用户名: 密码: 验证码:
ZnO基薄膜的生长及其紫外光敏电阻器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光敏电阻器在光谱分析、火焰检测、臭氧检测、导弹预警、外太空技术和生物医药等领域有着巨大的应用前景,尤其是日盲光敏电阻器可以不受太阳光的干扰,具有较高的准确度。但是目前紫外光敏电阻器的暗光电阻比还不是很高,而且还没有日盲光敏电阻器的相关报道。本文主要是针对高暗光电阻比ZnO基光敏电阻器和MgZnO基日盲光敏电阻器做了系统性的研究,内容分如下几个部分:
     1.制备了高暗光电阻比的ZnO基紫外光敏电阻器。用rf-MBE在c面蓝宝石衬底上生长了ZnO薄膜,研究了MgO缓冲层对于薄膜结构、光学和电学性能的影响,在此基础上制作了ZnO基紫外光敏电阻器。结果表明,MgO缓冲层可以极大地调节晶格失配,改善薄膜结构和光学、电学性能。紫外光敏电阻器的暗光电阻比高达2.3×105,在波长小于360nm的范围内,响应度超过1Ω-1·W-1。
     2.用rf-MBE在r面蓝宝石衬底低温ZnO缓冲层上生长出了非极性高质量的α面ZnO薄膜。研究了衬底温度和缓冲层厚度对于薄膜质量的影响,并对a面ZnO薄膜的晶格振动和发光机理进行了系统的研究。结果表明:通过调节外延生长温度(630-C)和适当厚度(5nm)的LT-ZnO缓冲层,ZnO薄膜质量得以显著提高。
     3.制作了低Mg组份的极性和非极性MgZnO紫外光敏电阻器。用rf-MBE在c面和r面蓝宝石衬底上生长了低Mg组份c面和a面MgZnO合金薄膜,制备了MgZnO紫外光敏电阻器。c面MgZnO紫外光敏电阻器的暗光电阻比高达105,波长小于310nm范围内响应度大于0.31Ω-1·W-1;a面MgZnO紫外光敏电阻器的暗光电阻比为三个数量级,336nm处响应度最大,为1.4×10-31Ω-1·W-1。
     4.提出并实现了高性能的MgZnO日盲紫外光敏电阻器。用rf-MBE在r面蓝宝石衬底上采用双Mg组份渐进的低Mg组份MgZnO缓冲层,生长了单相纤锌矿非极性α面Mg0.48Zno.52O薄膜,并制备了日盲光敏电阻器。日盲光敏电阻器的响应度超过7.5×1041Ω-·W-1,暗光电阻比为1.7×104,这与目前的可见和红外光敏电阻器暗光电阻比相当,有关工作还没有见到报道。
     5.用rf-MBE在蓝宝石衬底MgO缓冲层上研制了高声表面波传播速度的IDTs/ZnO/LT-ZnO/MgO/Al2O3结构的ZnO基声表面波滤波器。声传播速度最高达5010m/s,这是蓝宝石衬底上制备的ZnO基SAW器件文献报道中速度较高的。
UV photoresistors have been attracting more and more attention due to their huge potential in many applications, such as spectral analysis, flame detection, ozone detection, missile warning, out space technology and chemical/biological agent sensing systems. Especially, the solar-blind photoresistors have high accuracy because of without sunlight interference. However, the photosensitivity of the UV photoresistors is not high, and the research on photoresistors sensitive in the solar-blind region (240-287nm) is still rarely reported. In this thesis, UV photoresistors based on ZnO thin flims with high photosensitivity and solar-blind photoresistors based on MgZnO thin films were systematically studied. The main contents are as follows:
     1. Fabrication of the high photosensitivity ZnO-based UV photoresistors
     Ultraviolet photoresistors based on ZnO thin films were fabricated on sapphire substrates with MgO and LT-ZnO buffer layers by plasma-assisted molecular beam epitaxy. An extremely large dark/photo resistance ratio up to2.3×105was obtained with the light intensity of1.3mW/cm2at370nm. The spectral response shows a large responsivity of more than1Ω-1W-1in the UV region.
     2. Growth of high quality non-polar a-plane ZnO thin films
     High quality non-polar a-plane ZnO thin films were grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy with low-temperature ZnO buffer layer. The influence of the growth temperature and the thickness of the LT-ZnO buffer layer to the ZnO thin films'quality were studied, and the lattice vibrations and the luminescence mechanism were also studied. The results show that the quality of the non-polar a-plane ZnO thin films can be improved by adopting the appropriate temperature (630℃) and appropriate thickness (5nm) of the LT-ZnO buffer layer.
     3. Fabrication of the UV photoresistors based on low-Mg-component polar and non-polar MgZnO thin films
     Low-Mg-component c-plane and a-plane wurtzite MgZnO alloy films were grown on c-plane and r-plane sapphire substrate, and MgZnO-based UV photoresistors were fabricated. The photosensitivity of the c-plane MgZnO UV photoresistors is up to105, and the responsivity is over0.3Ω-1·W-1at the wavelength less than310nm. The photosensitivity of the a-plane MgZnO UV photoresistors is about103, and the maximum responsivity is1.4×10-3Ω-1·W-1at336nm.
     4. Fabrication of the solar-blind photoresistors based on non-polar a-plane Mg0.48Zn0.52O thin films
     Solar-blind photoresistors based on single phase wurtzite a-plane Mg0.48Zn0.52O thin films were achieved on r-plane sapphire substrates by radio-frequency plasma assisted molecular beam epitaxy with two low-Mg-component MgZnO buffer layers. The MgZnO photoresistors exhibit a large dark/photo resistance ratio up to1.7×104with the light intensity of0.61mW/cm2at260nm, which is compareable with the photosensitivity of the visible and IR photoresistors. The spectral response shows a sharp response peak in the solar-blind region with a maximum responsivity of1.5×10-3Ω-1·W-1.
     5. Fabrication of SAW filters with high velocity based on ZnO films grown by rf-MBE
     The SAW filters were fabricated with a structure of IDTs/ZnO/LT-ZnO/MgO/Al2O3. The SAW propagation velocity is up to5010m/s, which is one of the highest speed reported in the literature of ZnO-based SAW devices on the sapphire substrates.
引文
[1]Hut S. G., Kim E. T., Lee J. H., Kim G. H., Yoon S. G. Enhancement of Photosensitivity in CdS Thin Films Incorporated by Hydrogen [J]. Electrochemical and Solid-State Letters,2008,11(7):H176.
