nickel movement is principallysymplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytologist160,479-488.
    Braschi, I., Calamai, L., Cremonini, M.A., Fusi, P., Gessa, C., Pantani, O., Pusino, A.,1997.Kinetics and hydrolysis mechanism of triasulfuron. Journal of Agricultural and FoodChemistry45,4495-4499.
    Calamai, L., Pantani, O., Pusino, A., Gessa, C., Fusi, P.,1997. Interaction of rimsulfuron withsmectites. Clays and Clay Minerals45,23-27.
    Cass, A., Sumner, M.E.,1982. Soil Pore Structural Stability and Irrigation Water-Quality.1.Empirical Sodium Stability Model. Soil Science Society ofAmerica Journal46,503-506.
    Cavanna, S., Garatti, E., Rastelli, E., Molinari, G.P.,1998. Adsorption and desorption ofbensulfuron-methyl on Italian paddy field soils. Chemosphere37,1547-1555.
    Chardonnens, A.N., Koevoets, P.L.M., van Zanten, A., Schat, H., Verkleij, J.A.C.,1999.Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant Silenevulgaris. Plant Physiology120,779-785.
    Chen, X.P., Zhu, Y.G., Xia, Y., Shen, J.P., He, J.Z.,2008. Ammonia-oxidizing archaea:important players in paddy rhizosphere soil? Environmental Microbiology10,1978-1987.
    Chen, Z., Zhu, Y.G., Liu, W.J., Meharg, A.A.,2005. Direct evidence showing the effect of rootsurface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. NewPhytologist165,91-97.
    Chiou, C.T., Kile, D.E.,1998. Deviations from sorption linearity on soils of polar andnonpolar organic compounds at low relative concentrations. Environmental Science&Technology32,338-343.
    Chiou, C.T., Kile, D.E., Rutherford, D.W., Sheng, G.Y., Boyd, S.A.,2000. Sorption ofselected organic compounds from water to a peat soil and its humic-acid and huminfractions: Potential sources of the sorption nonlinearity. Environmental Science&Technology34,1254-1258.
    Cobbett, C.S.,2000. Phytochelatins and their roles in heavy metal detoxification. PlantPhysiology123,825-832.
    Espinoza, J., Fuentes, E., Baez, M.E.,2009. Sorption behavior of bensulfuron-methyl onandisols and ultisols volcanic ash-derived soils: contribution of humic fractions andmineral-organic complexes. Environ Pollut157,3387-3395.
    Fedotov, G.N., Dobrovol'skii, G.V.,2006. Colloid-chemical model for describing some soilprocesses. Eurasian Soil Science39,477-485.
    Finocchiaro, R., Meli, S.M., Cignetti, A., Gennari, M.,2005. Adsorption of molinate,terbuthylazine, bensulfuron-methyl, and cinosulfuron on different Italian soils. FreseniusEnvironmental Bulletin14,690-697.
    Gao, Y.Z., Ling, W.T., Zhu, L.Z., Zhao, B.W., Zheng, Q.S.,2007. Surfactant-enhancedphytoremediation of soils contaminated with hydrophobic organic contaminants:Potential and assessment. Pedosphere17,409-418.
    Gigliotti, C., Allievi, L., Salardi, C., Ferrari, F., Farini, A.,1998. Microbial ecotoxicity andpersistence in soil of the herbicide bensulfuron-methyl. Journal of EnvironmentalScience and Health Part B-Pesticides Food Contaminants and Agricultural Wastes33,381-398.
    Gong, P., Niu, Z., Cheng, X., Zhao, K., Zhou, D.,2010. China's wetland change (1990-2000)determined by remote sensing.53,1036-1042.
    Guerinot, M.L.,2000. The ZIP family of metal transporters. Biochimica Et BiophysicaActa-Biomembranes1465,190-198.
    Gupta, R.K., Bhumbla, D.K., Abrol, I.P.,1984. EFFECT OF SODICITY, PH,ORGANIC-MATTER, AND CALCIUM-CARBONATE ON THE DISPERSIONBEHAVIOR OF SOILS. Soil Science137,245-251.
