用户名: 密码: 验证码:
日光性角化病中TGFβ1/Smad信号通路作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分日光性角化病临床病理分析
     目的:日光性角化病(AK)发病率逐年上升,并可进一步转化为鳞状细胞癌(SCC)。为提高临床诊断、防治水平及最大限度降低患病率及死亡率,完善高原地区AK流行病学资料,本研究就其临床、病理诊断方面的特点进行综合性分析
     方法:采用回顾性研究方法对昆明医科大学第一附属医院皮肤科2011年1月~2012年12月共2年间组织病理确诊、临床资料完整的52例AK患者资料进行分析。对HE组织切片进行观察,分析其病理特征,结果用SPSS17.0统计分析。
     结果:2011至2012年间确诊AK52例,确诊AK占当年年病检量比率分别为0.49%和0.85%,占当年年门诊量比率分别为0.18‰和0.34‰,2012年占年门诊量比率比2011年上升(χ2=5.02,p=0.03);其中男性18人,女性34人,男性:女性为1:1.89;发病年龄为45~82岁,其中<50岁4例(7.7%),50~59岁11例(21.2%),60~69岁17例(32.7%),70~79岁17例(32.7%),>80岁3例(5.8%),平均发病年龄为64.98±9.78,男性平均年龄(62.44±10.76)与女性(66.32±9.11)间无明显差异(t=-1.372,p=0.176);患者以农民、建筑工人等室外工作者为主,共34例(65.3%),不同职业间的发病部位、发病年龄及病程无明显差别(p>0.05);日光反应性皮肤分型Ⅲ型皮肤有27例(57.7%),Ⅳ型皮肤有25例(42.3%),不同皮肤类型间发病年龄及病程无明显差别(p>0.05);AK皮损以红褐色、黑褐色斑丘疹伴鳞屑为主,共46例(88.5%),其中合并糜烂溃疡1例,仅黑色丘疹5例(9.6%),皮角样1例(1.9%),皮损全部分布于曝光部位,以面颊部(25例,48.1%)及颞部(23例,44.2%)多见,其次为鼻部(13例,25%)和额部(11例,21.2%),位于耳、颈及手背各1例(1.9%);AK皮损以单发为主(71.2%),多于3处皮损患者有6例(11.5%),最多达到21处;皮损平均直径为17.87±9.92mm,不同发病部位皮损直径无明显差别(p>0.05);病程平均为44.04±53.09月,其中男性平均病程为50.39±29.82,女性为40.68±62.16,男女发病平均病程比较无明显差异(p>0.05);病理分型以肥厚型为主(51.9%),其次为萎缩型(21.2%)和色素型(15.4%),而棘层松解型(7.7%)和鲍温样型(3.8%)比较少见,其中2例合并SCC;52例病理确诊AK中,临床与病理诊断符合率仅为51.9%,其中误诊为脂溢性角化病13例,基底细胞癌2例,色素痣4例,寻常疣3例,皮角2例,角化棘皮瘤1例。
     结论:1、确诊AK占年门诊量比率呈现上升趋势,应引起全社会的重视;2、AK多发于50岁以上女性的头面部曝光部位,以农民等户外工作者为主,与紫外线关系密切;3、AK临床表现多为红褐色、黑褐色斑丘疹伴鳞屑,平均病程为3.6年,以单发皮损为主,平均直径一般大于1cm;4、 AK病理分型以肥厚型为主,临床与病理诊断符合率不高,临床上容易误诊,应增加病检的适用范围,以免贻误病情,造成严重后果;5、AK向SCC转化概率高,应该早期诊断治疗。
     第二部分日光性角化病中TGFβ1/Smad信号通路作用机制的研究
     目的:AK发病率高,易向SCC转变,但发生发展机制不清。TGFβ1/Smad信号通路在皮肤癌早期抑制肿瘤生长,晚期却促进肿瘤侵袭转移,在AK中的作用机制未见报道。本研究探讨AK中TGFβ1/Smad信号通路的作用机制,阐明AK发生发展的机制。
     方法:分别培养人AK组织块及原代细胞,分为三组,第一组对照组,第二组TGFβ1添加培养组,第三组SB431542添加培养组。活性调控处理48h后:①流式细胞术、Ki-67和Tunel染色检测AK细胞和组织增殖凋亡情况;②Real-timePCR和蛋白免疫印迹检测AK组织中TGFβ1/Smad信号通路TβRII和Smad2mRNA表达及蛋白磷酸化水平,检测培养组织块用于信号通路活性调控研究的可行性;③Real-time PCR和蛋白免疫印迹检测AK组织中p53、Fas和FasL mRNA及蛋白表达。
     结果:①AK角质细胞培养12天后形态良好,呈典型的铺路石样改变。AK组织培养5天后,皮肤组织生长良好,未见大量细胞凋亡和死亡情况;②在TGFβ1添加培养后,AK角质形成细胞计数减少(99.80±6.06),Ki-67阳性细胞百分比(0.42±0.04)下降,AK组织中Ki-67阳性细胞百分比(3.90±0.24)减少(p<0.05);③在AK组织块中,与对照组相比,TGFβ1添加后TβRI磷酸化水平(0.1858±0.0]07)增加;Smad2mRNA (0.01791±0.00080)表达增加,磷酸化水平(0.6112±0.0391)增加(p<0.05)。而SB431542添加后,TβRI磷酸化水平(0.0644±0.0053)减少(p6<0.05);④在TGFβ1添加培养后,AK组织块中p53mRNA表达(0.00178±0.00010)增加,蛋白表达(0.1620±0.0155)增加,Fas蛋白表达(0.4004±0.0267)增加(p<0.05)。
     结论:1.皮肤组织块可以作为信号通路活性调控模型。2. TGFβ1/Smad信号通路在AK中发挥抑制细胞增殖作用。3.TGFβ1/Smad信号通路通过促进p53和Fas表达而发挥抑制作用。
     第三部分紫外线对日光性角化病中TGFβ1/Smad信号通路影响的研究
     目的:紫外线促进日光性角化病(AK)发生及向鳞状细胞癌(SCC)进展,严重危害人民群众生命健康,TGFβ1/Smad信号通路在AK中发挥抑制作用,研究紫外线对TGFβ1/Smad信号通路的影响,阐明紫外线致癌靶点。
     方法:分别培养AK和正常皮肤组织,分为四组,第一组为对照组,紫外线照射强度为0J/cm2,第二组为5J/cm2组,第三组为10J/cm2组,第四组为20J/cm2组。组织连续照射4天,继续培养24小时后取材,①Ki-67和Tunel染色检测AK组织增殖凋亡情况;②Real-time PCR和免疫组化检测AK组织中TGFβ1/Smad信号通路TGFβ1, TβRI, TβRII, Smad2, Smad3, Smad4和Smad7mRNA及蛋白表达。
     结果:①紫外线照射后,与对照组比较(OJ/cm2组),Ki-67阳性细胞百分率(3.74±1.16)在正常皮肤20J/cm2组中表达减少,凋亡细胞在正常皮肤(39.34±8.73)和AK(25.76±5.99)20J/cm2组中明显增加(p<0.05);②紫外线照射后,与对照组比较(OJ/cm2组),TGFβ1mRNA在正常皮肤10J/cm2(0.00821±0.00181)和20J/cm2(0.01040±0.00145)组表达增加,其蛋白在10J/cm2(0.1041±0.0064)和20J/cm2(0.1257±0.0135)组表达增加,在AK20J/cm2组其mRNA (0.00504±0.00122)和蛋白(0.0871±±0.0038)表达增加(P<0.05); TβRII mRNA (0.00119±0.00019)和蛋白(0.0366±0.0052)在正常皮肤20J/cm2组表达减少,在AK20J/cm2组其mRNA (0.00073±0.00029),在10J/cm2(0.0372±±0.0055)和20J/cm2(0.0343±±0.0043)组其蛋白表达减少(p<0.05);Smad2mRNA在AKl OJ/cm2(0.01105±0.00238)和20J/cm2(0.00519±0.00119)组,磷酸化水平在20J/cm2组中(0.0160±0.0036)表达减少(p<0.05);Smad7mRNA和蛋白在正常皮肤(0.00028±±0.00006;0.0093±0.0003)和AK(0.00055±0.00012;0.0096±±0.0009)中表达增加;TβRI, Smad3和Smad4表达未见明显变化(p>0.05)。
     结论:1.紫外线照射可能通过抑制AK中TGFβ1/Smad信号通路,促进AK向SCC进展。2.紫外线抑制TGFβ1/Smad信号通路可能与诱导Smad7表达有关。
Part I:Analysis of clinical and pathological features of actinic keratosis
     Objective:The incidence of actinic keratosis (AK) increases year by year, and AK could transform into squamous cell carcinoma (SCC) further, which is serious harmful to people's lives and health. In order to improve clinical diagnosis, prevention and treatment level and to minimize morbidity and mortality, the clinical and pathological features of AK was investigated to complete epidemiological data of AK in plateau region.
