用户名: 密码: 验证码:
西帕依溃结安作用机理及基因枪联合RNAi技术治疗溃疡性结肠炎的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溃疡性结肠炎(Ulcerative colitis,UC)病程长、病变范围广,易出现癌变,它的治疗是临床上一大难题,而维医治疗溃疡性结肠炎有其独特的方法。长期以来,维医广泛运用维药西帕依溃结安治疗UC,疗效确切。本研究通过建立大鼠UC模型并进行维药西帕依溃结安干预,在分子水平上检测诱导型一氧化氮合酶(induced -nitricoxide synthase,iNOS)、环氧合酶-2(cyclooxygenase-2,COX-2)、核转录因子-κB(nuclear factor-κB,NF-кB)、白细胞介素-6(interleukin-6,IL-6)、即刻早期原癌基因c-jun、c-fos等候选基因mRNA及蛋白质表达水平;应用高效二维液相色谱分离技术探讨大鼠溃疡性结肠炎模型组及药物干预组大鼠结肠组织中差异表达蛋白;同时建立RNA干扰(RNA interference,RNAi)技术平台,并借助其高特异性联合基因枪技术对大鼠溃疡性结肠炎进行基因治疗。
     1.方法与结果
     1.1大鼠溃疡性结肠炎动物模型的建立及维药西帕依溃结安的干预本研究采用2,4-二硝基氯苯(2,4-dinitrochlorobenzene,DNCB)复合乙酸法成功复制大鼠溃疡性结肠炎动物模型。模型大鼠的症状、体征及组织病理学改变与UC的相关指标相接近。半定量RT-PCR及Western blot法检测结果显示大鼠溃疡性结肠炎模型组中iNOS、COX-2、NF-кB、IL-6基因mRNA及蛋白质表达水平与正常组相比均上调,差异有统计学意义(P<0.05),c-jun、c-fos mRNA表达水平两组间差异无统计学意义,c-Jun蛋白表达水平与正常组相比上调,差异有统计学意义(P<0.05),c-Fos蛋白表达水平两组间差异无统计学意义。
     将实验动物分为模型组、生理盐水阴性对照组、5-氨基水杨酸(5-ASA)阳性对照组、维药西帕依溃结安干预组(大、中、小剂量三组),研究维药西帕依溃结安的治疗作用及其机理。组织病理学研究结果显示,维药西帕依溃结安对大鼠溃疡性结肠炎治疗有效,大、中剂量治疗组间的疗效差异无统计学意义(P>0.05),而大中剂量治疗组与小剂量治疗组间疗效差异有统计学意义(P<0.05)。通过半定量RT-PCR及Western blot方法分别检测各组大鼠结肠组织中相关基因mRNA及蛋白质表达水平,发现维药西帕依溃结安大剂量治疗组中iNOS、COX-2、c-Jun的蛋白质表达水平与生理盐水阴性对照组相比均明显下调,差异有统计学意义(P<0.05);中剂量治疗组中COX-2的mRNA表达水平及iNOS蛋白质表达水平与生理盐水阴性对照组相比也明显下调,差异有统计学意义(P<0.05);5-氨基水杨酸治疗组中COX-2的mRNA表达水平与生理盐水阴性对照组相比明显下调,差异有统计学意义(P<0.05),但iNOS、c-jun的mRNA及蛋白质表达水平与生理盐水组相比差异无统计学意义(P>0.05)。而NF-кB、c-fos的mRNA及蛋白质表达水平虽然在各实验组中有所变化,但与生理盐水阴性对照组相比差异均无统计学意义。
     1.2应用高效二维液相色谱分离技术探讨溃疡性结肠炎动物及药物干预组结肠组织中差异表达蛋白
     本研究应用蛋白质组学技术对溃疡性结肠炎的发病及维药西帕依溃结安的作用机理进行研究。通过对各实验组大鼠的结肠组织裂解物进行一维色谱聚焦和二维液相色谱分离,利用ProteoVue软件将二维色谱数据转换成模拟胶图,再应用DeltaVue软件对各组蛋白表达谱进行比较和分析。研究发现,在pH8.5~4.0的范围内差异表达的蛋白条带在大鼠溃疡性结肠炎模型组和正常组间有296条、生理盐水阴性对照组和维药西帕依溃结安治疗组间有132条、生理盐水阴性对照组和正常组间有186条、正常组和维药西帕依溃结安治疗组间有162条、生理盐水阴性对照组和大鼠溃疡性结肠炎模型组间有286条、大鼠溃疡性结肠炎模型组和维药西帕依溃结安治疗组间有312条,并且差异表达蛋白主要集中在等电点为7.0~8.5区域的蛋白质中。
     1.3基因枪联合RNAi技术治疗大鼠溃疡性结肠炎
     1.3.1应用RNAi技术调节溃疡性结肠炎发病相关基因的表达本研究成功构建大鼠iNOS、COX-2、NF-κB、c-jun、c-fos等UC相关基因的pcDNA3.1/CT-GFP-TOPO重组真核表达载体和相应pSilencerTM1.0-U6-siRNA干扰载体,通过脂质体转染方法进行转染,在COS-7细胞中表达目的基因-GFP(Green fluorescence protein,绿色荧光蛋白)融合蛋白,并将pcDNA3.1/CT-GFP-TOPO重组真核表达载体和相应pSilencerTM1.0-U6-siRNA干扰载体进行共转染,经倒置荧光显微镜及Western blot法检测目的基因- GFP融合蛋白表达,筛选有效siRNA。
     1.3.2 RNAi联合基因枪技术治疗大鼠溃疡性结肠炎本研究运用基因枪技术将特异性的有效pSilencerTM1.0-U6-c-jun干扰载体导入活体大鼠结肠组织中,成功调节大鼠结肠组织中目的基因c-jun的表达,并确定其有效浓度为5μg,作用持续时间为9天。基因枪联合RNAi技术治疗大鼠溃疡性结肠炎,进行组织病理学鉴定,发现有效pSilencerTM1.0-U6-c-jun干扰载体促进溃疡性结肠炎大鼠结肠组织中肉芽组织的生成,且有效干扰载体与空白载体组间溃疡性结肠炎的愈合率的差异有统计学意义(P<0.05)。
