用户名: 密码: 验证码:
大坝安全监控感智融合理论和方法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以智能大坝仿生系统的构建为目标,基于开放的复杂巨型系统思想,通过人工智能理论、信息科学、计算机科学与传统坝工理论的融合和渗透,探讨了大坝安全监控智能化感知融合理论和方法中的一些关键技术并将其应用到工程实际中。论文主要内容如下:
     (1)大坝安全监控感智融合体系的构建。基于大坝系统病变的渐变性、结构的不确定性和力学特性的多元性等特征,从智能结构系统的定义和智能结构健康监测的设计思想出发,映射出“大坝智能体”的概念,研究了大坝安全监控感智融合理论和方法框架。
     (2)传感器智能化技术研究。在对传感器静、动态特性研究的基础上,探讨了智能传感器功能和实现途径,并充分借助人工神经网络强的非线性拟合能力、并行处理信息能力和容错能力等,研究了传感器噪声自适应抑制、故障自诊断等功能的智能化实现方法。
     (3)传感器优化布置理论和方法研究。从传感器系统有效度和系统代价出发,建立多传感器冗余融合系统的最小代价准则,并给出了实现其优化设计的模拟退火算法,由此可得出大坝安全感知传感器类型和数量的最优解。基于传递(识别)误差最小准则,充分考虑大坝感知领域特点和经济等因素,建立了传感器测点定位优化模型,根据传感器监测的目标不同,采用相应优化理论和方法,即可实现测点定位优化设计。
     (4)野值诊断方法研究。粗差的随机—模糊二重性决定了野值的诊断需用随机模糊处理方法,视粗差为模糊(F)子集,通过建立隶属函数,给出粗差的判据、R-F均值及R-F方差等,可以合理准确地诊断出野值。
     (5)数据优化融合技术研究。以置信度距离测度作为数据融合的融合度,利用置信矩阵、关系矩阵得到多传感器的最佳融合数,最终以Bayes估计理论为基础得到多传感器最优融合值。
     (6)大坝系统智能辩识理论和方法研究。利用小波神经网络良好的逼近和容错能力,进行多模型非线性融合函数的设计和模拟,并采用混合学习算法,建立大坝系统效应集和荷载集的确定性关系融合模型。将参数反演归结为数学规划中求平方和函数极小化问题,以位移观测值与位移计算值之差达到满意为优化目标,应用遗传退火算法,实现材料物性参数的识别,建立大坝系统效应集与荷载集的非确定性关系模型。
     (7)大坝病害自适应分析诊断技术研究。借助粗集理论,对实例和原型观测数据构成的大坝病害分析诊断决策系统信息表,实施属性约简和最佳属性约简,挖掘大坝病害的潜在病因,提炼主要病因,从而为大坝病害的分析诊断提供依据。基于大坝病害诊断物元的共扼特性,实现大坝病害的定性分析,应用可拓集合论,通过大坝潜在病因关联函数的计算,实现大坝病害诊断的定量描述。
     (8)大坝健康综合评价理论和方法研究。借助可拓学理论,基于菱形思维模式和物元的可拓性,开拓出大坝健康评价的指标体系;采用物元的概念将评价对象、评价指标和量值结合为一体,应用物元变换建立大坝健康评价的物元模型,实现大坝健康的定性与定量综合集成评价
Dam system was regarded as an opening, complex and giant system. Artificial intelligent theory, information science and computer technique were introduced to dam safety monitoring for building intelligent bionics dam system. The key technologies on theory and method of intelligent sensing and fusion were proposed in the dissertation using integration of these theories and conventional theories on dam monitoring. The main contents are as follows.
    (1) The dam agent was purposed based on dam safety monitoring. The system of intelligent sensing and fusion for dam safety monitoring was built.
    (2) Based on static and dynamic characteristic of sensor, the functions and realization approach of intelligent sensor were present. Artificial neural network was introduced to restrain adaptively noise and diagnosis fault of sensor, with nonlinear function fit, adaptation and robustness property.
    (3) Based on the system's availability constraint with minimum cost, optimizing criteria was presented. Simulated annealing algorithm for solving the combinatorial optimization problem was given. Based on the rule of minimum for transfer error, the model of optimal placement for sensors was designed. Optimal placement of sensors was realized with some optimal algorithms.
    (4) Random-fuzzy diagnosis method for outliers was purposed because of the random and fuzzy characters of gross error. Gross error was treated as the fuzzy-subset. Subordinate function was established. The mean, covariance and probability distribution function of the random-fuzzy variable were given, and a test criterion for gross error was concluded.
    (5) The optimal fused data was given from multisensor data by bayesion estimation theory. Distance measure of belief degree was regarded as data fusion degree. The optimal fusion number was given by belief matrix and relation matrix. The optimal fused data result was obtained by bayesion estimation theory.
    (6) Intelligent fusion theory and method of dam system identification were studied. A new nonlinear fusion forecasting model based on wavelet network was presented. A hybrid learning algorithm for wavelet network was presented to quicken up the speed of convergence, which combined the Levenberg-Marquardt algorithm with least squares method. The model of determinate relation between effect set and load set was built with it. Back-analysis for parameter of dam was regarded as minimizing for square summation function in mathematics programming. Optimal aim was that the difference between observation value and calculation value of displacement was very little. Making use of the genetic simulated annealing algorithm, dam parameters were identified. The model of indeterminate relation between effect set and load set was built with it.
    (7) Rough set theory and extenics were introduced to analyze and diagnosis adaptively the disease of dam. Dam pathogeny was mined and induced from real examples and
    
    
    observation data with the reduction theory of rough set and 2-dimension information system. The dam disease was analyzed qualitatively based on conjugate characteristic of matter-element of diagnosis for dam disease. With extension set theory, the dam disease was analyzed qualitatively using relationship function of potential pathogeny of dam.