     Methods:Total histopathological confirmed52AKs, which with complete clinical data, were studied retrospectively from department of dermatology of First Affiliated Hospital of Kunming Medical University during2011to2012, and the pathological features were also observed and analyzed carefully. The data were collected and analyzed using SPSS17.0software.
     Results:There were52cases of AK diagnosed pathologically between2011and2012. Confirmed AK accounted to0.49%and0.85%of annual pathological examination number, and for annual outpatient ratio was0.18%o and0.34%o respectively. The annal outpatient ratio of2012was increased significantly comparing with2011(x2=5.02, p=0.03);52cases of AK included18males and34females, male:female was1:1.89; The age of onset was45to82years, among them<50years was4cases (7.7%),50to59years was11cases (21.2%),60to69years was17cases (32.7%),70to79years was17cases (32.7%),≥80years was3cases (5.8%), the average age of onset was64.98±9.78,the difference of average age of onset beteween males (62.44±10.76) and femals (66.32±9.11) was not significant (t=-1.372, p=0.176); The main occupation of patients was outdoor workers, such as farmers and construction workers, reached to34cases (65.3%), the diseased parts, age of onset and duration among different occupations were not significantly different (p>0.05); There were27cases (42.3%) of Type III skin according to sun-reactive skin typing, and25cases (57.7%) of Type IV skin, the age of onset and duration between different skin types were not significant different (p>0.05); The main cilinical feature of AK lesions was red-brown, dark-brown pimples with scarly, which accounting to46cases (88.5%), there was one case merged with ulcer and erosion, only the black papules was5cases (9.6%), and cutaneous horn-like was one case (1.9%), all lesions located in the sun-exposed areas of skin, there were25cased in cheek (48.1%),23cases in temporal (44.2%),13cases in nose (25%),11cases in frontal (21.2%), and one in ear (1.9%), one in neck (1.9%), one in hand (1.9%); AK lesions were mainly single (71.2%) in one patient, there were6patients had multi-lesions and the maximum reached21lesions in one patient; The mean lesion diameter was17.87±9.92mm, diameter of lesions was not sifnificantly different between different anatomical site (p>0.05); The mean disease course was44.04±53.09months, male mean disease duration was50.39±29.82months, and female was40.68±62.16months, the average duration of disease between men and women had no significant difference (p>0.05); The dominant pathological type was hypertrophic (51.9%), followed was atrophy (21.2%) and pigmented (15.4%), while acantholytic type (7.7%) and Bowenoid type (3.8%) are relatively rare, and there were2patients combined with SCC; the clinical and pathological diagnosis compliance rate was51.9%among52patients, which was misdiagnosed as seborrheic keratosis13cases, basal cell carcinoma2cases, nevi4cases, common warts3cases, cutaneous horn2cases, and1case of keratoacanthoma.
     Conclusion:1. The proportion of diagnosed AK in annual outpatient visits represented an upward trend, which should arouse the whole society's attention;2. AK more often occured in sun-exposed areas of women over the age of50, and main occupation of AK patients was outdoor workers, which demonstrated that close relationship of AK and ultraviolet radiation;3. The clinical features of AK was dominantly represented as red-brown, dark-brown pimples with scarly, mean disease duration was3.6years, and the lesion was single with the average diameter over than1cm;4. The main pathological type was hypertrophic, the low clinical and pathological diagnosis compliance rate needs for the extending of pathological examination, to avoid delaying the disease, which leading to serious consequences;5. The transformation rate of AK to SCC was high, which should be early diagnosis and treatment.