    He, J.Z., Zhang, L.M., Jin, S.S., Zhu, Y.G., Liu, F.,2008. Bacterial communities inside andsurrounding soil iron-manganese nodules. Geomicrobiology Journal25,14-24.
    He, Y., Xu, J.M., Ma, Z.H., Wang, H.Z., Wu, Y.P.,2007. Profiling of PLFA: Implications fornonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots.Soil Biology&Biochemistry39,1121-1129.
    Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke, A.,Maldonado-Ramirez, S., Lynch, S.T., Nelson, E.B.,2000. Methods for assessing thecomposition and diversity of soil microbial communities. Applied Soil Ecology15,25-36.
    Hodgkinson, R.A., Thorburn, A.A.,1996. Factors influencing the stability of salt affectedsoils in the UK-Criteria for identifying appropriate management options. AgriculturalWater Management29,327-338.
    Holman, H.Y.N., Nieman, K., Sorensen, D.L., Miller, C.D., Martin, M.C., Borch, T.,McKinney, W.R., Sims, R.C.,2002. Catalysis of PAH biodegradation by humic acidshown in synchrotron infrared studies. Environmental Science&Technology36,1276-1280.
    Huang, H., Xiong, Z.T.,2009. Toxic effects of cadmium, acetochlor and bensulfuron-methylon nitrogen metabolism and plant growth in rice seedlings. Pesticide Biochemistry andPhysiology94,64-67.
    Huang, W.L., Schlautman, M.A., Weber, W.J.,1996. A distributed reactivity model forsorption by soils and sediments.5. The influence of near-surface characteristics inmineral domains. Environmental Science&Technology30,2993-3000.
    Huang, W.L., Weber, W.J.,1997. A distributed reactivity model for sorption by soils andsediments.10. Relationships between desorption, hysteresis, and the chemicalcharacteristics of organic domains. Environmental Science&Technology31,2562-2569.
    Huang, W.L., Weber, W.J.,1998. A distributed reactivity model for sorption by soils andsediments.11. Slow concentration dependent sorption rates. Environmental Science&Technology32,3549-3555.
    Karapanagioti, H.K., Kleineidam, S., Sabatini, D.A., Grathwohl, P., Ligouis, B.,2000.Impacts of heterogeneous organic matter on phenanthrene sorption: Equilibrium andkinetic studies with aquifer material. Environmental Science&Technology34,406-414.
    Kleineidam, S., Rugner, H., Ligouis, B., Grathwohl, P.,1999. Organic matter facies andequilibrium sorption of phenanthrene. Environmental Science&Technology33,1637-1644.
    Kramer, U., Grime, G.W., Smith, J.A.C., Hawes, C.R., Baker, A.J.M.,1997. Micro-PIXE as atechnique for studying nickel localization in leaves of the hyperaccumulator plantAlyssum lesbiacum. Nuclear Instruments&Methods in Physics Research SectionB-Beam Interactions with Materials and Atoms130,346-350.
    Kramer, U., Pickering, I.J., Prince, R.C., Raskin, I., Salt, D.E.,2000. Subcellular localizationand speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. PlantPhysiology122,1343-1353.
    Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., McGrath, S.P.,2001. Cellularcompartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssumbertolonii and Thlaspi goesingense. Journal of Experimental Botany52,2291-2300.
    Larkin, R.P.,2003. Characterization of soil microbial communities under different potatocropping systems by microbial population dynamics, substrate utilization, and fatty acidprofiles. Soil Biology&Biochemistry35,1451-1466.
    Lefebvre, O., Habouzit, F., Bru, V., Delgenes, J.P., Godon, J.J., Moletta, R.,2004. Treatmentof hypersaline industrial wastewater by a microbial consortium in a sequencing batchreactor. Environmental Technology25,543-553.
