用户名: 密码: 验证码:
瓮福磷矿大塘矿段采矿方法参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分段凿岩阶段空场嗣后充填采矿法适用于开采矿石和围岩中等稳固急倾斜中厚-厚矿体。该采矿方法分段采准、分段凿岩、阶段出矿,矿房间分步回采,嗣后充填,可有效控制矿岩边界,灵活性大,回采强度大。该法贫化损失小,近年来备受青睐,并在许多铁矿和非金属矿得到应用。
     瓮福磷矿大塘矿段矿体属中等稳固急倾斜厚矿体(a矿层、G夹层、b矿层统称为矿体)。瓮福磷矿大唐矿段920中段以上矿体出露地表风化比较严重,因此该矿在回采时采用分段崩落采矿法。据统计,该矿采用崩落法生产期间综合回收率为65%,贫化率为27.6%;显然用该采矿方法开采时损失率高、贫化较大,并且无法剔除夹石,出矿品位调整难管理,从而严重影响着矿山整体经济效益。矿山在开采850m中段时,为了剔除夹石G层、能调配a层矿石和b层矿石的比例,提高矿石回收率、获得较好的经济效益,经多次研究以后提出分段凿岩阶段空场嗣后充填法。在采矿方法既定的条件下,合理的采矿结构参数对矿山安全生产、经济效益起了至关重要的作用。
     本论文在仔细详实研究了矿山地质报告和总结矿山多年生产实践的基础上对岩体质量分级指标进行了估算,然后以岩体质量分级指标为主要依据,应用Hoek-Brown准则进行了岩体力学参数取值研究。为了获得较优的采场结构参数,本论文应用Flac3D数值分析软件,模拟了三种采场结构参数方案。根据矿体开采技术条件,数值分析模拟在保持该矿阶段高度不变,分段凿岩阶段矿房法垂直矿体走向布置,将矿房参数分别确定为一步矿房宽20m、二步矿房宽10m,一步矿房宽20m、二步矿房宽20m,一步矿房宽30m、二步矿房宽30m。通过模拟不同矿房尺寸下采场应力分布状态及破坏形式,回采区域应力集中位置、最大压应力、最大拉应力的大小和方向以及塑性区的位置及形状,通过比较分析确定采场较优尺寸。数值分析研究得出采场结构参数为:采房高度70m(包括底部结构)、矿房长度为矿体厚度(36m)、一步矿房宽20m、二步矿房宽20m、采场顶底柱高度10m。在此结构参数下,矿房安全性好,并且采场结构尺寸大,有利于提高回采强度,比较符合瓮福磷矿的开采技术条件。工业试验表明,将采矿方法改为分段凿岩阶段空场嗣后充填矿房法后,可使一步矿房的回收率由65%提高到90.6%;贫化率由27.6%降低到7.25%,分段凿岩阶段空场嗣后充填采矿方法应用于此矿山可以产生可观的经济效益。研究结果表明采场结构参数新方案适用于此磷矿,确定的参数结构合理,可有效地提高资源回收率、降低贫化率。同时,本文研究成果可为类似矿山提供参考。
Sublevel drilling-stage room and subsequent filling mining method is suitable for caving the mid-steady, inclined-steeply, mid-thick-thick ore body and surrounding rock. The mining methods have some sections such as sub-developing, sub-drilling, stage extracted ore, mining ore room by stage and subsequent filling. This method not only can effectively control the ore boundaries, flexibility and strength, but also has small ore loss. So in recent years it becomes widely accepted and has been applied in many iron ore and non-metallic mine.
     DaTang ore in WengFu phosphate mine is mid-steady inclined-steeply belong to moderate steady and inclined thick solid ore body (a seam, G sandwich, b seam referred to as ore body.).Above 920 mid-stage of Datang ore block, the exposed surface serious weathers. So it used the sub-caving and the body back mining method.According to statistics, during the production of the mine caving, the integrated recovery is 65% and dilution rate is 27.6%. Obviously this method goes with high ore loss ratio and dilution, indelibility surrounding rock, and the ore grad adjustment is difficult to manage.This matter seriously affects the overall economic benefits of mining.In order to eliminate the middle 850m stone G layer, clamp allocate the proportion of a and b layer, improve ore mineral recovery and achieve good economic benefit, we put forward the Sublevel drilling-stage room and subsequent filling mining method after many research.In the established mining methods, reasonable mining structural parameters played a crucial role on mine safety production and economic benefits.