     Part II:Mechanistic study of TGFβ1/Smads signaling pathway in actinic keratosis
     Objective:The high incidence of actinic keratosis (AK), the precursor of squamous cell carcinoma (SCC), is induced by prolonged exposure to ultraviolet (UV) radiation. UV radiation could also promote transformation of AK to SCC, which is serious harmful to people's lives and health. Transforming growth factor beta1(TGF(31)/Smad signaling pathway acts as a tumor suppressor in early stages, but promotes tumor invasion in later stages. However, the mechanisms of this pathway in AK have not been studied before. In this study, the mechanisms of TGFβ1/Smads signaling pathway in AK was investigated to clarify the pathogenesis of AK.
     Methods:AK explants and primary cells were cultured and divided into3groups, Group I is control group, Group II is TGFβ1addition group, and Group III is SB431542addition group. After48h treatment, the tissues and cells were collected respectively for:A. the proliferation and apoptosis analysis with flow cytometry, Ki-67and TUNEL staining; B. the detection of TβRII and Smad2expression changes with real-time PCR and Western blot in AK explants to explore the feasibility of cultured tissue for pathway interference; C. The detection of expression changes of p53, Fas and FasL in AK explants with real-time PCR and Western blot.
     Results:A. After12d culture, the keratinocytes of AK showed a typical cobblestone change. The cultured tissues grew well, no significant apoptosis and death was observed. B. After TGFβ1administration, the number of keratinocytes (99.80±6.06), and the percentage of Ki-67was decreased (0.42±0.04) in addition group, the percentage of Ki-67was also decreased in AK tissues (3.90±0.24)(p<0.05). C. Comparing to control, mRNA of Smad2(0.01791±0.00080), the phosphorylated level of TpRI (0.1858±0.0107) and Smad2(0.6112±0.0391) was increased after TGFβ1addition, and the phosphorylated TβRI (0.0644±0.0053) was decreased after SB431542treatment (p<0.05). D. Compared with control, the mRNA (0.00178±0.00010) and protein (0.1620±0.0155) of p53, and the protein (0.4004±0.0267) of Fas was increased (p<0.05).
     Conclusion:1. ex vivo culture of skin tissue can be used as the signaling pathway interference model.2. TGFβ1/Smad signaling pathway plays an inhibition role in AK.3. TGFβ1/Smad signaling pathway exerts inhibition effect in AK through induction of p53and Fas.
     Part III:The effects of UV radiation on TGFβ1/Smad signalling pathway in AK Objective:UV radiation could promote transformation of AK to SCC, which is serious harmful to people's lives and health. TGFβ1/Smad pathway acts as a tumor suppressor in AK. However, the influence of UV on TGFβ1/Smad signaling pathway have not been studied before. In this study, the effects of UV radiation on TGFβ1/Smad in AK were investigated to clarify the machnisms of progression of AK to SCC.
     Methods:The human normal skin and AK tissues were cultured and divided into four groups:OJ/cm2group(control group),5J/cm2group,10J/cm2group, and20J/cm2group. The tissues were respectively radiated on four consecutive days.24hours after radiation, tissues were collected for real time PCR and immunohistochemistry detection of TGFβ1, TβRI, TβRII, Smad2, Smad3, Smad4and Smad7.
     Results:A. Comparing to control, the percentage of positive Ki-67cells decreased in the20J/cm2group of normal skin (3.74±1.16)(p<0.05), but was not significantly changed in AK. Compared with control, the TUNEL-positive cells in20J/cm2group of normal skin (39.34±8.73) had increased (P<0.05), and so did the20J/cm2group of AK (25.76±5.99)(P<0.05).B.After radiation,comparing to control,the mRNA and protein level of TGFβ1in the10(0.00821±0.00181;0.1041±0.0064) and20J/cm2(0.01040±0.00145;0.1257±0.0135) groups of normal skin and in the20J/cm2group (0.00504±0.00122;0.0871±0.0038) of AK was up-regulated. However, TβRII, the membrane receptor of TGFβ1, was down-regulated in the20J/cm2groups of both normal skin (0.00119±0.00019;0.0366±0.0052) and AK (0.00073±0.00029;0.0343±0.0043). The mRNA (0.00519±0.00119) and phosphorylated level of Smad2(0.0160±0.0036) was only reduced in the20J/cm2group of AK. In contrast, the inhibitor of TGFβ1/Smad pathway, Smad7, was increased in the20J/cm2groups of both AK (0.00055±0.00012;0.0096±0.0009) and normal skin (0.00028±0.00006;0.0093±0.0003)(P<0.05). The expression of TβRI, Smad3and Smad4had no significant changes (P>0.05).
     Conclusion:1. The suppression of TGFβ1/Smad pathway by UV radiation may contribute to the progression of AK to SCC.2.The suppression of UV radiation on TGFβ1/Smad signaling pathway may be associated with the induction of Smad7.
引文
[1]. Fenske, N.A., J. Spencer,F. Adam. Actinic keratoses:past, present and future. J Drugs Dermatol,2010,9 (5 Suppl ODAC Conf Pt 1):s45-9.
    [2]. PE, L., B. G, W. D,S. A,-World Health Organization classification of Tumors. Pathology and Genetics of Skin Tumors, in-2006, Lyon:IARC Press, p.30-33.
    [3]. Stockfleth, E., T. Meyer, B. Benninghoff,E. Christophers. Successful treatment of actinic keratosis with imiquimod cream 5%:a report of six cases. Br J Dermatol,2001,144 (5):1050-3.
    [4]. Memon, A.A., J.A. Tomenson, J. Bothwell,P.S. Friedmann. Prevalence of solar damage and actinic keratosis in a Merseyside population. Br J Dermatol,2000,142 (6):1154-9.
    [5].石磊,赵天恩.皮肤基底细胞癌和鳞状细胞癌的研究现状.国外医学(皮肤性病学分册),2002,28(5):4.
    [6]. A, B.-Actinic keratosis and development of cutaneous squamous cell carcinoma.-Tidsskr Nor Laegeforen.2005 Jun 16;125(12):1653-4., (-0807-7096 (Electronic)):-1653-4.
    [7]. Mittelbronn, M.A., D.L. Mullins, F.A. Ramos-Caro,F.P. Flowers. Frequency of pre-existing actinic keratosis in cutaneous squamous cell carcinoma. Int J Dermatol,1998,37 (9):677-81.
    [8]. Ratushny, V., M.D. Gober, R. Hick, T.W. Ridky,J.T. Seykora. From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest,2012,122 (2): 464-72.
