用户名: 密码: 验证码:
隧道超前地质预报技术与计算机辅助预报系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道施工过程中,各类不同成因的不良地质和施工地质灾害常常成为制约隧道修建的最主要因素。因此,对掌子面前方的地质条件和可能的地质灾害开展超前地质预报,对确保隧道施工安全具有举足轻重的作用。本文采用工程地质、岩体力学、地球物理探测、数字图像识别、非线性科学理论、现代信息技术相结合的方法,从隧道不良地质超前预报、隧道施工地质灾害预测和隧道超前地质综合预报三大方面对隧道超前地质预报技术进行深入研究,并最终开发了一套较为完善的隧道超前地质预报计算机辅助软件系统。论文取得的主要成果如下:
     (1)从TSP(Tunnel Seismic Prediction)、地质雷达(Ground Penetrating Radar)、瞬变电磁法(Transient Electromagnetic Methods)、BEAM(Bore Tunnelling Electrical Ahead Monitoring)的探测原理出发,通过分析其探测隧道常见不良地质的典型案例,总结并提炼了TSP对空洞、断层破碎带、含水溶隙等不良地质的波形特征;地质雷达对完整岩体、破碎岩体、空洞、含水溶洞等不良地质的波形特征;瞬变电磁法对富水断层、干燥断层、富水溶洞、干燥溶洞、含水溶隙裂隙等不良地质以及不良地质组合和后方低阻体的响应特征;Beam对岩溶含水体、含水裂隙、充水断层带、无水断层等不良地质的响应特征。这些成果为建立超前地质预报解译标志、提高隧道超前地质预报精度奠定了良好基础。
     (2)探讨了数字图像模式识别技术在超前地质预报中的应用。通过地质雷达图像预处理,采用神经网络模式识别技术,探索地质雷达溶洞图像的智能识别,建立了智能识别二维地质雷达图像中由于含水小溶洞造成双曲线特征的神经网络模型,为识别地质雷达图像中的其它不良地质体提供了新途径。
     (3)探讨了岩爆与洞室形态和尺寸的关系。通过分析同一尺寸不同洞室形状、同一洞室形状不同尺寸下的岩爆强度,得到在其它影响因素相同条件下岩爆存在洞室尺寸和洞形效应。椭圆形洞(谐洞)对减少岩爆最有利,岩爆将随洞室开挖尺寸的增大而增强,但最终趋于一个稳定值。将这一成果应用于锦屏二级水电站引水隧洞和辅助洞的岩爆预测中,结果表明,在相同桩号、岩爆其它发生条件相似的条件下,引水隧洞中段的岩爆强度将比辅助洞提高半个等级。
     (4)在围岩大变形预测方面,提出了根据洞壁位移-时间观测曲线预测围岩失稳时间的方法。认为洞壁位移-时间观测曲线的拐点即为围岩失稳的时间,由此建立了多阶非线性回归预报模型,求解了围岩失稳时间的数学表达式,并利用最小二乘法,对监测数据进行拟合,求得预报模型的参数,即可预测围岩失稳的时间。该方法一般适用于围岩失稳的临短预报,其可靠程度取决于位移-时间观测曲线的连续性。
     (5)从预测隧道掌子面前方涌突水危险性角度出发,建立了隧道涌突水危险性的经验公式:α=Log 10 ((A1×A2)/(B1×B2)),其中a为一无量纲的涌突水危险性综合系数,A1为岩墙厚度,A2为岩墙强度,B1为富水情况,B2为水压条件,并从地层岩性、地质构造等地质指标和TSP、地质雷达、瞬变电磁等物探相关参数指标对地下水富集条件进行综合判断。通过实例验证表明,隧道涌突水危险性综合系数a基本能反映掌子面前方涌突水危险程度的高低。
     (6)提出了“以地质分析为核心,综合物探分析,洞内外结合、长短预测结合,物性参数互补”的综合预报原则,建立了隧道超前地质综合预报的工作体系。在此基础上,构建了隧道常见不良地质的综合预报方法和工作流程,并选取相关地质参数和物探成果参数,采用模糊神经网络技术,建立了隧道常见不良地质的综合预报模型。该综合预报体系在铜锣山隧道得到较好应用,为确保隧道施工安全提供了保障。
     (7)以工程地质、岩体力学、岩土工程监测、地球物理探测技术、图像识别技术为依据,采用人工神经网络技术、模糊-层次综合评判、模糊神经网络等非线性智能科学技术,利用数据库和软件工程技术,集成开发了隧道超前地质预报计算机辅助软件系统(TGP-CAS)。主要功能包括隧道基本地质条件预报、隧道施工地质灾害预报、地球物理超前探测预报、综合预报和查询等。国内几条长大深埋隧道的应用表明,该软件具有管理方便、预报精度较高的优点。
Various geological problems and hazards are the uppermost factors which often restricted tunnel construction; therefore geological forecast in tunnels are very important for the safety of tunnel construction. This paper researches the forecast of geological problems, the prediction of geological hazards during construction and synthetically forecast of geological condition ahead the workface with the disciplines of engineering geology, rock mass mechanics, geophysical exploration, digital image identification, nonlinear science theory and modern information technology. Finally, a computer assistant prediction software system for tunnel geological forecast has been obtained . The main results are as follows:
     (1) Base on the principles of TSP(Tunnel Seismic Prediction), GPR(Ground Penetrating Radar), TEM(Transient Electromagnetic Methods) and BEAM(Bore Tunneling Electrical Ahead Monitoring), typical examples on geological problems forecast are collected and analyzed. Then the seismic wave characters for empty cave, fault, hydrous crack by TSP, the electromagnetic wave characters for intact rock mass, rock with cracks, empty cave, hydrous cave by GPR, the response characters for hydrous fault, dry fault, hydrous cavity, dry cavity, hydrous crack,and low electric resistance by TEM, the response characters of hydrous cavity, hydrous crack, hydrous fault,dry fault by BEAM are analyzed and summarized. These results are helpful for creating elucidative criterion of tunnel geological problems forecast and improving prediction accuracy.