    Levy, G.J., Torrento, J.R.,1995. Clay Dispersion and Macroaggregate Stability as Affected byExchangeable Potassium and Sodium. Soil Science160,352-358.
    Lin, X., Xu, X., Yang, C., Zhao, Y., Feng, Z., Dong, Y.,2009. Activities of antioxidantenzymes in three bacteria exposed to bensulfuron-methyl. Ecotoxicol Environ Saf72,1899-1904.
    Lin, X., Zhao, Y., Fu, Q., Umashankara, M.L., Feng, Z.,2008. Analysis of culturable andunculturable microbial community in bensulfuron-methyl contaminated paddy soils. JEnviron Sci (China)20,1494-1500.
    Ling, W.T., Xu, J.M., Gao, Y.Z.,2006. Dissolved organic matters enhanced sorption ofatrazine by soil in three-phase system. Biology and Fertility of Soils42,418-425.
    Liu, F., He, J.Z., Li, X.Y., Xu, F.L., He, H., Wang, D.F.,1995. Chemical-States of PhosphorusAdsorbed on Goethite Surfaces at Various Phosphate Concentrations. Chinese ScienceBulletin40,506-511.
    Liu, W.J., Zhu, Y.G., Smith, F.A., Smith, S.E.,2004. Do phosphorus nutrition and iron plaquealter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist162,481-488.
    Macek, T., Mackova, M., Kas, J.,2000. Exploitation of plants for the removal of organics inenvironmental remediation. BiotechnologyAdvances18,23-34.
    Marschner,H,1995. Mineral nutrition of higher plants.2nd ed. London:Academic Press.
    Mcclung, G., Frankenberger, W.T.,1985. Soil-Nitrogen Transformations as Affected bySalinity. Soil Science139,405-411.
    McGechan, M.B., Lewis, D.R.,2002. Transport of particulate and colloid-sorbedcontaminants through soil, part1: General principles. Biosystems Engineering83,255-273.
    McGrath, S.P., Zhao, F.J., Lombi, E.,2002. Phytoremediation of metals, metalloids, andradionuclides. Advances in Agronomy, Vol7575,1-56.
    Mitsch, W.J., Lu, J.J., Yuan, X.Z., He, W.S., Zhang, L.,2008. Optimizing ecosystem servicesin China. Science322,528-528.
    Monks, C.D., Patterson, M.G., Pegues, M.,1996. Effect of bensulfuron-methyl on cotton(Gossypium hirsutum L) growth and development. Weed Technology10,851-855.
    Munns, R.,2002. Comparative physiology of salt and water stress. Plant Cell andEnvironment25,239-250.
    Muntan, L.,1989. Weed-Control in Paddy Rice with Bensulfuron Methyl+MolinateMixtures in Spain and Portugal. Brighton Crop Protection Conference-Weeds1989,Vols1-3,689-694
    1237.
    Neumann, G., George, T.S., Plassard, C.,2009. Strategies and methods for studying therhizosphere-the plant science toolbox. Plant and Soil321,431-456.
    Okamoto, Y., Fisher, R.L., Armbrust, K.L., Peter, C.J.,1998. Surface water monitoring surveyfor bensulfuron methyl applied in paddy fields. Journal of Pesticide Science23,235-240.
    Pantani, O., Pusino, A., Calamai, L., Gessa, C., Fusi, P.,1996. Adsorption and degradation ofrimsulfuron onAl hectorite. Journal ofAgricultural and Food Chemistry44,617-621.
    Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D.,Kochian, L.V.,2000. The molecular physiology of heavy metal transport in the Zn/Cdhyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy ofSciences of the United States ofAmerica97,4956-4960.
    Qiu, J.,2011. China faces up to 'terrible' state of its ecosystems_Wetlands hardest hit by landreclamation and pollution. Nature471,19.
    Ranville, J.F., Chittleborough, D.J., Beckett, R.,2005. Particle-size and element distributionsof soil colloids: Implications for colloid transport. Soil Science Society of AmericaJournal69,1173-1184.