    [9]. Narayanan, D.L., R.N. Saladi,J.L. Fox. Ultraviolet radiation and skin cancer. Int J Dermatol, 2010,49 (9):978-86.
    [10]. Halliday, G.M., S.N. Byrne,D.L. Damian. Ultraviolet A radiation:its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg,2011,30 (4):214-21.
    [11]. Kanellou, P., A. Zaravinos, M. Zioga, A. Stratigos, S. Baritaki, G. Soufla, O. Zoras,D.A. Spandidos. Genomic instability, mutations and expression analysis of the tumour suppressor genes pl4(ARF), p15(INK4b), p16(INK4a) and p53 in actinic keratosis. Cancer Lett,2008,264 (1): 145-61.
    [12]. JM, S., K. SM, J. W, D. VA,W. IB.-Activated ras genes occur in human actinic keratoses, premalignant precursors to.-Arch Dermatol.1995 Jul; 131(7):796-800., (-0003-987X (Print)):-796-800.
    [13]. Nelson, M.A., J.G. Einspahr, D.S. Alberts, C.A. Balfour, J.A. Wymer, K.L. Welch, S.J. Salasche, J.L. Bangert, T.M. Grogan,P.O. Bozzo. Analysis of the p53 gene in human precancerous actinic keratosis lesions and squamous cell cancers. Cancer Lett,1994,85 (1):23-9.
    [14]. JH, E.-Photocarcinogenesis, skin cancer, and aging.-J Am Acad Dermatol.1983 Oct;9(4):487-502., (-0190-9622 (Print)):-487-502.
    [15]. BK, A.,K. A.-The epidemiology of UV induced skin cancer.-J Photochem Photobiol B. 2001 Oct;63(1-3):8-18., (-1011-1344 (Print)):-8-18.
    [16]. Benjamin, C.L.,H.N. Ananthaswamy. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol,2007,224 (3):241-8.
    [17]. Khavari, P.A. Modelling cancer in human skin tissue. Nat Rev Cancer,2006,6 (4): 270-80.
    [18]. Zhao, L., W. Li, C. Marshall, T. Griffin, M. Hanson, R. Hick, T. Dentchev, E. Williams, A. Werth, C. Miller, H. Bashir, W. Pear,J.T. Seykora. Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notchl and p53. Cancer Res,2009,69 (24):9439-47.
    [19]. V, K., M. A, G.-V. J, H. B, L. K, L. C, N. V, D. R, W. EF,D. GP.-EGFR signalling as a negative regulator of Notchl gene transcription and function.-Nat Cell Biol.2008 Aug;10(8):902-11. doi:10.1038/ncb1750. Epub 2008 Jul 6., (-1476-4679 (Electronic)):-902-11.
    [20]. Hildesheim, J., G.I. Belova, S.D. Tyner, X. Zhou, L. Vardanian,A.J. Fornace, Jr. Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene,2004,23 (10):1829-37.
    [21]. Satchell, A.C., R.S. Barnetson,G.M. Halliday. Increased Fas ligand expression by T cells and tumour cells in the progression of actinic keratosis to squamous cell carcinoma. Br J Dermatol, 2004,151 (1):42-9.
    [22]. Mortier, L., P. Marchetti, E. Delaporte, E. Martin de Lassalle, P. Thomas, F. Piette, P. Formstecher, R. Polakowska,P.M. Danze. Progression of actinic keratosis to squamous cell carcinoma of the skin correlates with deletion of the 9p21 region encoding the p16(INK4a) tumor suppressor. Cancer Lett,2002,176 (2):205-14.
    [23]. Heldin, C.H., K. Miyazono,P. ten Dijke. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature,1997,390 (6659):465-71.
    [24]. PY, M.,S.-W. CB.-Transforming growth factor-beta:recent advances on its role in immune tolerance.-Methods Mol Biol.2011;677:303-38. doi:10.1007/978-1-60761-869-0_21., (-1940-6029 (Electronic)):-303-38.
    [25]. H, M.,B.-H. MH.-TGF-beta biology in mammary development and breast cancer.-Cold Spring Harb Perspect Biol.2011 Jan 1;3(1):a003277. doi:, (-1943-0264 (Electronic)):-a003277.
    [26]. MA, P., T. L,J. GJ.-Role of transforming growth factor beta in the regulation of thyroid function and.-Thyroid.2009 Aug;19(8):881-92. doi:10.1089/thy.2007.0303., (-1557-9077 (Electronic)):-881-92.
    [27]. Massague, J. TGFbeta in Cancer. Cell,2008,134 (2):215-30.
    [28]. Cui, W., D.J. Fowlis, S. Bryson, E. Duffie, H. Ireland, A. Balmain,R.J. Akhurst. TGFbetal inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell,1996,86 (4):531-42.
    [29]. Chen, Y.K., S.H. Yang, A.H. Huang, S.S. Hsue,L.M. Lin. Aberrant expression in multiple components of the transforming growth factor-betal-induced Smad signaling pathway during 7,12-dimethylbenz[a]anthracene-induced hamster buccal-pouch squamous-cell carcinogenesis. Oral Oncol,2011,47 (4):262-7.
    [30]. Quan, T., T. He, S. Kang, J.J. Voorhees,G.J. Fisher. Ultraviolet irradiation alters transforming growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol,2002, 119 (2):499-506.
    [31].施健,缪旭,林桦.脂溢性角化病96例和日光性角化病28例临床与病理分析.中国皮肤性病学杂志,2012,26(8):704-705,716.
    [32]. RN, W., S. A, E. R, H. V, S. E,N. A.-The Natural History of Actinic Keratosis:A Systematic Review.-Br J Dermatol.2013 May 6. doi:10.1111/bjd.12420., (-1365-2133 (Electronic)):T-aheadofprint.
    [33]. TB, F.-The validity and practicality of sun-reactive skin types I through VI.-Arch Dermatol.1988 Jun;124(6):869-71., (-0003-987X (Print)):-869-71.
    [34]. MA, P.-Sunscreens. Topical and systemic approaches for the prevention of acute and.-Dermatol Clin.1986 Apr;4(2):321-34., (-0733-8635 (Print)):-321-34.
    [35].龙庭凤,刘流,何黎,沈丽达,柴燕杰,袁瑞红,杨亚萍.日光性角化病90例临床及病理特征分析.临床皮肤科杂志,2010,39(5):
    [36]. HW, R., W. MA, H. AR, H. MR, F. SR, F. AB.,C. BM,-Incidence estimate of nonmelanoma skin cancer in the United States,2006.