    (8) Extenics was introduced to assess comprehensively dam health. The index system for dam health assessment was built with rhombus-thinking and extension of matter-element. Assessment object, assessment index and value were integrated with the concept of matter-element. The matter-element model of dam health assessment was built up by use of change of matter-element. The dam health was evaluated qualitatively and qualitatively.
引文
[1] 陈宗梁,国外水电技术的发展[J],中国工程科学,2002,4(4):86~92
    [2] 潘家铮,中国水利建设的成就问题和展望[J],中国工程科学,2002,4(2):42~51
    [3] 吴中如、沈长松、阮焕祥,水工建筑物安全监控理论及其应用[M],南京:河海大学出版社,1990
    [4] 吴中如、顾冲时,大坝安全综合评价专家系统[M],北京:科学技术出版社,1997
    [5] 吴中如、朱伯芳,三峡水工建筑物安全监测及反馈设计[M],北京:中国水利水电出版社,1999
    [6] 吴中如、顾冲时,大坝原型反分析及其应用[M],南京:江苏科学技术出版社,2000
    [7] 邢林生,我国水电站大坝事故分析与安全对策[J],水利水电科技进展,2001,21(2):26~32
    [8] 汝乃华、姜忠胜,大坝事故与安全·拱坝[M],北京:中国水利水电出版社,1995
    [9] 赵纯厚、朱镇宏、周端庄,世界江河与大坝[M],北京:中国水利水电出版社,2000
    [10] 水电部科技情报所,国内外水利水电技术发展概况[M],北京:水利电力出版社,1984
    [11] 钱正英,中国水利[M],北京:水利电力出版社,1991
    [12] 陈宗梁,世界超级高坝[M],北京:中国电力出版社,1998
    [13] 邢林生,水电站大坝安全定期检查的成效与展望[J],水利水电技术,2002,33(4):27~30
    [14] 汝乃华、牛运光,土石坝的事故统计和分析[J],大坝与安全,2001(1):31~37
    [15] 吴中如,老坝病变和机理探讨[J],大坝监测技术,2000(3):1~5
    [16] 弓正华、储海宁、沈家俊、李珍照,迈向21世纪的中国水电站大坝安全监察,99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:1~9
    [17] 王仁钟、李君纯、刘嘉忻等,中国水利大坝的安全与管理[C],99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:10~14
    [18] 河海大学,佛子岭连拱坝原型性态分析,1984
    [19] 林育德、吴中如,佛子岭连拱坝原型结构性态分析[J],观测技术,1986(9)
    [20] 河海大学,龙羊峡大坝及基础工作性态分析报告,1986
    [21] 沈振中、苏怀智、吴中如等,水口水电站工程在线实时监控及反馈分析系统[J],河海大学学报,2000,28(2):12~16
    [22] 吕刚,我国大坝安全监测仪器设备的发展[C],99大坝安全及监测国际研讨会论文集,中国书籍出版社,1999:600~604
    [23] 吕刚,我国大坝安全监测系统自动化技术的发展[J],大坝安全与土工测试,1996(1)
    [24] 吕刚,大坝及工程安全监测技术及自动化监测仪器、监测系统的发展[J],大坝监测技术,2000(3):22~32
    [25] 魏德荣,九五期间水电站大坝安全监测的进展及发展前景[J],大坝监测技术,2000(3):33~38
    [26] 赵志仁、赵永,大坝安全监测设计与施工技术的若干问题[J],大坝监测技术,2000(3):14~21
    [27] 赵志仁,水利水电工程监测设计的优化[J],大坝监测技术,1999(4):1~22
    [28] Committee on Monitoring of Dams and their Foundation. Monitoring Dams and their Foundations, State of the Art ICOLD Rulletin 68, 1989
    
    
    [29] 彭虹,大坝安全监测自动化系统[J],大坝监测技术,1999(1):11~39
    [30] 关怀宇,周兆英,熊沈蜀等,堤坝隐患探测技术的现状与展望[J],长江科学院院报,2000,17(3):38~40
    [31] 赵志仁,试论大坝安全监测设计的原则与要求[J],大坝监测技术,1997(4):1~7
    [32] 刘景僖、武方洁,长江三峡大坝安全监测设计[J],大坝监测技术,1997(4):14~28
    [33] Hubber P.J. Robust Statistics, New York: John Wiley & Sons, 1981
    [34] Hampel, et. Robust Statistics-approach based on influence. John Wilaly and Sons Press, 1986
    [35] 范金城、胡绍林,动态测量数据抗扰性研究综述[J],数理统计与应用概率,1996,11(3)
    [36] 韦博成等,统计诊断引论[M],南京:东南大学出版社,1991
    [37] 胡峰、范金城,动态测量系统的有界影响滤波[J],控制理论及应用,1992,11(1)
    [38] Cook R.D and Weisberg s. Reiduals and Influence in Regression[C]. New York: Chapman and Half, 1982
    [39] Baarda W. A testing Procedure for Using in Geodetic Network[J]. Netherlands Geodetic Commission, Publ. on Geodesy, New Series. Delft. 1986, 2(5)
    [40] 欧吉坤,粗差的拟准检定法(QUAD法)[J],测绘学报,1999,28(1):15~20
    [41] 周江文、黄幼才、杨元喜等,抗差最小二乘法[M],武汉:华中理工大学出版社,1997
    [42] Huang Youcai and Stelios P Mertikas. On the design of Robust Regression Estimators. Manuscripta Geodaetica, 19995(20): 145~160
    [43] Sun WP. A new method for localization of gross errors. Survey Review, 1994, 32(352)
    [44] 陶本藻、刘宗泉,总述粗差估计与检验[J],四川测绘,1999,22(2):56~59
    [45] 林洪桦,动态测试与数据处理[M],北京:北京理工大学出版社,1995
    [46] Stelzer D, HB Papo. Kalman filter, smothing and datum of dynamic reference system. Manscripta Geodaetica, 1994, 19(3)
    [47] 倪礼宾,测量数据中粗大误差的在线剔除[J],计量与测试技术,1998(5):9~10
    [48] 岳建平,在线监测数据的可靠性检验方法研究[J],大坝安全与土工测试,1997(2):13~15
    [49] 华锡生、岳建平,数据诊断在建立安全监控模型中的应用[J],水力发电学报,1997(1):18~24