     (2) The application of digital image mode identify technology for tunnel geological problems forecast has been discussed. The intelligent identification methods of GPR image for cave has been explored by pre-deposal of the image and the artificial nervous network identify technology. A nervus network model which can intelligently identify hyperbola which means hydrous cave in GPR image has been gained. This method offers a new way for identifying other unfavorable geological problems in GPR image.
     (3) The relationships of rock burst and chamber physical dimension has been discussed. By analyzing the grade of rock burst with the condition of same dimension but different shape as well as the same shape but different dimension. Several conclusions have been gotten as fellows. Rock burst has the chamber shape effect. Ellipse is the best section shape of tunnel for reducing rock burst on condition of same chamber dimension. Rock burst has chamber dimensional effect. The grade of rock burst will enhance with the chamber dimension enlargement and finally stay at a constant on condition of same chamber shape. The methods were used to predict rock burst of a certain hydroelectric power station’s and traffic tunnels. The result indicated that the grade of rock burst in the middle section of hydropower tunnels will increase 0.5 grade than traffic tunnel.
     (4) On the field of large deformation prediction, a method of predicting collapse time of by sidewall displacement-time monitoring data was expounded. The inflection point of displacement-time curve is regarded as the collapse time . the model of multistage nonlinear regression analysis has been created. The mathematic representation of surrounding rock collapse time has been solved. The parameters of the model were gained by fitting the data with least-squares procedure. The method is suit for critical prediction of surrounding rock collapse. The degree of reliability depends on the continuity of displacement-time monitoring data.
     (5) Advancing a new method for prediction of water gushing risk in front of the workface. A empirical equation about tunnel water gushing risk coefficient has been constructed. That isα=Log 10 ((A1×A2)/(B1×B2)), a is water gushing risk coefficient with no unit, A1 is thickness of wall rock, A2 is intensity of wall rock, B1 is degree of containing water, B2 is condition of water pressure. It judges degree of water contain from two factors: one is geologic factors such as rock character and geologic structure, the other is geophysical exploration parameters such as TSP, GPR and TEM. It is proved that the coefficient a can really show the water gushing risk degree in front of workface by some tunnel examples.
     (6) A principle of comprehensive prediction that“Take the geological analysis as the core, combine geological analysis and geophysical exploration, combine the condition inside and outside of the tunnel, combine long distance prediction methods with short distance prediction methods and fetch up mutually geophysical parameter”has been concluded. The system of geological comprehensive prediction in tunnel has been established. Then, the comprehensive prediction methods and workflows of common unfavorable geological condition in tunnel have been created. Through extracting geological and geophysical parameters, a comprehensive prediction model of geological problems has been constructed with fuzzy neural network. The comprehensive prediction system was used in TongLuoShan tunnel which leads to pretty good effect and ensure the tunnel’s safety.
     (7) According to the theory of engineering geology, rock mass mechanics, geotechnical engineering monitoring, geophysical exploration and digital image identification, using nonlinear intelligent science technology such as artificial nervus network, fuzzy arrangement synthesis evaluate, fuzzy neural network, utilizing data-base and software engineering technique, a software about tunnel geological prediction computer assistant system (which named TGP-CAS) has been developed. This software has four main functions. The first, it can manage and predict the basic geology conditions of tunnel. The second, it can forecast tunnel’s geological hazards such as rock burst ,l arge deformation, rock slip and gushing water. The third, it can manage the four geophysical explorations such as TSP, GPR, TEM and BEAM. Finally, it can synthetically predict tunnel geological problems and synthetically query all kinds of information. The software was applied in some over-length and deep tunnels, the results indicate that it has many advantages such as easy management, high prediction precision.
引文
[1]谢勇谋.国道317线鹧鸪山隧道施工地质预报研究[D].成都理工大学硕士学位论文,2004.
    [2]张志龙.越岭长大公路隧道地质预报中的关键技术问题研究[D].成都理工大学博士学位论文,2006.