    Rehman, S., Harris, P.J.C., Bourne, W.F.,1998. The effect of sodium chloride on the Ca2+, K+and Na+concentrations of the seed coat and embryo of Acacia tortilis and A-coriacea.Annals ofApplied Biology133,269-279.
    Reinhardt, M., Muller, B., Gachter, R., Wehrli, B.,2006. Nitrogen removal in a smallconstructed wetland: An isotope mass balance approach. Environmental Science&Technology40,3313-3319.
    Sabadie, J.,1996. Alcoholysis and chemical hydrolysis of bensulfuron-methyl. WeedResearch36,441-448.
    Sabater, C., Cuesta, A., Carrasco, R.,2002. Effects of bensulfuron-methyl and cinosulfuron ongrowth of four freshwater species of phytoplankton. Chemosphere46,953-960.
    Saeki, M., Toyota, K.,2004. Effect of bensulfuron-methyl (a sulfonylurea herbicide) on thesoil bacterial community of a paddy soil microcosm. Biology and Fertility of Soils40,110-118.
    Saha, S.,2009. Efficacy of bensulfuron-methyl for controlling sedges and non-grassy weedsin transplanted rice (Oryza sativa). Indian Journal ofAgricultural Sciences79,313-316.
    Sarmah, A.K., Sabadie, J.,2002. Hydrolysis of sulfonylurea herbicides in soils and aqueoussolutions: Areview. Journal ofAgricultural and Food Chemistry50,6253-6265.
    Schulthess, C.P., Huang, C.P.,1990. Adsorption of heavymetals by silicon and aluminiumoxides on clayminerals. Soil Sci SocAm53,679-688.
    Sheng, G.Y., Johnston, C.T., Teppen, B.J., Boyd, S.A.,2002. Adsorption of dinitrophenolherbicides from water by montmorillonites. Clays and Clay Minerals50,25-34.
    Si, Y., Zhou, J., Wang, X., Zhou, D.,2003.[Adsorption of bensulfuron-methyl in soils]. HuanJing Ke Xue24,122-125.
    So, H.B., Aylmore, L.A.G.,1993. How Do Sodic Soils Behave-the Effects of Sodicity onSoil Physical Behavior. Australian Journal of Soil Research31,761-777.
    Stidham, M.A.,1991. Herbicides That Inhibit Acetohydroxyacid Synthase. Weed Science39,428-434.
    Stone, R.,2008. Food safety-Arsenic and paddy rice: A neglected cancer risk? Science321,184-185.
    Thompson, A., Chadwick, O.A., Boman, S., Chorover, J.,2006. Colloid mobilization duringsoil iron redox oscillations. Environmental Science&Technology40,5743-5749.
    Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., Perilleux, C.,2003. A novel high efficiency, low maintenance, hydroponic system for synchronousgrowth and flowering ofArabidopsis thaliana. BMC Plant Biol3,2.
    Wang, P., Qu, Y.Y., Zhou, J.T.,2009. Changes of microbial community structures andfunctional genes during biodegradation of phenolic compounds under high salt condition.Journal of Environmental Sciences-China21,821-826.
    Wania, F., Axelman, J., Broman, D.,1998. Areview of processes involved in the exchange ofpersistent organic pollutants across the air-sea interface. Environmental Pollution102,3-23.
    Weber, W.J., Huang, W.L.,1996. A distributed reactivity model for sorption by soils andsediments.4. Intraparticle heterogeneity and phase-distribution relationships undernonequilibrium conditions-Response. Environmental Science&Technology30,3130-3131.
    Weber, W.J., Huang, W.L., Yu, H.,1998. Hysteresis in the sorption and desorption ofhydrophobic organic contaminants by soils and sediments-2. Effects of soil organicmatter heterogeneity. Journal of Contaminant Hydrology31,149-165.
    Weber, W.J., Mcginley, P.M., Katz, L.E.,1992. A Distributed Reactivity Model for Sorptionby Soils and Sediments.1. Conceptual Basis and Equilibrium Assessments.Environmental Science&Technology26,1955-1962.