     2.结论
     经DNCB和乙酸复合法成功建立了溃疡性结肠炎动物模型,即刻早期原癌基因c-jun在UC动物模型中迅速而短暂地表达;组织病理学转归表明维药西帕依溃结安对治疗UC有效;药物干预实验表明其治疗作用与iNOS、COX-2、c-jun的表达下调有关,维药西帕依溃结安调节COX-2的表达可能发生在转录水平上,而调节iNOS和c-jun的表达可能发生在转录后水平上;蛋白质组学研究发现大鼠溃疡性结肠炎的发生及维药西帕依溃结安的治疗作用与多种蛋白质有关,并且差异表达蛋白多集中在等电点为7.0~8.5区域的蛋白质中;成功构建真核表达载体并在COS-7细胞中表达且筛选出有效pSilencer干扰载体,并应用基因枪介导的RNAi技术对大鼠溃疡性结肠炎进行基因治疗,发现UC大鼠结肠组织中c-jun的表达下调,对大鼠UC的愈合有促进作用。
Ulcerative colitis (UC) is a long term and wide range of disease that easily develops to cancer. The treatment of UC is a major clinical problem. Uyghur traditional Medicine has unique method in treating UC. Xipayi Kui Jie’an has been used for the treatment of UC effectively. However, the treatment mechanism of Xipayi Kui Jie’an is still unclear. In this study, UC animal model was established and which has been used for the treatment with Xipayi Kui Jie’an;the mRNA and the protein level of induced -nitricoxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-кB), interleukin-6 (IL-6) early oncogene c-jun, c-fos candidate gene were measured. Differentially expressed proteins in the tissue of the UC model group and the treatment group rats were tested by using the technology of high performance two-dimensional liquid chromatography. At the same time, the RNAi technology platform has been established, the strategy of RNAi gene therapy was used for the treatment of rat ulcerative colitis.
     1.Methods and Results
     1.1 Development of UC animal model and the intervention of Xipayi Kui Jie’an In this research, rat UC model was successfully developed by using 2, 4-dinitrochlorobenzene (DNCB) and acetic acid. The symptoms, physical signs and histopathology changes of UC rats were closely correspondent to the UC indexes. The methods of semi-quantity RT-PCR and Western blot were used to detect the different expression of mRNAs and proteins in normal control and model groups. The results showed that the expression levels of mRNA and protein of iNOS, COX-2, NF-кB, IL-6 gene were up-regulated, there was a statistical significance between the normal control group and the model group (P<0.05). Meanwhile, there was no statistical significance in the mRNA expression level of c-jun and c-fos between these two groups. The expression level of c-Jun protein was up-regulated in model group compared to the normal control group (P<0.05) ; no statistical significance has been found in the protein expression level for c-fos between these two groups.