    [3]孙广忠.军都山隧道快速施工超前地质预报指南[M].北京:中国铁道出版社,1990.
    [4]赵永贵.中国工程物理研究的进展与未来[J].地球物理学进展,2002,17(2):301-304.
    [5]刘志刚,赵勇.隧道隧洞施工地质技术[M].成都:中国铁道出版社,2001
    [6]何发亮,李苍松.隧道施工期地质超前预报技术的发展[J].现代隧道技术,2001,38(3):12-15.
    [7]龚固培.超前地质预报在北京八达岭高速公路隧道施工中的应用[J].世界隧道,2000,(5):38-41.
    [8]方建离,应松,贾进.地质雷达在公路隧道超前地质预报中的应用[J].中国岩溶,2005,24(2):160-163.
    [9] Kevin Black,Peter Kopac. The application of ground penetrating radar in highway engineering[J]. Public Roads,1992,56(3).
    [10] Peter C,Ulriksen F. Application of impulse radar to civil engineering [D]. USA:Geophysical Survey System,Inc,1987.
    [11] Peter Huggenberger,Knoll M D,Knight Rosemary,et al. Ground probing radar as tool for heterogeneity estimation in gravel deposits: advances in data processing and facies analysis[J]. Journal of Applied Geophysics,1994,(31).
    [12] Johnston M J S. Review of electric and magneticfile accompanying seismic and volcanic activity[J]. Surveys in Geophysics,1997,18.
    [13] Wang Chengxiang, He Zhenhua, Huang Deji. The frequency division process of seismic record and the recognition of small geological abnonmalities[A]. In:He Zhenhua,ed.Engineering and Environmental Geophysics for the 21st Century[M]. Chengdu: Sichuan PubliShing House of Science and Technology. 1997.39~45.
    [14] Cohen K K, Dalverny L E,Ackinan T E, etal. Near-surface applied to environmental and engineering problems of mine reclamation in the USA[A]. In:He Zhenhua,ed. Engineering and Environmental Geophysics for the 21st Century[M]. Chengdu: Sichuan Publishing House of Science and Technology,1997.39~45.
    [15] Sylvie Jillard,Jean-Claude Dubois. Analysis of GPR Data: Wave Propagation Velocity Determination[J]. Journal of Applied Geophysics,1995,vo1.33,No.l-3.
    [16] Derald G Smith, Harry M. Jol. Ground Penetrating Radar: Antenna Frequencies and Maximum Probable Depths of Penetration in Quaternary Sediments[J]. Journal of Applied Geophysics,1995,vo1.33,No.1-3.
    [17] Lau,chun Lok;Scullion,Tom;Chan,Paul. Using Ground Penetrating Radar Technology for Pavement Evaluations in Texas[J], Proceedings 4th International Conference on Ground Penetrating Radar,Rovaniemi,Finland,Jun. 8-13,1992b.
    [18] Wu X,et al. Resolution Enhancement of Pulse Radar by Inversion Method [C]. IEEE Trans commun 1993,E76B(10).
    [19] Bart Scheers.Ultra-wideband Ground Penetrating Radar with Application to the Detection of Anti Personnel Landmines[J]. Ph. D thesis, Royal Military Academy Department of Electrical Engieering and Telecommunication,Brusse1s,2001:258-360.
    [20]赵勇,肖书安,刘志刚.TSP超前地质预报系统在隧道工程中的应用[J].铁路建筑技术,2005(5):18-23.
    [21]戴前伟,何刚,冯德山.TSP-203在隧道超前预报中的应用[J].地球物理学进展,2005,20(2):460-464.
    [22] Andisheh Alimoradi,et al. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks[J]. Tunnelling and Underground Space Technology,Volume 23,Issue 6, November 2008, Pages 711-717.
    [23] Dickmann, T.;Sander, B. K.Drivage-concurrent tunnel seismic prediction (TSP):results from Vereina north tunnel mega-project and Piorapilot gallery Geomechanics Abstracts Volume:1997, Issue:2,February,1997,pp. 82.
    [24] Zhuang Wang,et al. Integrated fuzzy concentration addition–independent action (IFCA–IA) model outperforms two-stage prediction (TSP) for predicting mixture toxicity[J]. Chemosphere,In Press,Corrected Proof,Available online 17 November 2008.
    [25] Pooyan Asadollahi, Roozbeh Foroozan. Comparison of the evaluated rock mass properties from the TSP system and the RMR classification (Semnan tunnel, Iran) [J].Tunnelling and Underground Space Technology, Volume 21, Issues 3-4, May-July 2006,Page 236.
    [26] Amberg Measuring Technique, TSPwin Processing & Evaluation Software[R],Manual Version 1.1. Amberg Co., Switzerland. 2001.
    [27] Amberg Measuring Technique,TSP 203 Processing[R]. Amberg Co.,Switzerland. 2002.
    [28]朴化荣,电磁测深原理[M],地质出版社,1991.