    Witt, C., Gaunt, J.L., Galicia, C.C., Ottow, J.C.G., Neue, H.U.,2000. A rapidchloroform-fumigation extraction method for measuring soil microbial biomass carbonand nitrogen in flooded rice soils. Biology and Fertility of Soils30,510-519.
    Wu, J., Brookes, P.C., Jenkinson, D.S.,1996. Evidence for the use of a control in thefumigation-incubation method for measuring microbial biomass carbon in soil. SoilBiology&Biochemistry28,511-518.
    Wu, W., Wang, H., Xu, J., Xie, Z.,2009a. Adsorption characteristic of bensulfuron-methyl atvariable added Pb2+concentrations on paddy soils. J Environ Sci (China)21,1129-1134.
    Wu, W.H., Xu, J.M., Feng, Z.S., Xie, Z.M.,2009b. Adsorption of bensulfuron-methyl onkaolinite as influenced by Pb contamination. Journal of Soils and Sediments9,476-481.
    Xia, G., Pignatello, J.J.,2001. Detailed sorption isotherms of polar and apolar compounds in ahigh-organic soil. Environ Sci Technol35,84-94.
    Xia, G.S., Ball, W.P.,1999. Adsorption-partitioning uptake of nine low-polarity organicchemicals on a natural sorbent. Environmental Science&Technology33,262-269.
    Xing, B.S., Pignatello, J.J., Gigliotti, B.,1996. Competitive sorption between atrazine andother organic compounds in soils and model sorbents. Environmental Science&Technology30,2432-2440.
    Zhao, F.J., Lombi, E., Breedon, T., McGrath, S.P.,2000. Zinc hyperaccumulation and cellulardistribution in Arabidopsis halleri. Plant Cell and Environment23,507-514.
    Zhijin, F., Chuanfan, Q., Zhengming, L.,2001. Specific activity determination of acetolactatesynthase from maize (Zea mays L.). In The Proceedings of the18th Asia-Paciic WeedScience Society Conference. Beijing, China,515-522.
    Zhu, Y.W., Zhao, Y.H., Lin, X.Y., Yang, L.,2005. Isolation, characterization and phylogeneticanalysis of an aerobic bacterium capable of degrading bensulfuronmethyl. World Journalof Microbiology&Biotechnology21,1195-1200.
    Zobell, C.E., Anderson, D.Q., Smith, W.W.,1937. The bacteriostatic and bactericidal action ofGreat Salt Lake water. Journal of Bacteriology33,253-262.
    万大娟,贾晓珊,陈娴,2007.多氯代有机污染物胁迫下植物某些根系分泌物的变化.中山大学学报(自然科学版),110-113+118.
    万忠娟,于少鹏,王海霞,孙广友,2003.松嫩平原内陆盐碱湿地的类型特征及分布规律.湿地科学1,141-146.
    万贤崇,赵永艳,俞元春,曹福亮,陈强,张爱平,1997.大气污染及盐胁迫对银杏的危害.林业科技开发,44-45.
    孔德洋,石利利,吴星卫,王菲,高士祥,2008.除草剂甲基磺草酮在土壤中的吸附及淋溶特性.中国环境科学,753-757.
    孔东,2001.硕士论文:含盐土壤水盐联合胁迫对油葵影响的节水灌溉初步实验研究
    毛达如,1994.植物营养研究法.北京:中国农业大学出版社.
    王丹丹,王志强,陈铭,张树清,2006.松嫩平原西部沼泽湿地景观格局动态变化研究.干旱区地理29,94-100.
    王占利,王克柱,高乐全,文庆,2009.一株苄嘧磺隆降解菌的分离·筛选与鉴定.安徽农业科学,11880-11881.
    王琪全,刘维屏,1998.除草剂灭草烟在土壤中的吸附、脱附.中国环境科学,27-31.