    [37]. MP, S., E. M, B. RC, W. JL, M. R,G. GG.-Non-melanoma skin cancer in Australia:the 2002 national survey and trends since.-Med J Aust.2006 Jan 2;184(1):6-10., (-0025-729X (Print)):-6-10.
    [38]. CH, Y., 认识及预防皮肤癌.2008, Hong Kong:The Hong Kong Anti-Cancer Society.
    [39]. Taskforce for Annual Report of Macao Cancer Registry. Annual report of macao cancer registry. Health Bureau Government of Macao Special Administrative Region.2003-2008.
    [40]. DSEC. Environment Statistics. Statistics and Census Service of Macao SAR.2003-2008.
    [41].王建军,李振刚,王乐,夏莉,喻楠,汪京峡.光线性角化病48例分析.宁夏医学杂志,2008,30(12):1181-1182.
    [42].吴斌,彭春.日光性角化病45例临床病理分析.实用医技杂志,2013,20(2):202-203.
    [43].翁立强,张春萍,陈俊.40例日光性角化病的临床与病理分析.福建医药杂志,2010,32(3):48-49.
    [44].程艳艳.70例确诊日光性角化病临床特征分析.当代医学,2012,18(20):123-124.
    [45].邓建华.南海渔民日光性角化病51例分析.海南医学,2001,12(5):38.
    [46].何勤,涂平,马圣清,伍玲慎.皮肤恶性肿瘤及癌前病变707例统计分析.中华皮肤科杂志,2003,36(2):109.
    [47]. SS, V, L. D, S. MJ,R. GS,-Clinical recognition of actinic keratoses in a high-risk population:how good are.
    [48]. CA, F.,G. AC,W. GM.-The prevalence and determinants of solar keratoses at a subtropical latitude.-Br J Dermatol.1998 Dec;139(6):1033-9., (-0007-0963 (Print)):-1033-9.
    [49]. JD, W., H. RD, H. RP,S. DL.-The influence of history on interobserver agreement for diagnosing actinic.-J Am Acad Dermatol.1995 Oct;33(4):603-7., (-0190-9622 (Print)):-603-7.[50].李颖,在体共聚焦激光扫描显微镜在色素和肿瘤性皮肤病诊断中的应用研究.2008,复旦大学.
    [51].朱学骏,涂平,皮肤病的组织病理诊断.2001,北京:北京医科大学出版社.
    [52]. Franzen, P., P. ten Dijke, H. Ichijo, H. Yamashita, P. Schulz, C.H. Heldin,K. Miyazono. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type Ⅱ receptor. Cell,1993,75 (4):681-92.
    [53]. Kleeff, J., T. Ishiwata, H. Maruyama, H. Friess, P. Truong, M.W. Buchler, D. Falb,M. Korc. The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene,1999,18 (39):5363-72.
    [54]. Wang, X.J., K.M. Liefer, S. Tsai, B.W. O'Malley,D.R. Roop. Development of gene-switch transgenic mice that inducibly express transforming growth factor betal in the epidermis. Proc Natl Acad Sci USA,1999,96 (15):8483-8.
    [55]. R, P., S. WP, B. MW, L. HF,W. RA.-TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that.-Nat Cell Biol.2001 Aug;3(8):708-14., (-1465-7392 (Print)):-708-14.
    [56]. Roberts, A.B.,L.M. Wakefield. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci US A,2003,100(15):8621-3.
    [57]. BH, W., H. W, O. KL,W. XJ.-Inducible expression of transforming growth factor betal in papillomas causes.-Cancer Res.2001 Oct 15;61(20):7435-43., (-0008-5472 (Print)):-7435-43.
    [58]. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell,1997,88 (3): 323-31.
    [59]. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi,M. Oren. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature,1991,352 (6333):345-7.
    [60]. Chou, T.H.,C.H. Liang. The molecular effects of aloe-emodin (AE)/liposome-AE on human nonmelanoma skin cancer cells and skin permeation. Chem Res Toxicol,2009,22 (12): 2017-28.
    [61]. Shima, Y., K. Nakao, T. Nakashima, A. Kawakami, K. Nakata, K. Hamasaki, Y. Kato, K. Eguchi,N. Ishii. Activation of caspase-8 in transforming growth factor-beta-induced apoptosis of human hepatoma cells. Hepatology,1999,30 (5):1215-22.
    [62].龙庭凤,何黎,刘流,沈丽达,李坤杰,涂颖.人日光性角化病角质形成细胞的体外培养.中国组织工程研究与临床康复,2010,14(20):
    [63].李新华,乔丽芳,张开明,刘玉峰,尹国华.气液交界面皮肤组织体外培养方法的研究.中华皮肤科杂志,2006,39(2):110-111.
    [64]. L, T., P. H, W. J, L. M, S. T,S. T.-Human odontoblast culture method:the expression of collagen and matrix.-Adv Dent Res.2001 Aug;15:55-8., (-0895-9374 (Print)):-55-8.
    [65]. Codina, J., J. Cardwell, J.J. Gitomer, Y. Cui, B.C. Kone,T.D. Dubose, Jr. Sch-28080 depletes intracellular ATP selectively in mIMCD-3 cells. Am J Physiol Cell Physiol,2000,279 (5): C1319-26.
    [66].赵辩主编.临床皮肤病学.江苏科学技术出版社,2009,第五版18.
    [67]. Steinstraesser, L., A. Rittig, K. Gevers, M. Sorkin, T. Hirsch, M. Kesting, M. Sand, S. Al-Benna, S. Langer, H.U. Steinau,F. Jacobsen. A human full-skin culture system for interventional studies. Eplasty,2009,9 e5.
    [68]. Pearton, M., S.M. Kang, J.M. Song, A.V. Anstey, M. Ivory, R.W. Compans,J.C. Birchall. Changes in human Langerhans cells following intradermal injection of influenza virus-like particle vaccines. PLoS One,2010,5 (8):e12410.
    [69]. Portugal-Cohen, M., Y. Soroka, M. Frusic-Zlotkin, L. Verkhovsky, F.M. Bregegere, R. Neuman, R. Kohen,Y. Milner. Skin organ culture as a model to study oxidative stress, inflammation and structural alterations associated with UVB-induced photodamage. Exp Dermatol, 2011,20 (9):749-55.