    [2]Hur S. G., Kim E. T., Lee J. H., Kim G. H., Yoon S. G. Characterization of photoconductive CdS thin films prepared on glass substrates for photoconductive-sensor applications [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2008,26(4):1334.
    [3]Klugmann E., Onyeogu O. E. Measurement of insolation using CdS photoresistor [J]. Energy Conversion,1979,19(3):153-157.
    [4]Pentia E., Pintilie L., Matei I., Botila T., Pintilie I. Combined chemical-physical methods for enhancing IR photoconductive properties of PbS thin films [J]. Infrared Physics & Technology,2003, 44(3):207-211.
    [5]Vaidyanathan R., Stickney J. L., Happek U. Quantum confinement in PbSe thin films electrodeposited by electrochemical atomic layer epitaxy (EC-ALE) [J]. Electrochimica Acta,2004,49(8):1321-1326.
    [6]Zhang K. Y., Hu C. G., Tian Y. S., Zheng C. H., Wan B. Y. Stable and highly photosensitive device of CdSe nanorods [J]. Physica E:Low-dimensional Systems and Nanostructures,2011,43(4):943-947.
    [7]Agaponova A. V., Ryzhikov I. A., Meshkov A. S., Evgen'ev S. B., Strateichuk D. M., Ostretsov E. F., Survilo L. N., Trofimov Y. V., Shtanov V. I. Investigation of the photoresistance of granular CdSx Se1-x films obtained by screen printing [J]. Journal of Communications Technology and Electronics, 2009,54(5):588-591.
    [8]Chichibu S. F., Sota T., Cantwell G, Eason D. B., Litton C. W. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal [J]. Journal of Applied Physics,2003,93(1):756.
    [9]Zeuner A., Alves H., Hofmann D. M., Meyer B. K., Heuken M., BlaSing J., Krost A. Structural and optical properties of epitaxial and bulk ZnO [J]. Applied Physics Letters,2002,80(12):2078.
    [10]Youn C. J., Jeong T. S., Han M. S., Kim J. H. Optical properties of Zn-terminated ZnO bulk [J]. Journal of Crystal Growth,2004,261(4):526-532.
    [11]Chen Y. F., Tuan N. T., Segawa Y., Ko H. J., Hong S. K., Yao T. Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers [J]. Applied Physics Letters,2001,78(11):1469.
    [12]OZguR U; Alivov Y. I., Liu C., Teke A., Reshchikov M. A., DogAn S., Avrutin V., Cho S. J., Morkoc, H. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics,2005, 98(4):041301.
    [13]Tsyganenko A. A., Filimonov V. N. Infrared spectra of surface hydroxyl groups and crystalline structure of oxides [J]. Journal of Molecular Structure,1973,19(0):579-589.
    [14]Smith A., Rodriguez-Clemente R. Morphological differences in ZnO films deposited by the pyrosol technique:effect of HC1 [J]. Thin Solid Films,1999,345(2):192-196.
    [15]Tokumoto M. S., Briois V., Santilli C. V., Pulcinelli S. H. Preparation of ZnO Nanoparticles: Structural Study of the Molecular Precursor [J]. Journal of Sol-Gel Science and Technology,2003, 26(1):547-551.
    [16]Zhang F. Y. A possible new transition path for ZnO from B4 to B1 [J]. Physica B:Condensed Matter, 2011,406(20):3942-3946.
    [17]Charifi Z., Baaziz H., Hussain R. A. Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound [J]. physica status solidi (b),2007,244(9):3154-3167.
    [18]Almamun Ashrafi A. B. M., Ueta A., Avramescu A., Kumano H., Suemune I., Ok Y. W., Seong T. Y. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers [J]. Applied Physics Letters,2000,76(5):550-552.
    [19]Desgreniers S. High-density phases of ZnO:Structural and compressive parameters [J]. Physical Review B,1998,58(21):14102-14105.
    [20]Jaffe J. E., Snyder J. A., Lin Z. J., Hess A. C. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO [J]. Physical Review B,2000,62(3):1660-1665.
    [21]Maouche D., Saoud F. Saad, Louail L. Dependence of structural properties of ZnO on high pressure [J]. Materials Chemistry and Physics,2007,106(1):11-15.
    [22]Pu C. Y, Tang X., Zhang Q. Y. First principles study on the structural and optical properties of the high-pressure ZnO phases [J]. Solid State Communications,2011,151(21):1533-1536.
    [23]Wrobel J., Piechota J. On the structural stability of ZnO phases [J]. Solid State Communications, 2008,146(7-8):324-329.
    [24]Cui S. X., Feng W. X., Hu H. Q., Feng Z. B., Wang Y. X. Structural and electronic properties of ZnO under high pressure [J]. Journal of Alloys and Compounds,2009,476(1-2):306-310.
    [25]Fu Y. Q., Luo J. K., Du X. Y, Flewitt A. J., Li Y, Markx G. H., Walton A. J., Milne W. I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications:a review [J]. Sensors and Actuators B:Chemical,2010,143(2):606-619.
    [26]Reddy A. Jagannatha, Kokila M. K., Nagabhushana H., Rao J. L., Shivakumara C., Nagabhushana B. M., Chakradhar R. P. S. Combustion synthesis, characterization and Raman studies of ZnO nanopowders [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2011, 81(1):53-58.
    [27]Chen Y, Yu R. Z., Shi Q., Qin J. L., Zheng F. Hydrothermal synthesis of hexagonal ZnO clusters [J]. Materials Letters,2007,61(22):4438-4441.
    [28]Tao D. L., Qian W. Z., Huang Y.,Wei F. A novel low-temperature method to grow single-crystal ZnO nanorods [J]. Journal of Crystal Growth,2004,271(3-4):353-357.
    [29]Liu Y. M., Lv H., Li S. Q., Xi G. X., Xing X. Y. Synthesis and characterization of ZnO with hexagonal dumbbell-like bipods microstructures [J]. Advanced Powder Technology,2011, 22(6):784-788.
    [30]Ding P., Pan X. H., Huang J. Y, Lu B., Zhang H. H., Chen W., Ye Z. Z. Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy [J]. Materials Letters,2012,71:18-20.
    [31]Zhang T. C., Mei Z. X., Kuznetsov A. Yu, Du X. L. Realization of non-polar ZnO (1120) homoepitaxial films with atomically smooth surface by molecular beam epitaxy [J]. Journal of Crystal Growth,2011,325(1):93-95.