    [50] 王礼法,剔除含有粗差观测值的方法[J],大连水产学院学报,1997(1):51~54
    [51] 王正明、易东云,测量数据建模与参数估计[M],长沙:国防科技大学出版社,1996
    [52] 张贤达,现代信号处理[M],北京:清华大学出版社,1995
    [53] 徐友仁、王俊云、胡铁力,垂线投影坐标仪的信息处理及光学CT反演算法[J],河海大学学报,1998(1)
    [54] Clark G A, Sengupta S K, Schaich P D J. Data fusion for the detecting of buried land mines[A]. Proceedings of SPIE: Substance Identification Analytics[C]. Washington: SPIE-The international Society for Optical Engineering. 1994:456~567
    [55] Chaudhuri, Crandall A, Reidy D. Multisensor data fusion for mine detection[A]. Proceedings of SPIE: Sensor FusionⅢ[C]. Washington: SPIE-The international Society for Optical Engineering. 1990: 187~204
    [56] Tonini,D. Observed behavior of several leakier arch dams. Proc. ASCE, Journal of the Power Division ,Vol.82,Dec 1956
    [57] Xerez, A.,Lamas,J.F. Methods of analysis of arch dam behavior. Ⅵ Congress on Large Dams, R.39,Q.21, New York, 1958
    [58] Rocha, M. et al. A Quantitative method for the interpretation of the results of the observation of
    
    dams. Ⅵ Congress on Large Dams, Report on Question 21 New York, 1958
    [59] Widmann,R. Evaluation of deformation measurements performed at concrete dam. Commission Internationals of Grands Banrages, 1967
    [60] P. Bonaldi, M.Fanelli, G.Giusepptti, Displacement forecasting for concrete dams via deterministic mathematical models. International Water Power & Dam Construction, Vol.29, No.9,1977
    [61] Gueds,Q.,M.,Coelho,P.,S.,M. Statistical behaviour model of dams. 15th ICOLD congress, Q.56,R. 16, Lausanne
    [62] Purer, E, Steiner, N. Application of statistical methods in monitoring dam behaviour. International Water Power & Dam Construction,December, 1986
    [63] MARIA CRVE AEEVEDD, Experimental study of concrete arch dams 40 years of LNEC experience, Lisboa, July 1986
    [64] Kalkani,E.,C. Polynomial regression to forecast earth dam piezometer levels. Journal of Irrigation &Drainage Engineering-ASCE. Vol. 115,Aug. 1989,.45-55
    [65] Luc E. Chouinard et al. Statistical analysis in real time of monitoring data for idukki arch dam. 2nd international conference on dam safety evaluation, Trivandrum, India. 1996,381-385
    [66] 陈久宇、林见编著,观测数据的处理方法[M],上海:上海交通大学出版社,1988
    [67] 陈久宇,应用实测位移资料研究刘家峡重力坝横缝的结构作用[J],水利学报,1982(12):12~20
    [68] 吴中如,混凝土坝观测物理量的数学模型及其应用[J],华东水利学院学报,1984(3):20~25
    [69] 吴中如、沈长松、阮焕祥,论混凝土坝变形统计模型的因子选择[J],河海大学学报,1988(6)
    [70] 吴中如,论混凝土坝安全监控的确定性模型和混合模型[J],水利学报,1989(5):64~70
    [71] Wu Zhongru, Wang Zhanrui. Dynamic monitoring model of space displacement field of concrete dam. International Symposium on monitoring technology of dam safety, 1992:215-224
    [72] 顾冲时、吴中如、蔡新,探讨混凝土坝空间位移场的正反分析模型[J],工程力学,1997,14(1):138~144
    [73] 黄铭、李珍照,重力坝安全监测位移多测点二维分布数学模型的研究[J],1997,30(1):1~5
    [74] 何金平、李珍照,大坝结构性态多测点数学模型研究[J],武汉水利电力大学学报,1994,27(2):134~142
    [75] 张进平、庄万康,大坝安全监测的位移分布数学模型[J],水利学报,1991(5):28~35
    [76] 杨代泉,连拱坝原型结构性态分析,[硕士学位论文],河海大学,1987
    [77] 李民、李珍照,用数字滤波法从大坝测值中分离出时效分量初探[J],武汉水利电力大学学报,1995(2):137~141
    [78] 刘祖强,工程变形态势的组合模型分析与预测[J],大坝观测与测试,1996(3):11~14
    [79] 徐洪钟、张乾飞、顾冲时,基于神经网络的土石坝沉降组合[J],水电能源科学,2000,18(4)
    [80] 李民、李珍照,大坝观测资料分析时回归—时序模型[J],武汉水利电力大学学报(增刊),1995:27~31
    [81] 尹晖等,灰色动态预测方法及其在变形预测中的应用[J],武汉测绘大学学报,1996,21(1):31~35
    [82] 蓝悦明、王新洲,灰色预测用于大坝变形预测的研究[J],武汉测绘大学学报,1996,21(1):350~354
    
    
    [83] 马能武,大坝监测资料动平均灰色模型分析方法研究[J],河海大学学报,1997,25(1):116~118
    [84] 刘观标,用逐步模糊聚类分析法进行混凝土坝的位移预报[J],大坝观测与土工测试,1989(3):10~17
    [85] 顾冲时、吴中如,应用模糊控制论建立新安江3号坝基扬压力预测模型[J],大坝观测与土工测试,1996(4):7~10
    [86] 赵斌、吴中如、张爱玲,BP模型在大坝安全监测中的应用[J],大坝观测与土工测试,1999(6):1~3