     This article studies the geologic report and summarizes the production practice and estimates the rock quality grading index. Then it takes the quality grading index for main basis, and uses Hoek-Brown to study rock mechanics parameters. To get better stope structure parameters, this article uses Flac3D to simulate three stope structure parameters schemes. According to the ore mining technical conditions, we numerical analysis simulates the decoration in the condition of keeping the mine height, and keeps the step ore 20m width, two-step ore 10m, step ore 20m, two-step ore 20m, step ore 30m,two-step ore 30m. According to simulate the stress distribution, stress concentration position, maximum tension stress, maximum compressive stress and the position and shape of the plasticity, we get the best size. They are:the room is 70m height(including the bottom construction), the length of room is the thickness of ore, step ore is 20m width, two-step ore is 20m width, the pillar is 10m height. Under the structural parameters, the room is safer, and the size of stope is bigger and it is better for mining and fits the mining technical conditions. The industrial tests indicate that the recovery rate will increase from 65% to 90.6% and the impoverishment rate will deduce from 27.6% to 7.21%, if we change the mining method to filling ore room method. The method can get better economic benefits. The result indicates that the new scheme fits this mine and the parameters are reasonable, it can increase the recovery rate, reduce the impoverishment rate. At the same time, the research result can offer reference for similar mines.
引文
[1]龙涛.国内外磷矿开采技术的现状与展望[J].矿业工程2010.1:37--38.
    [2]地下采矿方法(实例)图册上[M].中国有色金属建设协会设计分会矿山工程研究会.1995.1:3-9.
    [3]地下采矿方法(实例)图册下[M].中国有色金属建设协会设计分会矿山工程研究会.1995.1:3-9.
    [4]郭建平、杨文煌.分段凿岩阶段矿房法在遂昌金矿难采厚脉金矿段[J].江西有色金属2003.9(17)(3):18-19.
    [5]赵云峰.李洪林、景文然.大西林铁矿采矿变革实践[J].黑龙江冶金2005.1.:30-32
    [6]白凤泉.分段凿岩阶段矿房法在柏杖子金矿的应用[J].有色金属.2001.5:6-8.
    [7]杨建国.杨立掌锰矿采矿法的探讨[J].中国锰业2003(21)(1):45-46.
    [8]孟中华、王聚勇.分段凿岩阶段矿房法在锡铁山铅锌矿的应用和改进[J].采矿技术.2006.(26)(2):28-30.
    [9]刘党权.分段凿岩阶段矿房采矿法在陕西太白金矿的应用[J].采矿工程.2005(24)(4):11-15.
    [10]吴贤振、饶运章、熊正明.铜山铜矿分段凿岩阶段矿房嗣后充填采矿法工艺优化研究[J].南方冶金学院学报.2003.7(24)(4):1-3
    [11]钱光荣.大团山矿段一580 m中段以上矿体采矿方案探讨[J].金属矿山.2003(321)(3)11-12
    [12]饶运章、吴红.东乡铜矿分段崩落阶段矿房嗣后充填组合采矿法试验研究[J].有色金属.2004.(56)(3):24-25.
    [13]蔡美峰等.岩石力学与工程[M].科学出版社,2002.8:109-112、119-127.
    [14]蔡美峰等.分段空场采矿法的使用现状及发展势[J].世界采矿快报纸.1997.(418)(7)13:109-112、119-127.
    [15]Hoek E, Carranza-Torres C, Corkum B..Hoek-Brown failure criterion-2002 edition[C]//HAMMAHW, BAWDEN J.CURRAN,& M.TELESNICKI,Eds. Proceedings of NARMS-TAC 2002, Minging Innovation and Technology. Toronto:University of Toronto.2002; 276-273.
    [16]Hoek E, Practical Rock Engineering[M].2002.
    [17张福渊等.概率统计及随机过程[M],北京航空航天大学出版社,2000.9:240-251.
    [18]彭文斌Flac 3D实用教程[M].机械工业出版社2008.1:55-265.
    [19]杨泽.云南某露天矿东采区边坡岩体力学参数取值研究.硕士论文,2010.5:22-30.
    [20]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1995.
    [21]夏志皋.塑性力学[M].同济大学出版社,2005.10:236-251.