    [32]Ding P., Pan X. H., Huang J. Y, He H. P., Lu B., Zhang H. H., Ye Z. Z. p-type non-polar m-plane ZnO films grown by plasma-assisted molecular beam epitaxy [J]. Journal of Crystal Growth,2011, 331(1):15-17.
    [33]Yuan H. T., Liu Y Z., Mei Z. X., Zeng Z. Q., Guo Y, Du X. L., Jia J. F., Zhang Z., Xue Q. K. Metastable rocksalt ZnO interfacial layer and its influence on polarity selection of Zn-polar ZnO films [J]. Journal of Crystal Growth,2010,312(2):263-266.
    [34]Ho Y T., Wang W. L., Peng C. Y., Chen W. C., Liang M. H., Tian J. S., Chang L. Substrate engineering of LaAlO3 for non-polar ZnO growth [J]. Thin Solid Films,2010,518(11):2988-2991.
    [35]Elanchezhiyan J., Bae K. R., Lee W. J., Shin B. C., Kim S. C. Growth and characterization of non-polar ZnO thin films by pulsed laser deposition [J]. Materials Letters,2010,64(10):1190-1192.
    [36]Lin H., Zhou S. M., Teng H., Wang J. Growth and in-plane optical anisotropy of crystalline quality enhanced non-polar m-plane ZnO(GaN) films on trenched (100) LiAlO2 substrates [J]. Journal of Crystal Growth,2009,311(3):456-458.
    [37]Moriyama T., Fujita S. Growth Behavior of Nonpolar ZnO on M-plane and R-plane Sapphire by Metalorganic Vapor Phase Epitaxy [J]. Japanese Journal of Applied Physics,2005,44(11):7919-7921.
    [38]Jagadish C, Pearton S. Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier,2006-11-8,2-3.
    [39]Pearton S. Recent progress in processing and properties of ZnO [J]. Progress in Materials Science, 2005,50(3):293-340.
    [40]施敏[著],赵鹤鸣,钱敏,黄秋萍[译].半导体器件物理与工艺,江苏,苏州大学出版社,2002,521.
    [41]叶志镇,吕建国,张银珠,何海平,.氧化锌半导体材料掺杂技术与应用,浙江,浙江大学出版社,2009,3-21.
    [42]Liu W. W., Yao B., Li Y F., Li B. H., Zheng C. J., Zhang B. Y, Shan C. X., Zhang Z. Z., Zhang J. Y., Shen D. Z. Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient [J]. Applied Surface Science,2009,255(13-14):6745-6749.
    [43]Tampo H., Shibata H., Maejima K., Chiu T. W., Itoh H., Yamada A., Matsubara K., Fons P., Chiba Y., Wakamatsu T., Takeshita Y., Kanie H., Niki S. Band profiles of ZnMgO/ZnO heterostructures confirmed by Kelvin probe force microscopy [J]. Applied Physics Letters,2009,94(24):242107.
    [44]Chen P. L., Ma X. Y, Li D. S., Zhang Y Y, Yang D. R. Bidirectional direct-current electroluminescence from i-MgxZn1-xO/n-ZnO/SiOx double-barrier heterostructures on Si [J]. Applied Physics Letters,2009,94(6):061110.
    [45]Shi Z. L., Liu D. L., Yan X. L., Gao Z. M., Bai S. Y. Effect of oxygen partial pressure on conductivity type of MgZnO nanocrystalline thin films prepared by metal-organic chemical vapor deposition [J]. Microelectronics Journal,2008,39(12):1583-1586.
    [46]Czekalla C., Guinard J., Hanisch C., Cao B. Q., Kaidashev E. M., Boukos N., Travlos A., Renard J., Gayral B., Le Si Dang D., Lorenz M., Grundmann M. Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells [J]. Nanotechnology,2008,19(11):115202.
    [47]Zhang R. J., Chen P. L., Zhang Y Y, Ma X. Y, Yang D. R. Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films [J]. Journal of Crystal Growth,2010, 312(12-13):1908-1911.
    [48]Ma X. Y., Chen P. L., Zhang R. J., Yang D. R. Optical properties of sputtered hexagonal CdZnO films with band gap energies from 1.8 to 3.3 eV [J]. Journal of Alloys and Compounds,2011, 509(23):6599-6602.
    [49]Li L., Yang Z., Zuo Z., Lim J. H., Liu J. L. Thermal stability of CdZnO thin films grown by molecular-beam epitaxy [J]. Applied Surface Science,2010,256(14):4734-4737.
    [50]Jeon H. C., Lee S. J., Park S. H., Kang T. W., Ahn D., Ihm G. Enhancement of optical gain in Li:CdZnO/ZnMgO quantum well lasers [J]. Physica E:Low-dimensional Systems and Nanostructures, 2010,42(10):2652-2654.
    [51]Khoshman J. M., Ingram D. C, Kordesch M. E. Growth and optical properties of amorphous Be0.13Zn0.38O0.49 thin films prepared by radio frequency magnetron sputtering [J]. Journal of Non-Crystalline Solids,2008,354(19-25):2783-2786.
    [52]Yu J. H., Kim J. H., Park D. S., Kim T. S., Jeong T. S., Youn C. J., Hong K. J. A study on structural formation and optical property of wide band-gap Be0.2Zn0.8O layers grown by RF magnetron co-sputtering system [J]. Journal of Crystal Growth,2010,312(10):1683-1686.
    [53]Ding S. F., Fan G. H., Li S. T., Chen K., Xiao B. Theoretical study of BexZn1-xO alloys [J]. Physica B: Condensed Matter,2007,394(1):127-131.
    [54]Kim W. J., Leem J. H., Han M. S., Park I.-W., Ryu Y. R., Lee T. S. Crystalline properties of wide band gap BeZnO films [J]. Journal of Applied Physics,2006,99(9):096104.
    [55]Ryu Y. R., Lee T. S., Lubguban J. A., Corman A. B., White H. W., Leem J. H., Han M. S., Park Y. S., Youn C. J., Kim W. J. Wide-band gap oxide alloy:BeZnO [J]. Applied Physics Letters,2006, 88(5):052103.
    [56]Makino T., Segawa Y., Kawasaki M., Koinuma H. Optical properties of excitons in ZnO-based quantum well heterostructures [J]. Semicond. Sci. Technol.,2005,20:S78.