    [87] 陈继光、吕学昌,土坝观测数据的模糊人工神经网络分析[J],水利学报,2000(1):19~21
    [88] 朱伯芳等,结构优化设计原理与应用[M],北京:水利电力出版社,1984
    [89] 朱伯芳,水工建筑物的施工期反馈设计[J],水力发电学报,1995(2):74~81
    [90] Giusepptti G. Basic theory underlying the computation of influence coefficients. ISMES, 1986
    [91] 吴中如、阮焕祥,混凝土坝观测资料的反分析[J],河海大学学报,1989(2):10~17
    [92] 刘观标、吴中如,反演连拱坝混凝土的物理参数[J],河海大学学报,1987(4):26~33
    [93] 吴中如、陈继禹、范树平,用反演分析法推求连拱坝混凝土的力学参数和断裂韧度[J],大坝观测与土工测试,1986(1):3~11
    [94] 刘眉县,混凝土导温系数的计算[J],大坝观测与土工测试,1981(1):18~24
    [95] N.Shimizu & S.Sakurai. Application of boundary element method for back analysis associated with tunneling problems. Proc. of Sth Int. Conf. Boundary Elements, Hiroshima, Japan
    [96] 樱井春辅等,地下洞室的一种设计方法[J],国外地质,1981(1):17~25
    [97] 刘永芳,弹性介质岩体中非圆形洞室位移反分析计算[J],岩石力学与工程学报,1986(5)
    [98] 杨志法、刘竹华,地下工程有限元图谱的根据及其应用[J],地下工程,1982(2):2~9
    [99] 杨志法、刘竹华,位移反分析在地下工程设计中的初步应用[J],地下工程,1981(2):20~24
    [100] 吴凯华,隧洞围岩原始应力与弹性常数的反分析[J],土木工程学报,1988(2):51~59
    [101] G.Gioda. Indirect identification of the average elastic characteristics of rock masses. Proc. Int. Conf. on Struc. Foundations on Rock, Sydney, 1980
    [102] 刘怀恒,数值方法在岩石力学及地下工程中的应用,第一届全国计算岩土力学研讨会论文集,西南大学出版社,1987
    [103] 杨林德、黄伟,初始地应力位移反分析计算的有限单元法[J],同济大学学报,1985(4):15~20
    [104] 杨林德,地层三维粘弹性反演分析[J],岩土工程学报,1991(6):18~26
    [105] 沈家荫、林柄仕,边界单元法在粘弹性参数位移反馈分析中的应用[J],河海大学学报,1990,18(5):1~10
    [106] 沈振中,三维粘弹性位移反分析的可变容差法[J],水利学报,1997(9):66~70
    [107] 朱合华,摄动粘弹性模型的反演分析,首届全国青年岩石力学学术研讨会文集,上海,1991
    [108] 陈子荫,由位移测定值反算流变岩体变形性质参数及地应力[J],煤炭学报,1982(4)
    [109] 王芝银、刘怀恒,粘—弹—塑有限元分析及其中岩石力学与工程中的应用[J],西安矿业学院学报,1985(1):89~92
    [110] 王芝银、李云鹏,地下工程围岩粘弹塑性参数反分析[J],水利学报,1990(9):11~16
    [111] 胡维俊、吉占亮、陈明关,拱坝反分析的多点拟合法[J],水利学报,1991(7):27~33
    [112] 李守巨、刘迎曦等,云峰大坝弹性参数识别的神经网络方法[J],水利水电技术,2000(8):51~54
    [113] 冯夏庭、张治强、杨成祥等,位移反分析的进化神经网络方法研究[J],岩石力学与工程学
    
    报,1999(5):529~533
    [114]刘迎曦、王爱刚、李守巨、王海菊,识别混凝土重力坝弹性模量的一种新方法[J],大连理工大学学报,2000,40(2):144~147
    [115]吴中如、顾冲时等,应用综合评判法分析大坝的结构性态[J],大坝与安全,1991(4):5~15
    [116]魏德荣,大坝病害分析方法研究[J],大坝监测技术:1~9
    [117]吴中如、顾冲时、胡群革等,综论大坝安全综合评价专家系统[J],水电能源科学,2000,18(2):1~5
    [118]苏怀智、吴中如、温志萍等,水口大坝监控系统的测值疑点成因分析的研究[J],河海大学学报,2001,29(3):55~29
    [119]苏怀智、沈振中、吴中如、温志萍,二滩拱坝安全监测在线监控系统总体设计(英)[J],水电能源科学,2001,19(1):77~80
    [120]何金平,大坝结构实测性态综合评价指标体系研究[J],大坝观测与土工测试,2000,24(6):20~22
    [121]李珍照、薛桂玉等,评价三峡水工建筑物监测性态的体系和方法研究,三峡水利枢纽工程应用基础研究(第二卷),北京:地质出版社,1997
    [122]杨捷、何金平、李珍照,大坝结构实测性态综合评价中定量评价指标度量方法的基本思路[J],武汉大学学报(工学版),2001,34(4):25~28
    [123]尉维斌、李珍照,大坝安全模糊综合评判决策方法的研究[J],水电站设计,1994(1):1~7
    [124]何金平、李珍照,基于突变理论的大坝安全动态模糊综合分析与评判[J],系统工程,1997(5):39~43
    [125]李珍照、何金平等,大坝实测性态模糊模式识别方法的研究[J],武汉水利电力大学学报,1998,31(2):1~4
    [126]何金平、李珍照等,基于属性识别理论的大坝结构性态综合评价[J],武汉水利电力大学学报,1998,31(3):1~4
    [127]吴云芳、李珍照、薛桂玉,大坝实测性态的多级灰关联评估方法研究[J],大坝观测与土工测试,1998(5)
    [128]何金平、李珍照、薛桂玉、李民,大坝实测性态模糊积分评判模型的研究[J],武汉测绘科技大学,1998(2)
    [129]钱学森、于景元、戴汝元,一个科学新领域—开放的复杂巨系统及其方法论[J],自然杂志,1990,13(1):10~13
    [130]王寿云、于景龙、戴汝为,开放的复杂巨系统[M],杭州:浙江科学技术出版社,1996
    [131]戴汝为,从定性到定量的综合集成技术[J],模式识别与人工智能,1991,4(1)
    [132]黄尚廉,智能材料系统与结构—工程构造安全监控的一条崭新思路[J],世界科技研究与进展,1996,6(3):61~64
    [133]黄尚廉,智能材料系统与结构工程构造安全监控的一条崭新思路[J],中国工程师,1997(5):7~9
    [134]韩雷,智能结构浅议[J],应用力学学报,1999,16(1):94~98
    [135]陶宝祺,智能材料结构[M],北京:国防工业出版社,1997
    [136]黄尚廉,智能结构—工程科学萌生的一场革命[J],压电与声光,1993,15(5):13~15
    [137]Rogers C.A. Intelligent material system, the dawn of a new materials Age.J. Intelligent Material Systems and Structures. 1993,4:4~12
    [138]Liu S.C., Chong K.P., Singh M.P. Civil infrastructure systems research: Hazard mitigation and intelligent material systems, J. Smart Material and Structure, Vol.4, Suplement 1 A, March 1995,
    
    A169~174