    王耀东,李志华,王晓昌,2008.盐胁迫条件下好氧颗粒污泥生长模式研究.环境科学,2804-2808.
    王东明,贾媛,崔继哲,2009.盐胁迫对植物的影响及植物盐适应性研究进展.中国农学通报,124-128.
    司友斌,周静,王兴祥,周东美,2003.除草剂苄嘧磺隆在土壤中的吸附.环境科学,122-125.
    司友斌,张瑾,岳永德,周东美,2002.除草剂苄嘧磺隆在环境中的降解转化研究进展(综述).安徽农业大学学报,359-362.
    曲久辉,2009.特别选题:环境微界面过程与污染控制序.环境科学学报,1.
    曲久辉,贺泓,刘会娟,2009.典型环境微界面及其对污染物环境行为的影响.环境科学学报,2-10.
    朱永官,2003.土壤-植物系统中的微界面过程及其生态环境效应.环境科学学报,205-210.
    何艳,徐建明,2006.11.27.根际微域土壤的取样装置[P].中国:1869631.
    李小刚,曹靖,李凤民,2004.盐化及钠质化对土壤物理性质的影响.土壤通报35,64-72.
    李玉文,1999.环境分析与评价[M].哈尔滨:东北林业大学出版社,110-137.
    李合生,2000.植物生理生化实验原理和技术[M].北京:高等教育出版社.
    李杏,项学敏,周集体,曲宝成,周笑白,2007a.耐盐菌对偶氮染料酸性红B的脱色研究环境科学学报27,1637-1642.
    李杏,项学敏,周集体,曲宝成,周笑白,2007b.盐生植物碱蓬在土壤修复及废水处理中的研究现状江苏环境科技20,53-54,77.
    李建兵,黄冠华,2006. NaCl对粉壤土氨挥发及硝化、反硝化的影响.农业环境科学学报25,945-948.
    李国雷,孙明高,夏阳,张金凤,苗海霞,2004. NaCl胁迫下黄栌、紫荆的部分生理生化反应动态变化规律的研究.山东农业大学学报(自然科学版),173-176+182.
    李学垣,2001.土壤化学.北京:高等教育出版社.
    肖雪毅,陈保冬,朱永官,2006.丛枝菌根真菌对铜尾矿上植物生长和矿质营养的影响.环境科学学报,312-317.
    邢宝山,宋春雨,刘晓冰,2002.土壤有机污染物非理想吸附研究的理论与方法.土壤与环境11,144-151.
    岳霞丽,张新萍,胡先文,董元彦,2006a.甲磺隆和苄嘧磺隆对水华鱼腥藻生长的抑制作用研究.农业工程学报,175-178.
    岳霞丽,张新萍,胡先文,董元彦,2006b.苄嘧磺隆对蛋白核小球藻的生长效应研究.中国农业科学,1823-1827.
    岳霞丽,张新萍,董元彦,2006c.固相萃取-高效液相色谱法测定水体中苄嘧磺隆的残留量.光谱实验室,321-323.
    林道辉,朱利中,高彦征,2003.土壤有机污染植物修复的机理与影响因素.应用生态学报,1799-1803.
    林晓燕,王袆,赵宇华,丁海涛,冯志红,2008.苄嘧磺隆对淹水稻田土壤呼吸和酶活性的影响.浙江大学学报(农业与生命科学版),109-113.
    侯宪文,吴建军,徐建明,2007.铅-苄嘧磺隆对土壤微生物活性与群落结构的影响.中国环境科学,738-742.
    姚东瑞,陈杰,宋小玲,叶贵标,1997.磺酰脲类除草剂残留与降解研究进展.农药36,29-34.
    胡著邦,汪海珍,吴建军,徐建民,2005.镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应.浙江大学学报(农业与生命科学版),36-41.
    范志金,陈俊鹏,党宏斌,王玲秀,钱传范,李正名,2003.单嘧磺隆对靶标乙酰乳酸合成酶活性的影响.现代农药2,15-17.