    [57]Eze F. C. Oxygen partial pressure dependence of the structural properties of CdO thin films deposited by a modified reactive vacuum evaporation process [J]. Materials Chemistry and Physics, 2005,89(2-3):205-210.
    [58]Dantus C., Rusu R. S., Rusu G. I. On the mechanism of electronic transport in polycrystalline CdO thin films [J]. Superlattices and Microstractures,2011,50(4):303-310.
    [59]Shein I., Kiiko V., Makurin Y, Gorbunova M., Ivanovskil A. Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO:Ab initio calculations [J]. Physics of the Solid State,2007,49(6):1067-1073.
    [60]Ivanovskii A., Shein I., Makurin Y, Kiiko V., Gorbunova M. Electronic structure and properties of beryllium oxide [J]. Inorganic Materials,2009,45(3):223-234.
    [61]Shigemori S., Nakamura A., Aoki T., Temmyo J., Zn1-xCdxO film growth using femote plasma-enhanced metalorganic chemical vapor deposition Jpn. J. Appl. Phys.,2004,43, L1088-L1090 [J].
    [62]Liang H. L., Mei Z. X., Zhang Q. H., Gu L., Liang S., Hou Y. N., Ye D. Q., Gu C. Z., Yu R. C, Du X. L. Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors [J]. Applied Physics Letters,2011,98(22).
    [63]Wu C. Z., Ji L. W., Peng S. M., Chen Y. L., Young S. J. MgZnO Nanorod Homojunction Photodetectors for Solar-Blind Detection [J]. Electrochemical and Solid State Letters,2011, 14(9):J55-J57.
    [64]Ghosh R., Basak D. Composition dependent ultraviolet photoresponse in MgxZn1-xO thin films [J]. Journal of Applied Physics,2007,101(11):113111.
    [65]Ju Z. G, Shan C. X., Jiang D. Y, Zhang J. Y, Yao B., Zhao D. X., Shen D. Z., Fan X. W. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Applied Physics Letters,2008,93(17).
    [66]Ye J. D., Pannirselvam S., Lim S. T., Bi J. F., Sun X. W., Lo G. Q., Teo K. L. Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy [J]. Applied Physics Letters,2010,97(11):111908.
    [67]Brandt M., Von W. H., Benndorf G., Hochmuth H., Lorenz M., Grundmann M. Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells [J]. Thin Solid Films,2009,518(4):1048-1052.
    [68]Long H., Fang G. J., Huang H. H., Mo X. M., Xia W, Dong B. Z., Meng X. Q., Zhao X. Z. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes [J]. Applied Physics Letters,2009,95(1):013509.
    [69]Chia C. H., Makino T., Segawa Y., Kawasaki M., Ohtomo A., Tamura K., Koinuma H. Well-width dependence of radiative and nonradiative recombination times in ZnO/Mg0.12Zn0.88O multiple quantum wells [J]. Journal of Applied Physics,2001,90(7):3650-3652.
    [70]Wei Z. P., Yao B., Zhang Z. Z., Lu Y. M., Shen D. Z., Li B. H., Wang X. H., Zhang J. Y, Zhao D. X., Fan X. W., Tang Z. K. Formation of p-type MgZnO by nitrogen doping [J]. Applied Physics Letters, 2006,89(10):102104.
    [71]Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y., Yoshida Y., Yasuda T., Segawa Y MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy [J]. Applied Physics Letters,1998, 72(19):2466.
    [72]Sawai Y, Hazu K., Chichibu S. F. Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method [J]. Journal of Applied Physics,2010, 108(6):063541.
    [73]Maznichenko I. V., Ernst A., Bouhassoune M., Henk J., Dane M., Luders M., Bruno P., Hergert W., Mertig I., Szotek Z., Temmerman W. M. Structural phase transitions and fundamental band gaps of MgxZn1-xO alloys from first principles [J]. Physical Review B,2009,80(14):144101.
    [74]Lambrecht Walter R. L., Limpijumnong S, Segall B. Theoretical Studies of ZnO and Related MgxZn1-xO Alloy Band Structures. MRS Proceedings,1998,537, G6.8 [J].
    [75]Van Vechten J. A., Bergstresser T. K. Electronic Structures of Semiconductor Alloys [J]. Physical Review B,1970, 1(8):3351-3358.
    [76]Yang C, Li X. M., Gu Y F., Yu W. D., Gao X. D., Zhang Y. W. ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV [J]. Applied Physics Letters,2008,93(11):112114.
    [77]De Vittorio M., Poti B., Todaro M. T., Frassanito M. C., Pomarico A., Passaseo A., Lomascolo M., Cingolani R. High temperature characterization of GaN-based photodetectors [J]. Sensors and Actuators A:Physical,2004,113(3):329-333.
    [78]Biyikli N., Kimukin I., Kartaloglu T., Aytur O., Ozbay E. High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts [J]. Applied Physics Letters,2003,82(14):2344.
    [79]Tut T., Biyikli N., Kimukin I., Kartaloglu T, Aytur O., Unlu M. S., Ozbay E. High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current [J]. Solid-State Electronics,2005,49(1):117-122.
    [80]Lat, R. B. Arnett, G. M., Effect of Ultra-violet irradiation on the electrical conductivity of zinc oxide single crystals[J].1965,208:1305.
    [81]Liu M. J., Kim H. K. Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma [J]. Applied Physics Letters,2004,84(2):173.
    [82]Xu Q. A., Zhang J. W., Ju K. R., Yang X. D., Hou X. ZnO thin film photoconductive ultraviolet detector with fast photoresponse [J]. Journal of Crystal Growth,2006,289(1):44-47.
    [83]Barzola-Quiquia J., Esquinazi P., Villafuerte M., Heluani S. P., PoPpl A., Eisinger K. Origin of the giant negative photoresistance of ZnO single crystals [J]. Journal of Applied Physics,2010, 108(7):073530.
    [84]Mandalapu L. J., Xiu F. X., Yang Z., Liu J. L. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy [J]. Solid-State Electronics,2007, 51(7):1014-1017.
    [85]Mazzeo G., Reverchon J. L., Duboz J. Y, Dussaigne A. AlGaN-based linear array for UV solar-blind imaging from 240 to 280 nm [J]. Ieee Sensors Journal,2006,6(4):957-963.
    [86]Chivukula V., Ciplys D., Sereika A., Shur M., Yang J. W., Gaska R. AlGaN based highly sensitive radio-frequency UV sensor [J]. Applied Physics Letters,2010,96(16):163504.