    [29]方文藻等,瞬变电磁测深法原理[M],西北工业大学出版社,1992.
    [30]静恩杰,李志聃.瞬变电磁法基本原理[J].中国煤田地质,1995,7(2):83-87.
    [31] Spies B.R.and Parke P.D, Limitation of large-loop transient electromagnetic surveys in conductive terrains[J], Geophysics , Vo1.49 , No.7 , 1984, 902-912.
    [32] Spies B.R. Depth of inversion in electromagnetic sounding methods[J]. Geophysics Vo1.54, No.7, 1989.
    [33] Goldman,M.,Tabarovsky,L.,Rabinovich,M.,On the influence of 3-D structures in the interpretation of transient electromagnetic sounding data[J],Geophysics 59,1994.
    [34] Hoversten,GM.,Morrison,H.F.,Transient fields of a current loop source above a layered earth,Geophysics 47,1982.
    [35] Jergensen,F. et al. Geophysical investigations of buried valleys in Denmark:an integrated application of transient electromagnetic and feflection seismic surveys and exploratory well data[J],Joumal of applied Geophysics 53,2003.
    [36]朱劲,李天斌,李永林等.BEAM超前地质预报技术在铜锣山隧道的应用[J].工程地质学报,2007,15(2):258-263.
    [37]谭天元,张伟.隧洞超前地质预报中的新技术——BEAM法[J].贵州水力发电,2008,(1).
    [38]杨卫国,王立华,王力民. BEAM法地质预报系统在中国TBM施工中应用[J].辽宁工程技术大学学报,2006,(S2).
    [39] Geohydraulik Data. Beam real -time ground prediction[R]. Kirchvers, German: Geohydraulik Data,Corp, 2004.
    [40] Geohydraulik data. Beam presentation[R]. Kirchvers,German: Geohydraulik Data,Corp,2004.
    [41]钟世航.陆地声纳法及其应用效果[J].物探与化探,1997,(3).
    [42]钟世航,曹大明.隧道中用陆地声纳法在开挖的岩面或衬砌表面测围岩松弛带深度[J].岩石力学与工程学报,2005,24(10):1722–1727.
    [43]钟世航,孙宏志,王荣.陆地声纳法在隧道施工时预报断层、溶洞的效果[J].隧道建设,2007,(S2).
    [44]王洪勇,张继奎,李志辉.长大隧道红外辐射测温超前预报含水体方法研究与应用实例分析[J].物探化探计算技术,2003,25(1):11-17.
    [45]李兴春,王宏,李兴高.红外技术在开挖隧道岩溶探测和预报中的应用[J].工矿自动化,2008,(2).
    [46]张庆欣. HY-303红外探测技术在齐岳山隧道的运用[J].铁道建筑,2006,(8).
    [47]王鹰,陈强,魏有仪.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,(5).
    [48]王兰生,李天斌,徐进等.二郎山隧道围岩变形破裂的调研与监测[J].公路,2000,(12).
    [49]王兰生,李天斌,徐进等.高地应力区域公路隧道围岩稳定性及施工地质监测预报系统[J].现代隧道技术,1999,(2).
    [50]徐林生,王兰生,李天斌等.二郎山公路隧道岩爆特征与预测研究[J].地质灾害与环境保护,1999,(2).
    [51]李天斌,肖学沛.地下工程岩爆预测的综合集成方法[J].地球科学进展,2008,(5).
    [52]李天斌,王兰生,李永林等.隧道围岩稳定性信息化监测、预测与决策系统[J].岩石力学与工程学报,2003,(S1).
    [53]段铮,李天斌,李育枢等.瞬变电磁法超前地质预报技术在铜锣山隧道中的应用[J].现代隧道技术,2008,(2).
    [54]张志龙,李天斌,王兰生等.雪峰山隧道岩爆问题预测研究[J].煤田地质与勘探,2005,(1).
    [55]梁志勇,石豫川,李天斌.基于统计损伤的岩爆预测[J].工程地质学报,2005,(1).
    [56]孟陆波,李天斌,王震宇.基于MATLAB神经网络工具箱的岩爆预测模型[J].中国地质灾害与防治学报,2003,(4).
    [57]孟陆波,李天斌,周春宏等.某水电站洞室岩爆的尺寸效应[J].水力发电,2008,(1).
    [58]孟陆波,李天斌,李永林等.公路隧道信息化施工与计算机辅助决策系统研究[J].地球与环境,2005,(S1).
    [59]徐则明,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000,178.
    [60]李天斌,陈明东,王兰生.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999.
    [61]王兰生,李天斌等.二郎山公路隧道岩爆及岩爆烈度分级[J].西南公路,1998(4).
    [62]段铮.瞬变电磁法在隧道超前地质预报中的应用及解译分析[D].成都理工大学,2008.
    [63]许勇.隧道超前地质预报计算机辅助系统初步开发[D].成都理工大学,2008.
    [64]王希宝.都汶公路龙溪隧道围岩大变形机制及防治研究[D].成都理工大学,2008.