    [22]刘波、韩彦辉FLAC原理、实例与应用指南[M].北京.人民交通出版社,2005.
    [23]盛佳等.基于hoek-brown经验强度准则的岩体力学参数确定的方法[J].采矿技术,2009,9(2):12-14.
    [24]李铁汉.岩块与岩体的强度[J].武汉地质学院学报.1985.12(3):35-37.
    [25]赵彭年.松散介质力学[M].地震出版社,1995.6.
    [26]解世俊.金属矿床地下开采[M].冶金工业出版社,2007.1.
    [27]杨殿.金属矿床地下开采[M].中南工业大学出版社,2000.2.
    [28]采矿手册第四卷[M].冶金工业出版社,1999.9.
    [29]张玉灯Flac 3D在岩质边坡稳定性分析中的应用[J].路基工程,2008(6):164-165.
    [30]解世俊.金属矿床地下开采(第2版)[M].北京:冶金工业出版社,1999.
    [31]北京有色院编采矿设计手册2,矿床开采卷(下)[M].北京:中国建筑工业出版社,1987.
    [32]《采矿手册》编辑委员会.采矿手册4[M].北京:冶金工业出版社,1999.
    [33]郭建伟、孙国飞.浅述留矿采矿法在我国的应用[J].黄金.2002.11(23)(11):19—22.
    [34]赵永红.急倾斜极薄矿脉采矿方法优选研究[J].矿产保护与利用2006.2(1).
    [35]邹力,彭雄志.浅谈FLAC3D的应用原理、优缺点及改进措施[J].四川建筑,2007(1):151-153.
    [36]魏继红、吴继敏等FLAC 3D在边坡稳定性分析中的应用[J].勘察科学技术,2005(2):27-30.
    [37].乔登攀.放矿理论研究与应用[M].云南科技出版社,2006.4:13-34.
    [38]郑成英、马萃林.急倾斜薄矿体开采实践[J].中国矿山工程,2005.12(34)(6):25-26.
    [39]吴健.降低极薄矿脉矿石贫化率的几种方法[J].新疆有色金属,2003.
    [40]李振.江乳山金矿急倾斜薄矿脉开采技术研究[J].采矿技术,2002.6(2卷)(2).
    [41]胡文寿,张显志.论工程岩体完整性的评价方法[J].西安工程学院学报,2010.9(3).
    [42]孙红月等.大型地下硐室围岩稳定性数值模拟分析[J].浙江大学学报工学版,2004,38(1):70—73.
    [43]苗胜军、万林海、来兴平.三山岛金矿地应力与地质构造关系分析[J].岩石力学与工程学报,2004,23(23):3996-3999.
    [44]王永秀、毛德兵等.数值模拟中煤层物理力学参数确定的研究[J].煤炭学报,2003,28(6):320-324.
    [45]赵吉坤,张子明.三维大理岩弹塑性损伤及细观破坏过程数值模拟[J].岩石力学与工程学报,2008,27(3):487-494.
    [46]米勒L.李世平等译.岩石力学[M].北京:煤炭工业出版社,1981.
    [47]郭金峰、王汉生.南非Tweefontein铬矿缓倾斜薄矿体开采技术实践与评述.金属矿山,2010,(2):18-21.
    [48]宋建波等.岩体经验强度准则及其在地质工程中的应用[M].地质出版社,2002.
    [49]陈育民、徐鼎平flac/FLAC 3D基础与工程实例[M].北京:中国水利水电出版社,2009.1.
    [50赵文.岩石力学[M].湖南:中南大学出版社,2010.7.
    [51]Kavanagh K T,clough R W. Finite application in characterization of elastic solids[J].Int. J.Solids Structures.1972(7):11-23.
    [52]Hudson J.A.(Ed.) Comprehensive rock engineering[M].London:Pergamon Press,1993.
    [53]Oda M A.Method for evaluating the representive elementary volume based on joint survey of rockmass[J].Can.Geotech.J.,No.25 291-287 1988.
    [54]Effect of fractures on in situ rock stresses studied by the distinct element method[J].
    [55]HAISMSONT B.C. In-Stress Measurements in the Preexcavatinn Design Stage of the Serra Da Mesa Hydroelectrica Project, Brazil[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(4-5):124.
    [56]B.Lunda m. d. Zoback. Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:169-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700