    [87]Cheng C. J., Si J. J., Zhang X. F., Ding J. X., Lu Z. X., Sun W. G., Sang L. W., Qin Z. X., Zhang G. Y. Capacitance characteristics of back-illuminated Al0.42Ga0.58N/Al0.40Ga0.60N heterojunction p-i-n solar-blind UV photodiode [J]. Applied Physics Letters,2007,91(25):253510.
    [88]Mcclintock R., Mayes K., Yasan A., Shiell D., Kung P., Razeghi M.320x256 solar-blind focal plane arrays based on AlxGa1-xN [J]. Applied Physics Letters,2005,86(1):011117.
    [89]Borchi E., Macii R., Bruzzi M., Scaringella M. Characterisation of SiC photo-detectors for solar UV radiation monitoring [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2011,658(1):121-124.
    [90]Sciuto A., Roccaforte F., Di Franco S., Liotta S. F., Bonanno G., Raineri V. High efficiency 4H-SiC Schottky UV-photodiodes using self-aligned semitransparent contacts [J]. Superlattices and Microstructures,2007,41(1):29-35.
    [91]Moscatelli F. Silicon carbide for UV, alpha, beta and X-ray detectors:Results and perspectives [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,583(1):157-161.
    [92]Mandracci P., Rastello M. L., Rava P., Giuliani F., Giorgis F. Stability and quantum efficiency of a novel type of a-Si:H/a-SiC:H based UV detector [J]. Thin Solid Films,1999,337(1-2):232-234.
    [93]戴达煌,周克崧等编著.金刚石薄膜沉积制备工艺与应用,北京,冶金工业出版社.2001,1-3.
    [94]陈光华,张阳等编著.金刚石薄膜的制备与应用,北京,化学工业出版社,2004,15-18.
    [95]Benmoussa A., Hochedez J. F., Schuhle U., Schmutz W., Haenen K., Stockman Y., Soltani A., Scholze F., Kroth U., Mortet V, Theissen A., Laubis C., Richter M., Koller S., Defise J. M., Koizumi S. Diamond detectors for LYRA, the solar VUV radiometer on board PROBA2 [J]. Diamond and Related Materials,2006,15(4-8):802-806.
    [96]Ciancaglioni I., Spaziani F., Rossi M. C., Conte G., Kononenko V., Ralchenko V. Diamond microstrip detector for deep UV imaging [J]. Diamond and Related Materials,2005,14(3-7):526-530.
    [97]Chang K. H., Sheu J. K., Lee M. L., Tu S. J., Yang C. C., Kuo H. S., Yang J. H., Lai W. C. Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy [J]. Applied Physics Letters,2010,97(1):013502.
    [98]Zhou H. L., Chua S. J., Peng C. Al incorporation in AlGaN on and (0001) surface orientation [J]. Journal of Crystal Growth,2006,292(1):5-9.
    [99]Gautier S., Aggerstam T., Pinos A., Marcinkevicius S., Liu K., Shur M., O'malley S. M., Sirenko A. A., Djebbour Z., Migan-Dubois A., Moudakir T., Ougazzaden A. AlGaN/A1N multiple quantum wells grown by MOVPE on A1N templates using nitrogen as a carrier gas [J]. Journal of Crystal Growth, 2008,310(23):4927-4931.
    [100]Lin H. K., Huang F.H., Yu H. L. DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths [J]. Solid-State Electronics,2010,54(5):582-585.
    [101]Vitanov S., Palankovski V., Maroldt S., Quay R. High-temperature modeling of AlGaN/GaN HEMTs [J]. Solid-State Electronics,2010,54(10):1105-1112.
    [102]Remashan K., Huang W. P., Chyi J. I. Simulation and fabrication of high voltage AlGaN/GaN based Schottky diodes with field plate edge termination [J]. Microelectronic Engineering,2007, 84(12):2907-2915.
    [103]Park W. I., Yi G. C., Jang H. M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0≤x≤0.49) thin films [J]. Applied Physics Letters,2001,79(13):2022.
    [104]Liu Z. L., Mei Z. X., Zhang T. C., Liu Y P., Guo Y, Du X. L., Hallen A., Zhu J. J., Kuznetsov A. Y. Solar-blind 4.55 eV band gap Mg0.55Zn0.45O components fabricated using quasi-homo buffers [J]. Journal of Crystal Growth,2009,311(18):4356-4359.
    [105]Zheng Q. H., Huang F., Ding K., Huang J., Chen D. G., Zhan Z. B., Lin Z. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Applied Physics Letters, 2011,98(22):221112.
    [1]Murai A., Thompson D. B., Masui H., Fellows N., Mishra U. K., Nakamura S., and Denbaars S. P. Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding [J]. Applied Physics Letters,2006,89,171116.
    [2]Yadav H. K., Sreeniva K., and Gupta V. Study of metal/ZnO based thin film ultraviolet photodetectors:The effect of induced charges on the dynamics of photoconductivity relaxation [J]. Journal of Applied Physics,2010,107,044507.
    [3]Vanheusden K., Seager C. H., Warren W. L., Tallant D. R., and Voigt J. A. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Applied Physics Letters,1996, 68,403.
    [4]Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama S., Shen M. Y., and Goto T. Optically pumped lasing of ZnO at room temperature [J]. Applied Physics Letters,1997,70,2230.
    [5]Emanetoglu N.W., Gorla C., Liu Y., Liang S., and Lu Y. Epitaxial ZnO piezoelectric thin films for saw filters [J]. Mater. Sci. Semicond. Process.,1999,2,247-252
    [6]Wu T. T. and Wang W. S. An experimental study on the ZnO/sapphire layered surface acoustic wave device [J]. Journal of Applied Physics,2004,96,5249.
    [7]Liu D. S., Wu C. Y., Sheu C. S., Tsai F. C. and Li C. H. The preparation of piezoelectric ZnO films by RF magnetron sputtering for layered surface acoustic wave device applications [J]. Japanese Journal of Applied Physics,2006,45,3531-3536.