    [65]朱劲.超前地质预报新技术在铜锣山隧道的应用及综合分析研究[D].成都理工大学,2007.
    [66]王湘锋.锦屏二级水电站深埋特长引水隧洞岩爆模拟及预测研究[D].成都理工大学,2006.
    [67]郑建国.锦屏二级水电站交通辅助洞岩爆机制及其地质力学模式研究[D].成都理工大学,2005.
    [68]肖学沛.锦屏二级水电站交通隧道岩爆预测及防治研究[D].成都理工大学,2005.
    [69]孟陆波.公路隧道信息化施工与计算机辅助决策系统研究[D].成都理工大学,2004.
    [70]王睿.国道317线鹧鸪山隧道围岩大变形机制及防治措施研究[D].成都理工大学,2003.
    [71]张志龙.邵怀高速公路雪峰山隧道岩爆与大变形预测研究[D].成都理工大学,2002.
    [72]李天斌,王兰生等.高地应力条件下隧道大变形的机制、预测及防治研究科研报告[R],2005.12.
    [73]姜云.公路隧道围岩大变形的预测预报与对策研究[D].成都理工大学工学博士学位论文,2004.5.
    [74]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998(1):46-51.
    [75]徐林生,李永林等.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通学院学报,2002,21(2):16-20.
    [76]张祉道.瓦斯隧道安全施工监测管理技术研究分项报告高应力比煤系地层巷道稳定及支护技术[R].1997,3.
    [77]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,40(2):5-12,40.
    [78]刘志春,朱永全等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报,2008,30(5).
    [79] Dowing C.H.& Andersson C.A. potential for rock bursting and slabbing in deep caverns[J].Engineering Geology,1986,22:265-279.
    [80]陈海军等.岩爆预测的人工神经网络模型[J].岩土工程学报,2002,(2).
    [81]白明洲等.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报,2002,(4).
    [82]丁向东等.岩爆分类的人工神经网络预测方法[J].河海大学学报(自然科学版),2003,(4).
    [83] Mueller-W.Numerical simulation of rock bursts[J]. Mining Science & Technology.1991,12(1):27-42.
    [84] Zubelewicz A. & Morz Z. Numerical Simulation of Rock Burst Process Treatead as Problemof Dynamic Instability[J].Rock Mech.Rock Engng.1983,16:253-274.
    [85] Aydan o.Akgi T.&Kawamoto T. The squeezing potential of rocks Around Tunnela[J].Theory and Prediction.Rock Mechanics and Rock Engineering 26,1993,26(4):137-163.
    [86] Anagnostou G.A model for swelling rock in tunneling.rock mech[J].rock engng.1993,26(4):307~331.
    [87]谢和平.岩爆的分形特征和机理[J].岩石力学与工程学报,1993.12(1).
    [88]单哓云,徐东强等.用突变理论预报巷道岩爆发生的可能性[J],矿山测量.2000,12(4).
    [89]侯发亮等.圆形隧道中岩爆的判据及防治措施.见:岩石力学在工程中的应用[M].北京:知识出版社,1989.
    [90] Muirwood, A.M. Tunnels for roads and motorways[J]. Quarterly Journal of Engineering,Geology,1972.5:119-120.
    [91]石根华.岩体稳定分析的几何方法[J].中国科学A辑,1981,(4).
    [92] Unwedge User’s Guide. 3D visualization of potentially unstable wedge in the rock surrounding underground excavations and calculation of factors of safety and support requirements for these wedge[R].1992. Rocscience.inc.
    [93] FU Guobin, JING Hongwen,XU Jinhai. Stability analysis of surrounding rock of a deep road way and its supporting practice[J].In:Proc,of 8th ISRM Cong.(Tokyo).A.A.Balkema, 1995:559-561.
    [94] Rongzhang ZHOU, Zhihong GUO,Hongwei Song. et a1. A discussion on the main objective of the road way supporting[J].In:Proc.of 8th ISRM Cong.(Tokyo).A.A.Balkema,1995:697-699.
    [95] Liao Chunting, Zhang Chunshan, Wu Manlu. et a1 . Stress change near the Kunlun Fault before and after the Ms 8.1 Kunlun earthquake[J].Geophysical Research Letters (October 2003),30(20).
    [96] Saini G.S.,Dube A.K.&Swarup A.Underground Excavations in Expansive Strata[A].Proceedings 6th International Conference on Expanxive Soil,indio,1988,477-481.
    [97] Bathe K J and Ozdemir H.Elastic-Plastic Large Deformation Static and Dynamic Analysis[J].Compt,6(2)81-92.
    [98] Kawai T and Yoshimura N.Analysis of Large Deflection of Plates by Finete Element Method[J].Int.J.Num Meth,1969,1:123-133.
    [99] Kimura F,Okabayashi N &kavamoto T.Tunneling Through Squeezing Rock in Two Large Fault Zone of Enasan Tunnel II[J].Rock Mechanics and Rock Engineering 20, 1987: 151~166.