    唐东民,伍钧,陈华林,周江敏,祝亮,2008.溶解性有机质对苄嘧磺隆在土壤中吸附解吸行为的影响.农业环境科学学报,1716-1720.
    徐进,张奇,徐力刚,2009.湿地基质-水界面中磷的迁移特征.安徽农业科学,11675-11677,11700.
    高大文,杨帆,2010.滨岸缓冲带在水源地农业面源污染防治上的应用.环境科学与技术33,92-96,100.
    崔云,吴季茂,蒋可,1998.磺酰脲类除草剂的残留分析.上海环境科学,22-25+42.
    梁云媚,李燕,多立安,刘捷,1998.不同盐分胁迫对苜蓿种子萌发的影响.草业科学,22-26.
    程薇,陈祖义,1996.14C—苄嘧磺隆在渍水土壤中的残留动态.核技术,436-439.
    程薇,陈祖义,洪良平,1995.除草剂苄嘧磺隆在土壤中吸附与解吸附特性.南京农业大学学报,100-104.
    董社琴,李冰雯,周健,2004.植物修复有机污染土壤机理的分析.科技情报开发与经济,189-190.
    熊毅,1983.土壤胶体(第二册).土壤胶体研究法.北京:科学出版社.
    熊庆娥,2003.植物生理学实验指导[M].成都:四川科学技术出版社.
    翟雨淋,邓新平,左娟,2009.除草剂苄嘧磺隆在5种水体中的降解.植物医生,29-32.
    雒鹏飞,高勇,宋凤斌,赵兰坡,刘兴土,2004.:吉林省西部盐碱土资源开发利用中的若干问题.吉林农业大学学报,659-663.
    关松荫,1986.土壤酶及其研究法.北京:农业出版社.
    冯固,白灯莎,杨茂秋,李晓林,张福锁,1999.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应.应用生态学报,81-84.
    冯长根,任玉华,李华,2004.盐胁迫下‘霞多丽’葡萄幼苗接种地表球囊霉效应初探.园艺学报,84-86.
    刘永红,岳霞丽,叶发兵,董元彦,2007a.土壤及铝氧化物吸附氯磺隆和苄嘧磺隆动力学研究.环境科学与技术,1-2+13+114.
    刘永红,董元彦,叶发兵,岳霞丽,李爱华,2007b.苄嘧磺隆在两种可变电荷土壤中的吸附.生态环境,1103-1107.
    刘永红,叶发兵,岳霞丽,董元彦,2006.铁、铝氧化物和土壤对苄嘧磺隆的吸附.环境化学,714-717.
    刘侯俊,胡向白,张俊伶,张福锁,2007.水稻根表铁膜吸附镉及植株吸收镉的动态.应用生态学报18.
    刘建国,路克国,林伟,庞通,王莉,2008.温度、氮浓度和氮磷比对长心卡帕藻(Kappaphycus alvarezii)吸收氮速率的影响.海洋与湖沼39,529-535.
    刘兴土,2007.我国湿地的主要生态问题及治理对策.湿地科学与管理3,18-22.
    刘艳菊,朱永官,丁辉,郭伟,陈正,刘文菊,2007.水稻根表铁膜对水稻根吸收铅的影响.环境化学26,327-330.
    刘长令编,2002.世界农药大全——除草剂卷北京:化学工业出版社.
    卢颖,韩朔睽,2000.除草剂苯噻草胺在土壤中的吸附.环境化学,513-517.
    吕晓玲,佘永新,王荣艳,王静,2009.磺酰脲类除草剂残留检测技术及其研究进展.分析测试学报,875-880.
    吴平霄,2003.污染物与蒙脱石层间域的界面反应及其环境意义.环境污染治理技术与设备,37-41+65.
    吴佳,涂书新,2010.植物根系分泌物对污染胁迫响应的研究进展.核农学报,1320-1327.
    吴欣明,王运琦,刘建宁,孙桂枝,高洪文,张冬玲,郭璞,2007.羊茅属植物耐盐性评价及其对盐胁迫的生理反应.草业学报,67-73.