    [139] Chang F.K. Structural health monitoring: A summary report on the first international workshop on structural health monitoring. September 18~20, 1997, The Proceedings of "Structure Health Monitoring". Stanford University, Stanford, CA, Sep., 1999, ⅹⅸ-ⅹⅹⅸ
    [140] Spillman W.B.Tr., Huston D.R. Smart civil structures technology patential application for the three Gorges dam Project, ICHMCIS'99 Proceedings, Edited by Shanglian Huang, 12~31, ISBN7-5624-2019-X/TN.31
    [141] S.C.Liu, Natural disaster mitigation research: New frontier. ICHMCIS'99 Proceedings, Edited by Shanglian Huang, 12~31, ISBN7-5624-2019-X/TN.31
    [142] Huang S.L, Chen W.M. Overview of health monitoring for civil infrastructure system in China, ICHMCIS'99 Proceedings, Edited by Shanglian Huang, 33~42, ISBN7-5624-2019-X/TN.31
    [143] Lau, C.K, Wong, K.Y., Flint A.R., The structural health monitoring system for cable-supported bridge is Tsing Ma control area. Proceedings of Work-shop on Research and Monitoring of Long Span Bridges, 26~28 April 2000, Hong Kong, rp. 14~23
    [144] 黄尚廉,智能结构系统—减灾防灾的研究前沿[J],土木工程学报,2000,33(4):1~5
    [145] 董聪、夏人伟,智能结构设计与控制中的若干核心技术问题[J],力学进展,1996,26(2)
    [146] 李士勇编著,模糊控制·神经控制和智能控制论[M],哈尔滨:哈尔滨工业大学出版社,1998
    [147] 阎平凡、黄端旭,人工神经网络—模型·分析与应用[M],合肥:安徽教育出版社,1993
    [148] 陈国良等,遗传算法及其应用[M],北京:人民邮电出版社,1996
    [149] 曾黄麟编著,粗集理论及其应用—关于数据推理的新方法[M],重庆:重庆大学出版社,1996
    [150] 蔡文、杨春燕、林伟初,可拓工程方法[M],北京:科学出版社,2000
    [151] 张晋斌,传感器技术发展的必要性,趋势及建议[J],仪器仪表学报,1997,18(5):132~135
    [152] Brignell and White, Intelligent Sensor Systems. UK: IOP(Instutute of Physics) Publishing Inc, 1994
    [153] 刘君华,智能传感器系统[M],西安:西安电子科技大学出版社,2000
    [154] Meijer G C M. Concept and Focus Points for Intelligent Sensor Systems, Sensors and Actuators A, 1994, 41(15): 183~191
    [155] Johan H. Huijsing. Integrated smart sensors. Sensors and Actuators(A), 1992,30:167~174
    [156] 贺安之,现代传感器原理及原理[M],北京:宇航大学出版社,1995
    [157] 张光照、王香文,微机械加工技术—LIGA技术[J],传感器技术,1997,16(2):57~60
    [158] Wilmshurst TH, Signal Recovery from Noise in Electronic Instrumentation. 2nded. Bristol: Iop Publishing Ltd Techno, 1990, 29~37
    [159] Friedlunder B. Lattice filter for adaptive processing. Proc of the IEEE, 1982, 70(8): 821~867
    [160] Koiran P, Sontag E D. Neural Networks with Quadratic VC Dimension. Journal of Computer and System Sciences, 1997, 54:190~198
    [161] Stephen W P. Steepest descent algorithms for neural network controllers and filters. IEEE Trans on Neural Networks, 1994(5)
    [162] 廖伯瑜,机械故障诊断基础[M],北京:冶金工业出版社,1995
    [163] Sinnasamy R, Naidu, S.R., E.Iafiriou, et al. Use of Neural Networks for Sensor Failure Detection in a Control System. IEEE Control Systems Magazine, 1990, (3): 49~55
    [164] Zhang J, et al. Process Modeling and Fault Diagnosis Using Fuzzy Neural Networks. Fuzzy Set and System, 1996, 79(1): 127~140
    [165] Zhang Xinmin, Ye Xiaochun, Zhang chen and Sun Jinwei. Artificial Neural Network for Sensor
    
    Failure Detection in an Automotive Engine. IEEE Annual Conference of IMTC'94, Hamamatsu: 1994: 167~170
    [166] Hartman E J, Keeler J D, Kowalski J M. Layered Neural Networks wih Gaussiafi Hidden Units as Universal Approximations. Neural Computation, 1990, 2(2): 210~215
    [167] Chen S, Billing S A. Neural networks for nonlinear dynamic system modeling and identification. International Journal of Control, 1992, 56(2)
    [168] 吕震中、刘吉臻、王志明,计算机控制技术与系统[M],北京:中国电力出版社,1996
    [169] John Brignell, Neil White. Intelligent Sensor Systems. London: Institute of Physics Publishing, 1996
    [170] Stallings W. Data and computer communications. USA: Prentice Hall Inc, 1997