    [8]Park J. S., Hong S. K., Im I. H., Ha J. S., Lee H. J., Park S. H., Chang J. H., Cho M. W. and Yao T. Growth of high-quality ZnO films on Al2O3 (0001) by plasma-assisted molecular beam epitaxy [J]. Journal of Crystal Growth,311,2009,2163
    [9]Ono H., Iizuka S. Growth of ZnO nanowires in hollow-type magnetron O2/Ar RF plasma [J]. Thin Solid Films 518,2009,1016-1019
    [10]Maeng J., Jo G., Choe M., Park W., Kwon M. K., Park S. J., Lee T. Structural and photoluminescence characterization of ZnO nanowalls grown by metal organic chemical vapor deposition [J]. Thin Solid Films 518,2009,865-869
    [11]Chichibu S. F., Yoshida T., Onuma T., and Nakanishi H. Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates [J]. Journal of Applied Physics,2002,91, 874
    [12]Chichibu S. F., Tsukazaki A., Kawasaki M., Tamura K., Segaw Y., Sota T., and Koinuma H. Photoreflectance spectra of a ZnO heteroepitaxial film on the nearly lattice-matched ScAlMgO4 (0001) substrate grown by laser molecular-beam epitaxy [J]. Applied Physics Letters,2002,80, 2860
    [13]Jeong S. H., Kim B. S., Lee B. T. Photoluminescence dependence of ZnO films grown on Si (100) by radio-frequency magnetron sputtering on the growth ambient [J]. Applied Physics Letters,2003,82,2625
    [14]Vittorio M. D., Pot B., Todaro M. T., Frassanito M. C., Pomarico A., Passaseo A., Lomascolo M., Cingolani R. High temperature characterization of GaN-based photodetectors [J]. Sensors and Actuators A:Physical,2004,113, (3) 329-333.
    [15]Biyikli N., Kimukin I., Kartaloglu T., Aytur O., Ozbay E. High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts [J]. Appl. Phys. Lett.,2003,82, (14), 2344-2346
    [16]Ferguson I., Tran C. A., Karlicek Jr R. F., Feng Z. C, Stall R., Liang S., Lu Y., Joseph C. GaN and AlGaN metal-semiconductor-metal photodetectors [J]. Materials Science and Engineering:B, 1997,50, (1-3),311-314
    [17]Asgari A., Ahmadi E., Kalafi M. AlxGa1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures[J]. Microelectronics Journal,2009,40, (1),104-107
    [18]Hur Sung-Gi, Kim Eui-Tae, Lee Ji-Hong, Kim Geun-Hong, Yoon Soon-Gil. Enhancement of Photosensitivity in CdS Thin Films Incorporated by Hydrogen [J]. Electrochemical and Solid-State Letters,2008,11(7):H176.
    [19]Zhang Kaiyou, Hu Chenguo, Tian Yongshu, Zheng Chunhua, Wan Buyong. Stable and highly photosensitive device of CdSe nanorods [J]. Physica E:Low-dimensional Systems and Nanostructures,2011,43(4):943-947
    [20]Pentia E., Pintilie L., Matei I., Botila T., Pintilie I. Combined chemical-physical methods for enhancing IR photoconductive properties of PbS thin films [J]. Infrared Physics & Technology, 2003,44(3):207-211.
    [21]Simma M., Lugovyy D., Fromherz T., Raab A., Springholz G., Bauer G. Deformation potentials and photo-response of strained PbSe quantum wells and quantum dots. Physica E,2006,32, (1-2),123-126
    [22]Barzola-Quiquia J., Esquinazi P., Villafuerte M., Heluani S. P., PoPpl A., Eisinger K. Origin of the giant negative photoresistance of ZnO single crystals [J]. Journal of Applied Physics,2010, 108(7):073530.
    [23]Liang S., Sheng H., Liu Y., Huo Z., Lu Y., Shen H. ZnO Schottky ultraviolet photodetectors [J]. Journal of Crystal Growth,2001,225,110-113
    [24]Chang S. P., Chang S. J., Chiou Y. Z., Lu C. Y., Lin T. K., Lin Y. C., Kuo C. F., Chang H. M. ZnO photoconductive sensors epitaxially grown on sapphire substrates [J]. Sensors and Actuators A:Physical,2007,140,60-64.
    [25]OZguR U, Alivov Ya I., Liu C., Teke A., Reshchikov M. A., DogAn S., Avrutin V., Cho S. J., Morkoc,H. A comprehensive review of ZnO materials and devices [J]. Journal of Applied Physics, 2005,98(4):041301.
    [26]Pecz B, El-Shaer A, Bakin A, et al. Structural characterization of ZnO films grown by molecular beam epitaxy on sapphire with MgO buffer [J]. Journal of Applied Physics,100 (10) 2006,103506.
    [27]Chen Y F, Ko H J, Hong S K, et al. Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer [J]. Applied Physics Letters,76 (5),2000,559-561.
    [1]Yang S., Kuo C. C., Liu W.-R., Lin B. H., Hsu H.-C, Hsu C.-H., Hsieh W. F. Photoluminescence associated with basal stacking faults in c-plane ZnO epitaxial film grown by atomic layer deposition [J]. Applied Physics Letters,2012,100(10):101907.
    [2]Chu S., Morshed M., Li L., Huang J., Liu J. L. Smooth surface, low electron concentration, and high mobility ZnO films on c-plane sapphire [J]. Journal of Crystal Growth,2011,325(1):36-40.
    [3]Bang K. H., Hwang D. K., Jeong M. C., Sohn K. S., Myoung J. M. Comparative studies on structural and optical properties of ZnO films grown on c-plane sapphire and GaAs (001) by MOCVD [J]. Solid State Communications,2003,126(11):623-627.
    [4]Chen Y. F., Ko H. J., Hong S. K., Yao T. Layer-by-layer growth of ZnO epilayer on Al2O3 (0001) by using a MgO buffer layer [J]. Applied Physics Letters,2000,76(5):559-561.
    [5]Miyauchi M., Shimai A., Tsuru Y. Photoinduced Hydrophilicity of Heteroepitaxially Grown ZnO Thin Films [J]. The Journal of Physical Chemistry B,2005,109(27):13307-13311.
    [6]田炎磊.非极性ZnO薄膜的制备及其光电性能研究,成都,电子科技大学2011,7。
    [7]Han S. K., Kim J. G., Kim J. H., Hong S. K. Effects of two-step growth by employing Zn-rich and O-rich growth conditions on properties of (1120) ZnO films grown by plasma-assisted molecular beam epitaxy on sapphire [J]. Journal of Vacuum Science & Technology B,2009,27,1635.