    吴庆钰,杨俊诚,张建峰,姜慧敏,侯彦楠,2007a.镉与苄嘧磺隆复合污染对水稻某些生物学特性的影响.农业环境科学学报,1789-1796.
    吴庆钰,杨俊诚,张建峰,姜慧敏,侯彦楠,2007b.镉与苄嘧磺隆复合污染对水稻细胞、DNA的毒害作用.农业环境科学学报,2216-2220.
    娄国强,吕文彦,职明星,2005.苯磺隆、苄嘧磺隆对不同小麦品种安全性及叶绿素含量的影响.中国农学通报,317-320.
    张松柏,张德咏,罗香文,尹乐斌,刘勇,程菊娥,朱春辉,2008.一株降解苄嘧磺隆光合细菌的分离鉴定及其降解特性.生态环境,1774-1777.
    张建梅,2003.植物修复技术在环境污染治理中的应用.环境科学与技术,55-57+67.
    张维理,武淑霞,冀宏杰, H., K.,2004.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计.中国农业科学37,1008-1017.
    杨卓,王占利,李博文,张瑞芳,2009.微生物对植物修复重金属污染土壤的促进效果.应用生态学报,2025-2031.
    欧晓明,步海燕,2007.磺酰脲类除草剂水化学降解机理研究进展.农业环境科学学报,1607-1614.
    汤鸿霄,2003a.环境微界面过程研究论文专辑.环境科学学报,145.
    汤鸿霄,2003b.环境纳米污染物与微界面水质过程.环境科学学报,146-155.
    苏宝玲,韩士杰,王建国,2000.根际微域研究中土样采集方法的研究进展.应用生态学报11,477-480.
    谢明吉,严重玲,叶菁,2008.菲对黑麦草根系几种低分子量分泌物的影响.生态环境17,576-579.
    谢晓梅,胡洲,2005.镉对BSM在水稻土中降解动力学特性的影响.实验室研究与探索24,21-22,86.
    谢晓梅,廖敏,黄昌勇,刘维屏,2004.除草剂苄嘧磺隆对稻田土壤微生物活性和生物化学特性的影响.中国水稻科学,69-74.
    贺泓,刘永春,曲久辉,2009.环境微界面过程的原位和在线研究方法.环境科学学报,11-20.
    贺纪正,郑袁明,曲久辉,2009.土壤环境微界面过程与污染控制.环境科学学报,21-27.
    赵志强,全燮,陈景文,牛军峰,陈硕,薛大明,赵雅芝,2002.土壤有机质和活性铁组分对γ-666光解动力学的影响研究.环境科学学报,80-85.
    赵景婵,郭治安,陈经涛,王鹏超,2003.改性土壤对水中苄黄隆的吸附行为研究.离子交换与吸附,324-330.
    赵翔,汪延良,王亚静,王西丽,张骁,2008.盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控.作物学报,1970-1976.
    赵兰坡,姜岩,1986.土壤磷酸酶测定方法的探讨.土壤通报17,138-141.
    钱晓荣,董毛毛,2009.对二氯苯污染土壤的植物修复研究.环境污染与防治,67-70.
    闫百兴,汤洁,何岩,2003.松嫩平原西部农田径流中有机氯农药的分布特征.环境科学,82-86.
    闫百兴,邓伟,汤洁,2002.松嫩平原西部稻田回归水中污染物的输出规律.上海环境科学,583-587+643.
    陈怀满,郑春荣,2002.复合污染与交互作用研究——农业环境保护中研究的热点与难点.农业环境保护,192.
    陈素华,孙铁珩,2002.土-岩界面重金属行为的研究进展.土壤与环境,75-78.
    陈银萍,任珺,王慧,2008.一氧化氮对盐胁迫下玉米种子萌发及幼苗生长的影响.兰州交通大学学报,44-47.
    鲁如坤,2000.土壤农业化学分析法.北京:农业科技出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700