    [171] 马少梅,现场总线与分散型控制系统[J],仪器仪表学报,1997,18(5)
    [172] Lamport L, Shostak R, Pease M. The byzantine generals problem. ACM Trans Program Lang Syst. 1982, 4(3):382~401
    [173] 刘福强、张令弥,作动器/传感器优化布置的研究进展[J],力学进展,2000,30(4):506~515
    [174] Baruh H, Choe K. Sensor failure detection method for flexible structures. Journal of Guidance, Control, and Dynamics, 1987, 10(5): 474~482
    [175] Marzulio K. Tolerating failures of continuous-valued sensors. ACM Trans on Computer Systems, 1990, 8(4): 284~304
    [176] 李弋、秦友、董聪,用遗传算法选择悬索桥监测系统中传感器的最优布点[J],工程力学,2000,17(1):25~34
    [177] Yearout Robert D, Prabhaker Reddy, Grosh D L. Standby Redundancy in Reliability—A Review. IEEE Trans. On Reliability, 1986, 35(3):285~292
    [178] Thoms Risse. On the Evaluation of the Reliability of k-out-of-n system. IEEE Trans. On Reliability, 1987, 36(4):433~435
    [179] Chao M T, Fu J C, Koutras M V. Survey of Reliability Studies of Consecutive- k-out-of-n: F & Related Systems. IEEE Trans. On Reliability, 1995, 44(1): 120~127
    [180] Aarts E H L et al. Simulated Annealing: Theory and Application. Dordrecht: D Reidel Publishing Company, 1987
    [181] Haiek B. Cooling schedules for optimal annealing, working paper(MOR 86), 1986
    [182] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing. Science, 1983,220:671~680
    [183] Anily S, Federgruen. Probabilistic analysis of simulated annealing methods. Graduate school of business, Gdumbia University, New York, Preprint, 1985
    [184] Chen S, Billing S A. Neural networks for nonlinear dynamic system modeling and identification. International Journal of Control, 1992, 56(2)
    [185] Baker J E. Adaptive selection methods for genetic algorithms. Inc. New York, 1985,110~111
    [186] Sasaki, Takeshiet al. Multi-operator self-tuning genetic algorithm for optimization. IECON Proceedings (Industrial Electronics Conference) V3 1997. P: 1034~1039
    [187] Tiao GC. Autoregressive Moving Average Models, Inter. Problems and Outlier Detection in Time Series, Handbook of Slat.5
    [188] 李朝奎,现代测量误差概念的内涵与外延[J],工程勘察,2000(2):28~30
    [189] Gupta M. Approximate Reasoning in Decision Analysis. North-Holland Publishing Company, 1982:3~11
    
    
    [190] 张尧庭、方开泰,多元统计分析引论[M],北京:科学出版社,1997
    [191] 沈一鹰、冉启文、刘永坦,改进的格拉布斯准则在信号检测门限估值中的应用[J],哈尔滨工业大学学报,1999(3)
    [192] Whalen A D. Detection of Signals in Noise. New York: Academic Press, 1971
    [193] J.Llinas, E.Waltz. Multisensor Data Fusion. Artech House, Norwood, Massachusetts, 1990
    [194] 刘国明、夏祖勋、解洪成,数据融合技术及其应用[M],北京:国防工业出版社,1998
    [195] D.L.Hall, J.Llinas. An Introduction to Multisensor Data Fusion. Proceedings of The IEEE. Vol.85, No. 1, Jan. 1997: 6~23
    [196] Luo, R.C. et al. Dynamic Multi-sensor Data Fusion System for Intelligent Robots. IEEE Journ. of Robatics and Automations, 1988, RA-4:386~396
    [197] Durrant-Whyte. Sensor Models and Multisensor Integration. Int. Journ. of Robatics Research, 1988,7:97~113
    [198] Berger J O. Statistical Decision Theory and Bayesion. Springer-Verlag, NewYork, 1986
    [199] Marphy R R. Sensor and information fusion for improved vision-based vehicle guidance. IEEE Expert, 1998,13(6):49~56
    [200] Murphy R R. Dempster-shafer theory for sensor fusion in autonomous mobile robots. IEEE Trans on Robot Autom, 1998, 14(2): 197~206
    [201] 陈福增,多传感器数据融合的数学方法[J],数学的认识与实践,1995(2):11~15
    [202] Herckerman D, Mamdanic A, Chickering D. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 1995,25(3): 197~243