    [8]Makino T., Ohtomo A., Chia C. H., Segawa Y., Koinuma H., Kawasaki M. Internal electric field effect on luminescence properties of ZnO/(Mg,Zn)O quantum wells [J]. Physica E:Low-dimensional Systems and Nanostructures,2004,21(2-4):671-675.
    [9]Morhain C, Bretagnon T., Lefebvre P., Tang X., Valvin P., Guillet T., Gil B., Taliercio T., Teisseire-Doninelli M., Vinter B., Deparis C. Internal electric field in wurtzite ZnO/Zn0.75Mg0.22O quantum wells [J]. Physical Review B,2005,72(24):241305.
    [10]Moriyama T., Fujita S. Growth behavior of nonpolar ZnO on M-plane and.R-plane sapphire by metalorganic vapor phase epitaxy [J]. Japanese Journal of Applied Physics,2005,44:7919-7921.
    [11]Cagin E., Yang J., Wang W., Phillips J. D., Hong S. K., Lee J. W., Lee J. Y. Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy [J]. Applied Physics Letters, 2008,92(23):233505.
    [12]Meaney A., Duclere J. R., Mcglynn E., Mosnier J. P., O'haire R., Henry M. O. Comparison of structural, optical and electrical properties of undoped ZnO thin films grown on-and-Al2O3 substrates using pulsed laser deposition [J]. Superlattices and Microstructures,2005, 38(4-6):256-264.
    [13]Kim Y. J.,Kim Y.T., Yang. H. K., Park J. C., Han J. I., Lee Y. E., Kim H. J. Epitaxial growth of ZnO thin films on R-plane sapphire substrate by radio frequency magnetron sputtering [J]. Journal of Vacuum Science & Technology A,1997,15(3):1103-1107
    [14]Zhang Y. T., Du G. T., Zhu H. C., Hou C. M., Huang K. K., Yang S. R. Comparisons of structural and optical properties of ZnO films grown on (0001) sapphire and (0112) sapphire by low-pressure MOCVD [J]. Optical Materials,2004,27(3):399-402.
    [15]Deng R., Yao B., Li Y. F., Li B. H., Zhang Z. Z., Zhao H. F., Zhang J. Y., Zhao D. X., Shen D. Z., Fan X. W., Yang L. L., Zhao Q. X. Surface morphology, structural and optical properties of polar and non-polar ZnO thin films:A comparative study [J]. Journal of Crystal Growth,2009, 311(19):4398-4401.
    [16]Han S. K., Hong S. K., Lee J. W., Lee J. Y., Song J. H., Nam Y. S., Chang S. K., Minegishi T., Yao T. Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy [J]. Journal of Crystal Growth,2007, 309(2):121-127.
    [17]Arguello C. A., Rousseau D. L., Porto S. P. S. First-Order Raman Effect in Wurtzite-Type Crystals [J]. Physical Review,1969,181(3):1351-1363.
    [18]Calleja J. M., Cardona M. Resonant Raman scattering in ZnO [J]. Physical Review B,1977, 16(8):3753-3761.
    [19]Decremps F., Pellicer-Porres J., Saitta A. M., Chervin J. C., Polian A. High-pressure Raman spectroscopy study of wurtzite ZnO [J]. Physical Review B,2002,65(9):092101.
    [20]Scott J. F. UV Resonant Raman Scattering in ZnO [J]. Physical Review B,2(4):1209-1211.
    [21]Fonoberov V. A., Alim K. A., Balandin A. A., Xiu F. X., Liu J. L.. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals [J]. Physical Review B, 2006,73(16):165317.
    [1]Cho S. H., Okumura H.. RF MBE growth of quasi-InGaN alloys by using multilayer structure [J]. Journal of Crystal Growth,2000,209(2-3):401-405.
    [2]Biyikli N, Kimukin I, Tut T, Kartaloglu T, Aytur O, Ozbay E. High-speed characterization of solar-blind AlxGa1-xN p-i-n photodiodes [J]. Semiconductor Science and Technology,2004, 19(11):1259.
    [3]Ozbay E., Biyikli N., Kimukin I., Kartaloglu T., Tut T., Aytur O. High-performance solar-blind photodectors based on AlxGa1-xN heterostructures [J]. IEEE Journal of Selected Topics in Quantum Electronics,2004,10(4):742-751.
    [4]Harada C., Ko H. J., Makino H., Yao T.. Phase separation in Ga-doped MgZnO layers grown by plasma-assisted molecular-beam epitaxy [J]. Materials Science in Semiconductor Processing,2003, 6(5-6):539-541.
    [5]Wang K., Ding Z., Yao S. Elastic strain in Mg0.28Zn0.72O layer:Combined Rutherford backscattering/channeling and X-ray diffraction [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,259(2):966-968.
    [6]Lu Y. M., Wu C. X., Wei Z. P., Zhang Z. Z., Zhao D. X., Zhang J. Y, Liu Y. C., Shen D. Z., Fan X. W. Characterization of ZnO/Mg0.12Zn0.88O heterostructure grown by plasma-assisted molecular beam epitaxy [J]. Journal of Crystal Growth,2005,278(1-4):299-304.
    [7]Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y, Yoshida Y, Yasuda T., Segawa Y. MgxZn1-xO as a II-VI widegap semiconductor alloy [J]. Applied Physics Letters,1998, 72(19):2466.
    [8]He Y. N., Zhang J. W., Yang X. D., Xu Q. A., Liu X. H., Zhu C. C., Hou X. Preparation and characteristics of the wide gap semiconductor Mg0.18Zn0.82O thin film by L-MBE [J]. Microelectronics Journal,2005,36(2):125-128.
    [9]Bergman L., Morrison John L., Chen X. B., Huso J., Hoeck H. Ultraviolet photoluminescence and Raman properties of MgZnO nanopowders [J]. Applied Physics Letters,2006,88(2):023103.
    [10]Kubota M., Onuma T., Tsukazaki A., Ohtomo A., Kawasaki M., Sota T., Chichibu Shigefusa F. Recombination dynamics of excitons in Mg0.11Zn0.89O alloy films grown using the high-temperature-annealed self-buffer layer by laser-assisted molecular-beam epitaxy [J]. Applied Physics Letters,2007,90(14):141903.
    [11]Tabares G., Hierro A., Ulloa J. M., Guzman A., MunOz E., Nakamura A., Hayashi T., Temmyo J. High responsivity and internal gain mechanisms in Au-ZnMgO Schottky photodiodes [J]. Applied Physics Letters,2010,96(10):101112.