    [100] w.wittke, B. Pierau.膨胀岩石中隧道的修建和设计原理(A).见:第四届国际岩石力学会议文集[c].北京:冶金工业出版社1985.
    [101] A. Marulanda,L. F. Eslava.软弱围岩中应用喷射混凝土的经验[J].地下工程,1985, 54~60.
    [102] G.Herget,First experiences with the CIR triaxial strain cell for stress determinations[J]. Int.,J. Rock Mech. Min. Sci.&Geomech. Abstract. 1973, 10.
    [103] B. C.Haimson. The hydrofracturing stress measuring method and recent field results. Int. J. Rock Mech.Min[J],Sci.&Ceomech.abstract. 1978, 15:167-178.
    [104] Y.S. Tian,W. zhang. Engineering geological characteristics and rhcololical properties of rock mass in Jinchuan Nickel Mine[J]. In:Proc. 8th Cong. Inter. Soc. on rock mechanics.
    [105] R.K.Kaiser,Daihua ZOU,P.A.Lang.Stress determination by back-analysis of excavation induced stress change-A case study[J],Rock Mech.And Rock Engineering,1990,23(3):185-200.
    [106] G. T. Brown, E. Hoek. Trends in Relationships between measured in-situ stresses and depth[J]. Int.J. Rock Mech.Mining Science. 1978. 15(4).
    [107] R. Bhasin, N. Barton, E·Grimstad,P Chryssanthakis,strength Anisotropic Rocks in the Himalayan Region Geology[M], 1995.40:169, 193.
    [108]薛国强,李貅,底青云.瞬变电磁法理论与应用研究进展[J].地球物理学进展,2007,(4).
    [109]武军杰.瞬变电磁新技术在隧道超前地质预报中的应用研究[D].长安大学硕士学位论文,2005.
    [110]牛之琏.脉冲瞬变电磁法及应用[M].长沙:中南工业大学出版社,1987.
    [111]门小雄,吕东旭,侯萍.瞬变电磁法超前地质预报在晋城至济源高速公路天井关隧道施工中的应用[J].交通建设与管理,2006,(10).
    [112]沈梅芳,王玉娇.瞬变电磁法应用与宜万线八字岭隧道超前预报[J].科技资讯,2006,(10).
    [113]李貅,武军杰,曹大明等.一种隧道水体不良地质体超前地质预报方法——瞬变电磁法[J].工程勘察,2006,(3).
    [114]代刚.全空间瞬变电磁法及其在地下工程探水中的运用[D].西南交通大学硕士学位论文,2003.
    [115]闫超平,杨家松,陈寿根.综合超前地质预报在锦屏辅助洞F6断层中的应用[J].公路隧道,2008,(1).
    [116]何松华,孙文峰,郭桂蓉.雷达目标距离剖面图像的特征编码与多模匹配识别[J].系统工程与电子技术,1995,(6).
    [117]苏畅,王成毅,徐守义等.探地雷达管道目标图像的识别方法[J].大连理工大学学报,1997,(5).
    [118] Millard SG,Bungey J H,Shaw MR. Interpretation of Radar Test Results[J].Innovations in Non-Destructive Testing, ACI Sp-168,1997,Ed.PessikiS,Olson 1,1-24p.
    [119]郭飚,陈曾平,庄钊文等.基于高分辨率二维雷达图像的特征提取与目标识别[J].航天电子对抗,1998,(2).
    [120] Gamba P and Lossani S, Neural Detection of pipe signatures in Ground Penetrating Radar Image[J], Geoscience and Remote Sensing,Vo1.38,2000,pp 790-797
    [121]孔祥维,石浩.形状约束的Snake算法在探地雷达图像目标自动提取中的应用[J].物探化探计算技术,2001,(4).
    [122] Davis J, Huang Y, Millard SG and Nakhkash M.Validation of an algorithmfor the reconstruction of an inhomogeneous dielectric profile[J]. Proc. IEE Radar 2002 Conference, Edinburgh.2002:232-237P.
    [123]陈德莉,黄春琳,粟毅.用统计方法和Hough变换进行GPR目标检测与定位[J].电子学报,2004,(9).
    [124]杨莘,陈淑珍,唐中柱.探地雷达管道目标图像的识别[J].计算机应用,2005,(5).
    [125]谢昭晖.地下不同目标体的探地雷达图像特征研究[J].工程地球物理学报,2005,(1).
    [126]徐牧,王雪松,肖顺平.基于目标轮廓特征的SAR图像目标识别[J].系统工程与电子技术,2006,(12).
    [127]辛宁,王国宏,张静等.基于gamma分布模型的SAR图像目标识别方法研究[J].雷达与对抗,2007,(1).
    [128]韩振中,张文连.地质雷达在隧道检测中的波形识别及应用[J].筑路机械与施工机械化,2008,(6).
    [129]宦若虹,杨汝良,岳晋.一种合成孔径雷达图像特征提取与目标识别的新方法[J].电子与信息学报,2008,(3).