    [203] Herckerman D. Bayescian Networks for Knowledge Discovery. Advances in Knowledge Discovery and Data Mining. Ed: U.M. Fayyad, G, Piatetsky-Shapire, P. Smyth, and R.S. Uthurasamy. The AAAI Press, 1996:163~169
    [204] 殷勤业、杨宗凯、谈正等编译,模式识别与神经网络[M],北京:机械工业出版社,1992
    [205] 陈念贻、钦佩、陈瑞亮、陆文聪,模式识别方法在化学化工中的应用[M],北京:科学出版社,2000
    [206] [日]盐见弘、岛冈淳、石山敬幸,故障模式和影响分析与故障树分析的应用[M],北京:机械工业出版社,1989
    [207] 史定华、王松瑞,故障树分析技术方法和理论[M],北京:北京师范大学出版社,1991
    [208] Davis R. Retrospective on diagnostic reasoning based structure and behavior. Artificial Intelligence, 1993,59:149~157
    [209] Pawlak Z. Rough Sets[J]. International Journal of Information and Computer Science, 1982,11(5):314~356
    [210] Pawlak Z, Grzymala-Busse, Slowinski R, et al. Rough Sets. Communications of the ACM, 1995,38(11):88~95
    [211] Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, 1991
    [212] Ivo Dntsch, Gnther Gediga. Simple Data Filtering in Rough Set Systems. International Journal of Approximate Reasoning, 1998,18:93~106
    [213] Banerjee M, Chakraborty M K. A category for rough sets. Foundations of Computing and Decision Sciences, 1993,18(3-4): 167~180
    [214] 张文修,吴伟志、梁吉业、李德玉编著,粗糙集理论与方法[M],北京:科学出版社,2001
    [215] 王国胤编著,Rough集理论与知识获取[M],西安:西安交通大学出版社,2001
    
    
    [216]管纪文,刘大为,知识工程原理,吉林大学出版社,1988
    [217]Bazan Jan G, Skowron A, Synak Piotr. Market Data Analysis: A Rough Set Approach. Technical Report: 6/94 University of Warsaw, 1994
    [218]Golan R, Ziarko W. A Methodology for Stock Market Analysis Using Rough Set Theory. Proceedings of IEEE/IAFE Conference on Computational Intelligence for Fiancial Engineering. New York City, 1995:32~40
    [219]Nguyen S H. Discretization of real value attributes. Boolean reasoning approach[D]. Warsaw: Warsaw University, 1997
    [220]赵卫东、李旗号,粗集在决策树优化中的应用[J],系统工程学报,2001,16(4)
    [221]Slowinski R. Rough Classification of HSV Patients. Intelligent Decision Support. Kluwer: Roman Slowinski, 1992:71~94
    [222]Hu X H, Cercone N. Learning in relational database: A rough set approach. Inter. J. of Computational Intelligence, 1995, 11(2): 323~338
    [223]Lenarcik A, Piasta Z. Discretication of Condition Attributes Spaces. Intelligent Decision Support. Kluwer: Roman Slowinski, 1992:373~389
    [224]苗夺谦,Rough Set理论中连续属性的离散化[J],自动化学报,2001,27(3):298~302
    [225]WANG Jue, MIAO Duo-Qian. Analysis on attribute reduction strategies of rough set. J. Of Computer Science and Technology, 1998,13(2): 189~192
    [226]李剑、范小军,黄沛,基于粗糙集的知识理论及其应用[J],系统工程理论方法应用,2001,10(3):184~188
    [227]吴福保、李奇、宋文忠,基于粗集理论知识表达系统的一种归纳学习方法[J],控制与决策,1999,14(3):206~211
    [228]夏雨佳、李少远、席裕庚,一种基于粗糙集的信息系统决策规则提取方法[J],控制与决策,2001,16(5):577~580
    [229]李永敏、朱善辉等,基于粗糙集理论的数据挖掘模型[J],清华大学学报,1999,39(1):110~113
    [230]S Wong. Comparison of rough sets and statistical methods in inductive learning. Int J Man-Machine Studies, 1986,26:53-72
    [231]常犁云,王国胤、吴渝,一种Rough Set理论的属性约简及规则提取方法[J],软件学报,1999,10(11):1206~1211
    [232]王珏、苗夺谦、周育健,关于Rough Set理论与应用综述[J],模式识别与人工智能,1996,9(4):337~344
    [233]刘发升、杨炳儒,一种基于粗糙集的多层次、逐步求精的发掘算法[J],计算机工程与应用,1999(5)
    [234]Wang G Y, Wu Y, Liu F. Generating Rules and Reasoning under Inconsistencies. IEEE International Conference on Industrial Electronics, Control and Instrumentation, Nagoya, Japan, 2000,2536~2541
    [235]Wang G Y, Liu F. The Inconsistency in Rough Set Based Rules Generation. The Second International Conference on Rough Sets and Current Trends in Computing, 2000,332~339
    [236]Wang G Y, Fisher P S. Rule Generation Based on Rough Set Theory. In: Dasarathy B V, ed. Data Mining and Knowledge Discovery: Theory, Tools, and TechnologyⅡ, Proceedings of SPIE Vol.4057, 2000,181~189.