    [12]Su S. C., Lu Y. M., Zhang Z. Z., Shan C. X., Li B. H., Shen D. Z., Yao B., Zhang J. Y, Zhao D. X., Fan X. W. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by x-ray photoelectron spectroscopy [J]. Applied Physics Letters,2008,93(8):082108.
    [13]Fan W. J., Abiyasa A. P., Tan S. T., Yu S. F., Sun X. W., Xia J. B., Yeo Y. C., Li M. F., Chong T. C. Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well [J]. Journal of Crystal Growth, 2006,287(1):28-33.
    [14]Choopun S., Vispute R. D., Yang W., Sharma R. P., Venkatesan T., Shen H. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J]. Applied Physics Letters,2002, 80(9):1529-1531.
    [15]Liu C. Y, Xu H. Y, Wang L., Li X. H., Liu Y C. Pulsed laser deposition of high Mg-content MgZnO films:Effects of substrate temperature and oxygen pressure [J]. Journal of Applied Physics,2009, 106(7):073518.
    [16]Zheng Q. H., Huang F., Ding K., Huang J., Chen D. G, Zhan Z. B., Lin Z. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Applied Physics Letters, 2011,98(22):221112.
    [17]Park W. I., Yi Gyu-Chul, Jang H. M. Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0<=x<=0.49) thin films [J]. Applied Physics Letters, 2001,79(13):2022-2024.
    [18]Zheng Q. H., Huang F., Ding K., Huang J., Chen D. G., Zhan Z. B., Lin Z. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Applied Physics Letters, 2011,98(22).
    [19]Zhu Y. Z., Chen G D., Ye H., Walsh A., Moon C. Y, Wei Su-Huai. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys [J]. Physical Review B,2008,77(24):245209.
    [20]Liu Z. L., Mei Z. X., Zhang T. C., Liu Y. P., Guo Y, Du X. L., Hallen A., Zhu J. J., Kuznetsov A. Yu. Solar-blind 4.55eV band gap Mg0.55Zn0.45O components fabricated using quasi-homo buffers [J]. Journal of Crystal Growth,2009,311(18):4356-4359.
    [21]Hur S. G, Kim E. T., Lee J. H., Kim G. H., Yoon S. G. Enhancement of Photosensitivity in CdS Thin Films Incorporated by Hydrogen [J]. Electrochemical and Solid-State Letters,2008,11(7):H176.
    [22]Al-Ani S. K. J., Mohammed H. H., Al-Fwade E. M. N. The optoelectronic properties of CdSe:Cu photoconductive detector [J]. Renewable Energy,2002,25(4):585-590.
    [1]Hiroshi Okano N. T., Yusuke T., Toshiharu T., Kenichi S., Nakano S. Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices [J]. Applied Physics Letters,1993,64:166.
    [2]Palacios T., Calle F., Monroy E., Grajal J., Eickhoff M., Ambacher O., Prieto C. Nanotechnology for SAW devices on AlN epilayers [J]. Materials Science and Engineering:B,2002,93(1-3):154-158.
    [3]Aubert T., Elmazria O., Assouar B., Bouvot L., Oudich M. Surface acoustic wave devices based on AIN/sapphire structure for high temperature applications [J]. Applied Physics Letters,2010, 96(20):203503.
    [4]Anisimkim V. I., Penza M., Valentini A., Quaranta F., Vasanelli L. Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line [J]. Sensors and Actuators B: Chemical,1995,23(2-3):197-201.
    [5]Ntagwirumugara E., Gryba T., Zhang V. Y., Dogheche. E., Lefebvre J. E. Analysis of Frequency Response of IDT/ZnO/Si SAW filter using the couping of modes model [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.54, no.10, october 2007.
    [6]Wei C. L., Chen Y. C., Cheng C. C., Kao K. S., Cheng D. L., Cheng P. S. Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator [J]. Thin Solid Films,2010,518(11):3059-3062.
    [7]Ingrosso I., Petroni S., Altamura D., De Vittorio M., Combi C., Passaseo A. Fabrication of AIN/Si SAW delay lines with very low RF signal noise [J]. Microelectronic Engineering,2007, 84(5-8):1320-1324.
    [8]Assouar M. B., El Hakiki M., Elmazria O., Alnot P., Tiusan C. Synthesis and microstructural characterisation of reactive RF magnetron sputtering AlN films for surface acoustic wave filters [J]. Diamond and Related Materials,2004,13(4-8):1111-1115.
    [9]Ishihara M., Nakamura T., Kokai F., Koga Y. Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method [J]. Diamond and Related Materials,2002, 11(3-6):408-412.
    [10]Jung J. P., Lee J. B., Kim J. S., Park J. S. Fabrication and characterization of high frequency SAW device with IDT/ZnO/AIN/Si configuration:role of AlN buffer [J]. Thin Solid Films,2004, 447-448:605-609.
    [11]朱长纯 卢文科,等.声表面波式小波变换器件与应用, 北京,国防工业出版社.2004,4-5.
    [12]Kadota M. Surface acoustic wave properties of zinc oxide film on quartz substrate [J]. Electronics and Communications in Japan, Part 2,2000,83,10.
    [13]El Hakiki M., Elmazria O., Assouar M. B., Mortet V., Le Brizoual L., Vanecek M., Alnot P. ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient [J]. Diamond and Related Materials,2005,14(3-7):1175-1178.
    [14]Shih W. C., Huang R. C. Fabrication of high frequency ZnO thin film SAW devices on silicon substrate with a diamond-like carbon buffer layer using RF magnetron sputtering [J]. Vacuum,2008, 83(3):675-678.
    [15]Hoang S. H., Chung G. S. Surface acoustic wave characteristics of AlN thin films grown on a polycrystalline 3C-SiC buffer layer [J]. Microelectronic Engineering,2009,86(11):2149-2152.
    [16]Krishnamoorthy S., Iliadis A. A. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates [J]. Solid-State Electronics,2008,52(11):1710-1716.
    [17]Wu T. T., Wang W. S. An experimental study on the ZnO/sapphire layered surface acoustic wave device [J]. Journal of Applied Physics,2004,96(9):5249.
    [18]Liu D. S., Wu C. Y, Sheu C. S., Tsai F. C., Li C. H. The Preparation of Piezoelectric ZnO Films by RF Magnetron Sputtering for Layered Surface Acoustic Wave Device Applications [J]. Japanese Journal of Applied Physics,2006,45(4B):3531-3536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700