    [70]. Han, Y.P., T.L. Tuan, M. Hughes, H. Wu,W.L. Garner. Transforming growth factor-beta-and tumor necrosis factor-alpha-mediated induction and proteolytic activation of MMP-9 in human skin. J Biol Chem,2001,276 (25):22341-50.
    [71]. O, I., K. AC, A. MF, N. JM, K. A, C.-R. N,D. B.-Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and.-J Invest Dermatol.2011 Jan;131(1):59-66. doi: 10.1038/jid.2010.281. Epub 2010, (-1523-1747 (Electronic)):-59-66.
    [72]. Battegay, E.J., E.W. Raines, R.A. Seifert, D.F. Bowen-Pope,R. Ross. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell,1990,63 (3):515-24.
    [73]. Bierie, B.,H.L. Moses. Tumour microenvironment:TGFbeta:the molecular Jekyll and Hyde of cancer. Nat Rev Cancer,2006,6 (7):506-20.
    [74]. Sellheyer, K., J.R. Bickenbach, J.A. Rothnagel, D. Bundman, M.A. Longley, T. Krieg, N.S. Roche, A.B. Roberts,D.R. Roop. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA, 1993,90 (11):5237-41.
    [75]. Kastan, M.B.,J. Bartek. Cell-cycle checkpoints and cancer. Nature,2004,432 (7015): 316-23.
    [76]. Harper, J.V.,G. Brooks. The mammalian cell cycle:an overview. Methods Mol Biol,2005, 296 113-53.
    [77]. Cheng, T. Cell cycle inhibitors in normal and tumor stem cells. Oncogene,2004,23 (43): 7256-66.
    [78]. Schuster, N.,K. Krieglstein. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res,2002,307(1):1-14.
    [79]. Larisch, S., Y. Yi, R. Lotan, H. Kerner, S. Eimerl, W. Tony Parks, Y. Gottfried, S. Birkey Reffey, M.P. de Caestecker, D. Danielpour, N. Book-Melamed, R. Timberg, C.S. Duckett, R.J. Lechleider, H. Steller, J. Orly, S.J. Kim,A.B. Roberts. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol,2000,2 (12):915-21.
    [80]. Ku, J.L., S.H. Park, K.A. Yoon, Y.K. Shin, K.H. Kim, J.S. Choi, H.C. Kang, I.J. Kim, I.O. Han,J.G. Park. Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines:a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation. Cancer Lett,2007,247 (2):283-92.
    [81]. Bierie, B., D.G. Stover, T.W. Abel, A. Chytil, A.E. Gorska, M. Aakre, E. Forrester, L. Yang, K.U. Wagner,H.L. Moses. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res,2008,68 (6):1809-19.
    [82], EM, W., B. MA, L. H, C. RP,R. HP.-TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following.-Radiother Oncol.2007 Jun;83(3):289-95. Epub 2007 Jun 8., (-0167-8140 (Print)):-289-95.
    [83]. S, Z., E. M, T. N, B. S, D. P, G. S, T. S, H. CH,L. M.-TGFbetal-induced activation of ATM and p53 mediates apoptosis in a.-Cell Cycle.2006 Dec;5(23):2787-95. Epub 2006 Dec 1., (-1551-4005 (Electronic)):-2787-95.
    [84].黄志纯,邓红,冯旭,张凤兵,蒋静娟,刘东风.TGF-β1 CD44V6 bcl-2及p53蛋白在喉鳞状细胞癌组织中的表达及其临床相关性研究.临床耳鼻咽喉科杂志,2004,18(12): 733-736.
    [85]. Sulkowski, S., A. Wincewicz, M. Sulkowska,M. Koda. Transforming growth factor-betal and regulators of apoptosis. Ann N Y Acad Sci,2009,1171 116-23.
    [86]. Paterson, I.C., V. Patel, J.R. Sandy, S.S. Prime,W.A. Yeudall. Effects of transforming growth factor beta-1 on growth-regulatory genes in tumour-derived human oral keratinocytes. Br J Cancer,1995,72 (4):922-7.
    [87]. Kuerbitz, S.J., B.S. Plunkett, W.V. Walsh,M.B. Kastan. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA,1992,89 (16):7491-5.
    [88]. Biswas, G., M. Guha,N.G. Avadhani. Mitochondria-to-nucleus stress signaling in mammalian cells:nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene,2005,354 132-9.
    [89]. Burnworth, B., S. Arendt, S. Muffler, V. Steinkraus, E.B. Brocker, C. Birek, W. Hartschuh, A. Jauch,P. Boukamp. The multi-step process of human skin carcinogenesis:a role for p53, cyclin D1, hTERT, p16, and TSP-1. Eur J Cell Biol,2007,86 (11-12):763-80.
    [90]. Hall, P.A., P.H. McKee, H.D. Menage, R. Dover,D.P. Lane. High levels of p53 protein in UV-irradiated normal human skin. Oncogene,1993,8 (1):203-7.
    [91]. Tokino, T.,Y. Nakamura. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol,2000,33(1):1-6.
    [92].赵宏,丁相奇,顾东霞,张海龙,杨小云,靖鹏举.TGF-β1对RPE细胞bcl-2/Fas mRNA和Caspase-3表达的影响.眼科新进展,2006,26(3):4.
    [93]. Sanchez-Capelo, A. Dual role for TGF-betal in apoptosis. Cytokine Growth Factor Rev, 2005,16(1):15-34.
    [94]. Hagimoto, N., K. Kuwano, I. Inoshima, M. Yoshimi, N. Nakamura, M. Fujita, T. Maeyama,N. Hara. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol,2002,168 (12):6470-8.
    [95]. Ashley, D.M., F.M. Kong, D.D. Bigner,L.P. Hale. Endogenous expression of transforming growth factor betal inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res,1998,58 (2):302-9.
    [96]. Bai, L., Z. Yu, C. Wang, G. Qian,G. Wang. Dual role of TGF-betal on Fas-induced apoptosis in lung epithelial cells. Respir Physiol Neurobiol,2011,177 (3):241-6.
    [97]. Ramp, U., U. Bretschneider, T. Ebert, C. Karagiannidis, R. Willers, H.E. Gabbert,C.D. Gerharz. Prognostic implications of CD95 receptor expression in clear cell renal carcinomas. Hum Pathol,2003,34 (2):174-9.