    [237]曾宪报,组合赋权新探[J],预测,1997,16(5):69~72
    
    
    [238] J.M.Bates, G.W.J.Granger. Combination of forecasts. Operations Research Quarterly, 1969,20(4):451~468
    [239] Bunn D W. Forecasting with more than one model. Journal of Forecasting, 1989,8(3): 161~166
    [240] Reeves G R, Lawrence K D. Combining forecasts given different types of objectives. European Journal of Operational Research, 1991,51(1)
    [241] Bunn D W. Combining forecasts. European Journal of Operational Research, 1988,33(3): 223~229
    [242] 董景荣,一种新的基于模糊模型的非线性组合预测方法及其应用[J],系统工程理论与实践,2000(5):109~114
    [243] 张青,基于神经网络最优组合预测方法的应用研究[J],系统工程理论与实践,2001(9):90~93
    [244] Zhang, Q. and Bcnveniste, A.. Wavelets networks. IEEE Trans. Neural Networks, 1992, 3(6): 889~898
    [245] 胡昌华、张军波、夏军等,基于MATLAB的系统分析与设计—小波分析[M],西安:西安电子科技大学出版社,1999
    [246] 李世雄,小波变换及其应用[M],北京:高等教育出版社,1997
    [247] Zhang Q. Using wavelet Network in Nonparametric Estimation. IEEE Trans. on Neural Networks, 1997,8(2)
    [248] Marquardt D. Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Id.Appl.Math., 1963:431~441
    [249] S Chen et al. Orthogonal Least Squares Learning Algorithm for Function Networks. IEEE Trans. On Neural Networks, 1991,2(2):302~309
    [250] T. Okabe. Inverse of drilling-induced tensile fracture data obtained from a single inclined borehole. Int. J.Mech. Min. Sct, 1998,35(6):747~758
    [251] William W G. Aquifer parameter identification with optimum dimension in parameterization. Water Resources, 1981,17(3):664~672
    [252] 李守巨、刘迎曦等,基于神经网络的混凝土大坝弹性参数识别方法[J],大连理工大学学报,2000,40(5):531~535
    [253] 梁艳春,人工神经网络应用于地下洞室围岩参数识别研究[J],模式识别与人工智能,1996,9(1):71~77
    [254] 李守巨、刘迎曦、王登刚,岩石和混凝土材料参数识别的修正高斯—牛顿法[J],岩石力学与工程学报,2000,19(1)
    [255] 高强、郭杏林、杨海天,遗传算法求解粘弹性反问题[J],大连理工大学学报,2000,40(6):664~668
    [256] Cojoc, Dan, Alenandrescu, Adrian. Optimization of the computer generated binary holograms using genetic algorithms. Proceedings of SPIE the International Society for Optinal Engineering V3904 1999. P:256~262
    [257] Hanaki, Yasushi. Acceleration of evolutionary computations using fitness estimation. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. ATM 1999. P:776~781
    [258] Lin F T, Kao C Y. et al. Applying the genetic approach to simulated annealing in solving some NP-hard. IEEE Trans on SMC, 1993,23(6): 1752~1767
    [259] 金龙、陈宁、林振山,基于人工神经网络的集成预报方法研究和比较[J],气象学报,1999,
    
    57(2): 198~207
    [260]Chen J I, Islam Shafiqual, Pratim Biswas. Nonlinear dynamics of hourly ozone concentrations: nonparametric short term prediction. Atmospheric Environment, May 1998,32(11): 1839~1848
    [261]罗俊峰、郑君里、孙守宇,混沌与神经网络相结合的预测算法及其应用[J],电波科学学报,1999(2):7~12
    [262]张玉祥,可拓集合和物元变换的哲学思考[J],系统工程理论与实践,1998,18(1):113~115
    [263]郭开仲,用计算机处理不相容问题[J],智囊与物元分析,1986(2):41~48
    [264]杜春彦,基于物元可拓性的推理模型[J],系统工程理论与实践,1998,18(2):124~127
    [265]何斌、王若恩,物元演绎推理[J],系统工程理论与实践,1998,18(1):85~92
    [266]刘巍、张秀芳,基于可拓信息的知识表示[J],系统工程理论与实践,1998,18(1):104~107
    [267]李立希、李嘉,可拓知识库系统及其应用[J],中国工程科学,2001,3(3):61~64
    [268]杨春燕、何斌,系统故障的可拓诊断方法[J],广东工业大学学报,1998,15(1):98~103
    [269]蓝荣、赵恩昌,医疗过程的物元模型[J],系统工程理论与实践,1998,18(2):135~138
    [270]河海大学,龙羊峡大坝下游面裂缝成因分析及观测资料分析报告,2002
    [271]蔡文,物元模型及其应用[M],北京:科学技术文献出版社,1994
    [272]蔡文,从物元分析到可拓学[M],北京:科学技术文献出版社,1995
    [273]杨春燕、蔡文,可拓工程研究[J],中国工程科学,2000,2(12):90~96
    [274]张光宇,土地资源优化配置的物元模型[J],系统工程理论与实践,1998,18(1):108~112
    [275]蒋淳、田山等,中强地震预报综合评判物元模型及其应用[J],系统工程理论与实践,1998,18(1):134~138
    [276]胡宝清,可拓评价方法在围岩稳定性分类中的应用[J],水利学报,2000(2):66~70
    [277]张军涛、李哲、郑度,基于可拓工程方法的生态地理区域系统界线划分研究[J],地理学报,2001,56(1):20~31
    [278]胡宝清,区域水环境质量的区间可拓评价方法及应用[J],中国工程科学,2001,3(6):53~56
    [279]王彦武,地下采矿工程岩体质量可拓模糊评价方法[J],岩石力学与工程学报,2002,21(1):18~22
    [280]萨蒂TL,层次分析法—在资源分配、管理和冲突分析中的应用[M],北京:煤炭工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700