    [130]齐传生,王洪勇.圆梁山隧道综合超前地质预报技术[J].铁道勘察,2004,(5).
    [131]齐传生.TSP202隧道地震波超前地质综合预报系统的应用[J].世界隧道,1999,(1):36-40.
    [132]王洪勇.综合超前地质预报在圆梁山隧道中的应用[J].现代隧道技术,2004,(3).
    [133] C. W. Zang, H. W. Huang, Z. X. Zhang.Forecasting the strata condition of a long road tunnel by using fuzzy synthetic judgement[J].International Journal of Rock Mechanics and Mining Sciences, Volume 41, Issue 3, April 2004, Pages 406-407.
    [134]李苍松,何发亮,丁建芳.武隆隧道岩溶地质超前预报综合技术[J].水文地质工程地质,2005,(2).
    [135]闫红江.牛岭界隧道施工综合地质预报技术[J].现代隧道技术,2005,(5).
    [136]曲海锋,刘志刚,朱合华.隧道信息化施工中综合超前地质预报技术[J].岩石力学与工程学报,2006,(6).
    [137]谭天元,叶勇,张伟.隧道工程超前地质预报中的综合物探技术[J].贵州水力发电,2006,(6).
    [138]叶英.岩溶隧道施工超前地质预报方法研究[D].北京交通大学,2006.
    [139]程建铝.岩溶地区长大隧道综合立体式超前地质预报技术研究[J].科技资讯,2007,(25).
    [140]王锦山,王力,曹志刚等.厦门海底隧道综合超前地质预报实践[J].岩石力学与工程学报,2007,(11).
    [141]戎凯.试论隧道工程综合超前地质预报技术体系的构建与实践[J].现代隧道技术,2008,(3).
    [142]李术才,薛翊国,张庆松等.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,(7).
    [143]王光权,牟元存,李正文.隧道综合地质预报技术[J].铁道建筑技术,2008,(S1).
    [144] E. Snowdon .Development of computer software to assist with the design of tunnels and shafts in soft ground [J], Tunnels & Tunnelling, 26(12), 1994, pp 44–45.
    [145] International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Volume 32, Issue 5, July 1995, Page A229.
    [146] Gregory W.Pouch , An Interactive Program for Computer-aided Map Design,isplay,and Query[J] , Computers&Geosciences, 1997,Vo1.23,No.3.
    [147] Dongming Hwang,Hassn A.Karimi and Daewon.Byun,ncertainty Analysis of Environmental Models Within GIS[J], Envionments Computers&Geosciences, 1998, Vo1.24 No.2,pp.119-130.
    [148]王述红,朱浮声,张凯等.岩体隧道施工过程智能辅助决策系统的实现[J].岩石力学与工程学报,2002,(4).
    [149]郭福安,许兆义.复杂地质条件下隧道施工超前预报信息化系统研究[J].西部探矿工程,2003,(9).
    [150]时永阡,王连俊,白明州.超前地质预报管理信息系统[J].勘察科学技术,2003,(6).
    [151]周文波,吴惠明.盾构法隧道施工智能化辅助决策系统[J].城市道桥与防洪,2004,(1).
    [152]李晓虹,汪平,李苍松.动态设计地质信息系统软件开发[J].重庆师范大学学报(自然科学版),2004,(4).
    [153]马晓旦,袁金荣.地下工程信息平台的研究[J].上海理工大学学报,2004,(3).
    [154]陈亮,黄宏伟,胡群芳.盾构隧道施工风险管理数据库系统开发[J].地下空间与工程学报,2005,(6).
    [155]黄宏伟,曾明,陈亮等.基于风险数据库的盾构隧道施工风险管理软件(TRM1.0)开发[J].地下空间与工程学报,2006,(1).
    [156]周建晖,朱合华,刘学增.公路隧道辅助设计软件的新思路研究[J].岩土工程技术,2006,(2).
    [157]彭铭,黄宏伟,胡群芳等.基于盾构隧道施工监测的动态风险数据库开发[J].地下空间与工程学报,2007,(S1).
    [158]干昆蓉,杨毅,李建设.某隧道岩溶突水机理分析及安全岩墙厚度的确定[J].隧道建设,2007,(3).
    [159]四川省交通厅公路规划勘察设计研究院.垫江至邻水高速公路岩溶及岩溶水专项研究报告[R],2003.
    [160]刘志刚.概论岩溶或地质复杂隧道隧洞地质灾害超前预报技术[J].铁道建筑技术,2003,(2):1~5
    [161]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993
    [162]高辉,杨振江,张素磊.TSP探测技术在铜锣山隧道塌方中的应用[J].山西交通科技,2006,183(6):27-29
    [163]长安大学垫邻路隧道预报检测项目部.隧道工程地质超前预测报告铜锣山右线(TSP)(第十四期)[R].2007,7.
    [164]长安大学垫邻路隧道预报检测项目部.铜锣山隧道工程地质超前预测报告小结[R].2007,3.