    [98]. Bennett, M.W., J. O'Connell, G.C. O'Sullivan, C. Brady, D. Roche, J.K. Collins,F. Shanahan. The Fas counterattack in vivo:apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol,1998,160 (11): 5669-75.
    [99]. Shiraki, K., N. Tsuji, T. Shioda, K.J. Isselbacher,H. Takahashi. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A,1997,94 (12): 6420-5.
    [100]].杨开颜,俞康,李剑敏,黄卡特.鳞癌与基底细胞癌的Fas/FasL表达及其与细胞凋亡的关系.癌变·畸变·突变,2003,15(4):2.
    [101]. Filipowicz, E., P. Adegboyega, R.L. Sanchez,Z. Gatalica. Expression of CD95 (Fas) in sun-exposed human skin and cutaneous carcinomas. Cancer,2002,94 (3):814-9.
    [102].耿松梅,刘恩让,张磐谏,谭升顺.Fas FasL在BOWen病和鳞状细胞癌中的表达及意义.中国皮肤性病学杂志,2000,14(1):3.
    [103]].陈乔尔,王元银,李倩,周健.口腔黏膜癌前病变和口腔鳞癌组织Fas/FasL的表达及其意义.临床口腔医学杂志,2006,22(7):4.
    [104]. Roskams, T., L. Libbrecht, B. Van Damme,V. Desmet. Fas and Fas ligand:strong co-expression in human hepatocytes surrounding hepatocellular carcinoma; can cancer induce suicide in peritumoural cells? J Pathol,2000,191 (2):150-3.
    [105]. Wolf, B.B.,D.R. Green. Suicidal tendencies:apoptotic cell death by caspase family proteinases. J Biol Chem,1999,274 (29):20049-52.
    [106]. Han, K.H., H.R. Choi, C.H. Won, J.H. Chung, K.H. Cho, H.C. Eun,K.H. Kim. Alteration of the TGF-beta/SMAD pathway in intrinsically and UV-induced skin aging. Mech Ageing Dev, 2005,126 (5):560-7.
    [107]. Ibuki, Y., M. Allanson, K.M. Dixon,V.E. Reeve. Radiation sources providing increased UVA/UVB ratios attenuate the apoptotic effects of the UVB waveband UVA-dose-dependently in hairless mouse skin. J Invest Dermatol,2007,127 (9):2236-44.
    [108]. Sarasin, A. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res, 1999,428 (1-2):5-10.
    [109]. Kraemer, K.H., D.D. Levy, C.N. Parris, E.M. Gozukara, S. Moriwaki, S. Adelberg,M.M. Seidman. Xeroderma pigmentosum and related disorders:examining the linkage between defective DNA repair and cancer. J Invest Dermatol,1994,103 (5 Suppl):96S-101S.
    [110]. W, V., v.V. AJ, C. M, S. L, A. E, W. G, J. NG, P. A, A. CF, L. AR,et al.-Three unusual repair deficiencies associated with transcription factor.-Cold Spring Harb Symp Quant Biol. 1994;59:317-29., (-0091-7451 (Print)):-317-29.
    [111]. Hill, L.L., A. Ouhtit, S.M. Loughlin, M.L. Kripke, H.N. Ananthaswamy,L.B. Owen-Schaub. Fas ligand:a sensor for DNA damage critical in skin cancer etiology. Science, 1999,285 (5429):898-900.
    [112]. Lee, D.H.,G.P. Pfeifer. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem,2003,278 (12):10314-21.
    [113]. Bomser, J.A. Selective induction of mitogen-activated protein kinases in human lens epithelial cells by ultraviolet radiation. J Biochem Mol Toxicol,2002,16 (1):33-40.
    [114]. Bell, S., K. Degitz, M. Quirling, N. Jilg, S. Page,K. Brand. Involvement of NF-kappaB signalling in skin physiology and disease. Cell Signal,2003,15 (1):1-7.
    [115]. K, I., O. H, Z. T, L. C, W. Y, Z. X, Y. Q, B. C, H. Y, S. K, W. CY, H. X, M. OA, Y. M, W. BO,G. KL.-TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK.-Cell.2006 Sep 8;126(5):955-68., (-0092-8674 (Print)):-955-68.
    [116]. K, L., S. A, K. MB, V. G, H. T, S. T, S. AH, G. S, B. JA,B. S.-An important role of CD80/CD86-CTLA-4 signaling during photocarcinogenesis in.-J Immunol.2005 May 1;174(9):5298-305., (-0022-1767 (Print)):-5298-305.
    [117]. El-Abaseri, T.B., S. Putta,L.A. Hansen. Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor. Carcinogenesis,2006,27 (2):225-31.
    [118]. Lee, E., J.Y. Yi, E. Chung,Y. Son. Transforming growth factorbeta(1) transactivates EGFR via an H(2)O(2)-dependent mechanism in squamous carcinoma cell line. Cancer Lett,2010, 290(1):43-8.
    [119]. Derynck, R.,Y.E. Zhang. Smad-dependent and Smad-independent pathways.in TGF-beta family signalling. Nature,2003,425 (6958):577-84.
    [120]. Kreuter, A., J. Hyun, M. Skrygan, A. Sommer, N.S. Tomi, F. Breuckmann, P. Altmeyer,T. Gambichler. Ultraviolet A1 phototherapy decreases inhibitory SMAD7 gene expression in localized scleroderma. Arch Dermatol Res,2006,298 (6):265-72.
    [121].张勇,秦娜,于斌.TGF-(3/Smads信号转导通路的研究进展.广西医科大学学报,2009,26(1):3.
    [122].曾庆彪,匡玉珍,甘润良.皮肤鳞状细胞癌Smad2和Smad7的表达及其临床意义.南华大学学报(医学版),2005,33(4):6.
    [1]. Fenske, N.A., J. Spencer, F. Adam. Actinic keratoses:past, present and future. J Drugs Dermatol,2010,9 (5 Suppl ODAC Conf Pt 1):s45-9.
    [2]. Stockfleth, E., T. Meyer, B. Benninghoff, E. Christophers. Successful treatment of actinic keratosis with imiquimod cream 5%:a report of six cases. Br J Dermatol,2001,144 (5):1050-3.
    [3]. Memon, A.A., J.A. Tomenson, J. Bothwell, P.S. Friedmann. Prevalence of solar damage and actinic keratosis in a Merseyside population. Br J Dermatol,2000,142 (6):1154-9.