    [165]黄祥志,佘成学,钟福平等.概论超前地质预报系统[J].建筑技术开发,2004,31(11):26-28
    [166]白哲.地质雷达在隧道超前预报中的应用[D].武汉理工大学硕士论文,2006.
    [167]王连成,王应富等.地质雷达技术在公路隧道工程中的应用[J].公路隧道,2005,50(2):32-36.
    [168]代高飞,夏才初,毛海河.地质雷达在隧道超前预报中的应用[J].西部探矿工程,2004,(9).
    [169]蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    [170]李貅.瞬变电磁测深的理论及应用[M].西安:陕西科学技术出版社,2002.
    [171]徐干成,白洪才,郑颖人等.地下工程支护结构[M].北京,中国水利水电出版社,2001:22-28.
    [172] Martin T,Hagan(美)Howard B,Demuth.神经网络设计[M].戴葵,译.北京:机械工业出版社.2002.
    [173] Dickmann Thomas Amberg. Softwave Manual[R] . Measuring Technique Ltd. 2001.
    [174] Dickmann Thomas. Operation Manual [R] .Amberg Measuring Technique Ltd. 2001.
    [175]吴功建,林清湲,高锐.地球物理方法及在地质和找矿中的应用[M].北京:地质出版社,1998.
    [176]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国标准出版社,2001.
    [177]中华人民共和国建设部.工程岩体分级标准(GB50218-94)[S].北京:中国标准出版社,1994.
    [178]中华人民共和国交通部.公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社,2004.
    [179]毛邦燕.现代深部岩溶形成机理及其对越岭隧道工程控制作用评价[D].成都理工大学,2008.
    [180]刘骏. Delphi数字图像处理及高级应用[M].北京:科学出版社. 2004.
    [181]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [182]孙即祥等.现代模式识别[M].长沙:国防科技大学出版社,2002.
    [183]姚玉荣,章毓晋.利用小波和矩进行基于形状的图像检索[J].中国图像图形学报,2000, 5(3):206-210.
    [184]王耀明.图像的矩函数一原理、算法及应用[M].上海:华东理工大学出版社,2004.
    [185]吕洪涛等.离散状态下的不变矩算法研究[J].数据采集与处理,1993,33(6):20-23.
    [186] Saaty T.L. The Analytic Hierarchy Process[M].New York:McGraw-Hill,1980.
    [187] Renard, Philippe. Approximate discharge for constant head test with recharging boundary.Ground Water, v43, n3, May/June, 2005, p439-442.
    [188] Shamma, John. Tempelis, Daniel. Duke, Steven. Fordham; Eric. Freeman, Tom.Arrowhead tunnels: Assessing groundwater control measures in a fractured hard rock medium.Proceedings-Rapid Excavation and Tunneling Conference, 2003, p296-305.
    [189] Molinero, Jorge. Samper, Javier. Juanes, Ruben. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks.Engineering Geology, v64, n4, June, 2002, p369-386.
    [190]黄涛,杨立中.渗流-应力-温度耦合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999 ,34(5):554-559.
    [191]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181.
    [192]贾疏源.华蓥山隧道暴雨涌突水及其对隧道的影响[J].世界隧道,1999,1:50-55.
    [193]王建秀.大型地下工程岩溶涌(突)水模式的水文地质分析及其工程应用[J].水文地质工程地质,2001,4: 49-52.
    [194]刘高.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报,2002,8(3): 160-164.
    [195]徐则民.深埋岩溶隧道涌水最大水头压力评估[J].地球科学进展,2004, 19(1):363-367.
    [196]蒋忠信.深埋岩溶隧道水压力的预测与预报[J].铁道工程学报,2005,6:37-40.
    [197]白明洲.长大隧道施工过程中突水突泥灾害预测预报技术研究[J].公路交通科技,2005,22(6): 123-126.
    [198]郑黎明.隧道涌水灾害预测的随机性数学模型方法[J].西南交通大学学报,1998,6(3).
    [199]李兴高,刘维宁.隧道渗涌水的随机模型预测[J].中国安全科学学报,2002,8(4).
    [200]刘丹,李启彬.秦岭特长隧道涌水量的预测研究[J].煤田地质与勘测,2005,2(1).
    [201] Noorishad J, Ayatollahi M S., Witherspoon P. A.. Finite-element method for coupled stress and fluid flow analysis in fractured rock masses. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts, 1982, 19(4):185-195.
    [202] Meiri, David. Unconfined groundwater flow calculation into a tunnel. Journal of Hydrology,v82, n1-2, Nov30, 1985, p69-75.
    [203] Barton, N.Bandis, S.Bakhtar, K., Steength. deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts, 1985, 22(3):21-140.
    [204] Oda, Masanobu. Equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986, 22(13):I84-1856.
    [205] Heuer, Ronald E. Estimating rock tunnel water inflow. Proceedings-Rapid Excavation and Tunneling Conference, 1995, p41-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700