    [4]. Berner, A. [Actinic keratosis and development of cutaneous squamous cell carcinoma]. Tidsskr Nor Laegeforen,2005,125 (12):1653-4.
    [5]. Mittelbronn, M.A., D.L. Mullins, F.A. Ramos-Caro, F.P. Flowers. Frequency of pre-existing actinic keratosis in cutaneous squamous cell carcinoma. Int J Dermatol,1998,37 (9): 677-81.
    [6]. Ratushny, V., M.D. Gober, R. Hick, T.W. Ridky, J.T. Seykora. From keratinocyte to cancer:the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest,2012, 122 (2):464-72.
    [7]. Persaud, A.N., E. Shamuelova, D. Sherer, W. Lou, G. Singer, C. Cervera, S. Lamba, M.G. Lebwohl. Clinical effect of imiquimod 5%cream in the treatment of actinic keratosis. J Am Acad Dermatol,2002,47 (4):553-6.
    [8].龙庭凤,刘流,沈丽达,李坤杰,杨亚萍,陈文颖,涂颖,何黎.90例确诊日光性角化病临床特征分析.皮肤病与性病,2010,(01):12-15.
    [9]. Ackerman, A.B., J.M. Mones. Solar (actinic) keratosis is squamous cell carcinoma. Br J Dermatol,2006,155 (1):9-22.
    [10]. Cabral, L.S., C. Festa Neto, J.A. Sanches, Jr., I.R. Ruiz. Genomic instability in human actinic keratosis and squamous cell carcinoma. Clinics (Sao Paulo),2011,66 (4):523-8.
    [11]. Ashton, K.J., S.R. Weinstein, D.J. Maguire, L.R. Griffiths. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch Dermatol,2003,139 (7):876-82.
    [12]. Kanellou, P., A. Zaravinos, M. Zioga, A. Stratigos, S. Baritaki, G. Soufla, O. Zoras, D.A. Spandidos. Genomic instability, mutations and expression analysis of the tumour suppressor genes pl4(ARF), p!5(INK4b), p16(INK4a) and p53 in actinic keratosis. Cancer Lett,2008,264 (]): 145-61.
    [13]. Spencer, J.M., S.M. Kahn, W. Jiang, V.A. DeLeo, I.B. Weinstein. Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Arch Dermatol,1995,131 (7):796-800.
    [14]. Nelson, M.A., J.G Einspahr, D.S. Alberts, C.A. Balfour, J.A. Wymer, K.L. Welch, S.J. Salasche, J.L. Bangert, T.M. Grogan, P.O. Bozzo. Analysis of the p53 gene in human precancerous actinic keratosis lesions and squamous cell cancers. Cancer Lett,1994,85 (1):23-9.
    [15]. Lee, D.H., G.P. Pfeifer. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J Biol Chem,2003,278 (12): 10314-21.
    [16]. Dang, C, M. Gottschling, K. Manning, E. O'Currain, S. Schneider, W. Sterry, E. Stockfleth, I. Nindl. Identification of dysregulated genes in cutaneous squamous cell carcinoma. Oncol Rep,2006,16 (3):513-9.
    [17]. Padilla, R.S., S. Sebastian, Z. Jiang, I. Nindl, R. Larson. Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma:a spectrum of disease progression. Arch Dermatol,2010,146 (3):288-93.
    [18]. Kerkela, E., U. Saarialho-Kere. Matrix metalloproteinases in tumor progression:focus on basal and squamous cell skin cancer. Exp Dermatol,2003,12 (2):109-25.
    [19]. Tsukifuji, R., K. Tagawa, A. Hatamochi, H. Shinkai. Expression of matrix metalloproteinase-1,-2 and-3 in squamous cell carcinoma and actinic keratosis. Br J Cancer,1999, 80(7):1087-91.
    [20]. Roskams, T., L. Libbrecht, B. Van Damme, V. Desmet. Fas and Fas ligand:strong co-expression in human hepatocytes surrounding hepatocellular carcinoma; can cancer induce suicide in peritumoural cells? J Pathol,2000,191 (2):150-3.
    [21]. Ramp, U., U. Bretschneider, T. Ebert, C. Karagiannidis, R. Willers, H.E. Gabbert, CD. Gerharz. Prognostic implications of CD95 receptor expression in clear cell renal carcinomas. Hum Pathol,2003,34 (2):174-9.
    [22]. Filipowicz, E., P. Adegboyega, R.L. Sanchez, Z, Gatalica. Expression of CD95 (Fas) in sun-exposed human skin and cutaneous carcinomas. Cancer,2002,94 (3):814-9.
    [23]. Bachmann, F., S.A. Buechner, M. Wernli, S. Strebel, P. Erb. Ultraviolet light downregulates CD95 ligand and TRAIL receptor expression facilitating actinic keratosis and squamous cell carcinoma formation. J Invest Dermatol,2001,117 (1):59-66.
    [24]. Tilli, C.M., F.C. Ramaekers, J.L. Broers, C.J. Hutchison, H.A. Neumann. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br J Dermatol,2003,148 (1):102-9.
    [25]. Nindl, I., M. Gottschling, N. Krawtchenko, M.D. Lehmann, J. Rowert-Huber, J. Eberle, E. Stockfleth, T. Forschner. Low prevalence of p53, p16(INK4a) and Ha-ras tumour-specific mutations in low-graded actinic keratosis. Br J Dermatol,2007,156 Suppl 334-9.
    [26]. Bito, T., M. Ueda, A. Ito, M. Ichihashi. Less expression of cyclin E in cutaneous squamous cell carcinomas than in benign and premalignant keratinocytic lesions. J Cutan Pathol, 1997,24 (5):305-8.
    [27]. Kurzen, H., I. Munzing, W. Hartschuh. Expression of desmosomal proteins_in squamous cell carcinomas of the skin. J Cutan Pathol,2003,30 (10):621-30.
    [28]. Papadavid, E., M. Pignatelli, S. Zakynthinos, T. Krausz, A.C. Chu. Abnormal immunoreactivity of the E-cadherin/catenin (alpha-, beta-, and gamma-) complex in premalignant and malignant non-melanocytic skin tumours. J Pathol,2002,196 (2):154-62.
    [29]. Fundyler, O., M. Khanna, B.R. Smoller. Metalloproteinase-2 expression correlates with aggressiveness of cutaneous squamous cell carcinomas. Mod Pathol,2004,17 (5):496-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700