     In order to study the therapeutic effect of Uyghur traditional medicine Xipayi Kui Jie’an, animals were divided into four groups, which include the model group, NS negative control group, the 5-ASA positive control group and the Xipayi Kui Jie’an treatment group (large-dosage group, middle-dosage group and small-dosage group). The results showed that, Xipayi Kui Jie’an, Uyghur traditional medicine has a therapeutic effect on UC rats, but there was no statistical significance in the therapeutic effect between the large-dosage group and the middle-dosage group (P>0.05). The statistical significance between the large-middle dosage groups and the small-dosage group (P<0.05). The methods of semi-quantity RT-PCR and Western blot were used to detect the different expression of mRNA and protein in each group. The result showed that expression levels of iNOS?COX-2 and c-Jun protein in the large-dosage group were down-regulated compared to the normal saline treated negative control group (NS) (P<0.05). The expressed mRNA of COX-2 and the protein of iNOS were significantly down-regulated in the middle-dosage group compared to the normal saline treated negative control group (NS) (P<0.05). There was no statistical significance between the Xipayi Kui Jie’an group and the ulcerative colitis (UC) model group in the expression level of mRNA and protein for each candidate gene (P>0.05). The COX-2 mRNA was significantly down-regulated in the amino salicylic acid positive control group (5-ASA) compared to the normal saline treated negative control group (NS) (P<0.05). There was no statistical significance between the amino salicylic acid positive control group (5-ASA) and the normal saline treated negative control group in the expression level of iNOS?c-jun mRNA and protein (P>0.05). Although the expression level of NF-кB?c-fos mRNA and protein were changed in each experimental groups, there was no statistical significance between the UC group and the normal saline treated negative control group (P>0.05).
     1.2 To analyse the differentially expressed proteins in UC model group and the Xipayi Kui Jie’an treated group by using the technology of high performance two-dimensional liquid chromatography.
     In this study, Proteomics technology was used to analysis the pathogenesis of Ulcerative colitis and the mechanism of Xipayi Kuijie’an. First of all, the lysis product of ulcerative colitis tissues were separated by using the technology of one-dimensional focusing chromatography and two-dimensional reverse liquid chromatography. Two-dimensional data was transformed into simulating pattern by ProteoVue software and the comparison and analysis of the expressed protein in each group were conducted by DeltaVue software. The data show 296 different expressed bands between the model group and the normal group, 132 bands between the model groups and NS negative control group, 286 bands between the model group and Uyghur traditional medicine Xipayi Kui Jie’an group, 186 bands between the normal group and NS negative control group, 162 bands between normal group and Uyghur traditional medicine Xipayi Kui Jie’an groups, 132 bands between normal saline treated negative control group, and Uyghur traditional medicine Xipayi Kui Jie’an group, which in the range of pH8.5~4.0 region. The expressed proteins in different groups was concentrated in the range of pH 7.0~8.5 of isoelectric point.
     1.3 The treatment of UC rat by using the gene gun jointed with RNAi technology
     1.3.1 Regulation of UC related gene by using RNAi technology In this study, pcDNA3. 1/CT-GFP-TOPO recombinant eukaryotic expression vectors of iNOS, COX-2, NF-κB, c-jun, c-fos genes and corresponding pSilencerTM 1.0-U6-siRNA relevant interference vectors were successfully constructed. The GFP fused target protein was expressed in the COS-7 cell. The pcDNA3. 1/CT-GFP-TOPO recombinant eukaryotic expression vectors and the pSilencerTM 1.0-U6-siRNA relevant interference vectors were co-transfected in the same cell line. The expression of GFP fused target protein was detected by inverted fluorescent microscope and the Western blot.
     1.3.2 Treatment of UC rat by using gene gun jointed with RNAi technology Interference vector of pSilencerTM1.0-U6-c-jun was successfully transformed into the colon tissue in vivo by gene gun technology and the expression level of c-jun in the colon tissue of the rats was regulated by this construct. The effective concentration of the target gene was confirmed to be 5μg and the time of activity was lasted for 9 days. The ulcerative colitis tissue of the rats was interfered by pSilencerTM1. 0-U6-c-jun interference vector, and the histopathological evaluation was determined. The result showed that the granulation tissue was facilitated effectively by the interference vector, and there was a statistical significance (P<0.05) in the healing ratio of ulcerative colitis between the groups, which has been used interference vector and blank vector.
     2.Conclusion
     UC model was developed by using DNCB and acetic acid, we found that early oncogene c-jun was expressed shortly in UC animal model. Histopothology results showed that Uyghur traditional medicine Xipayi Kui Jie’an is effective for treating UC;Medicine intervention experiment results showed that, the treatment effect of Xipayi Kui Jie’an might be related to the action of down regulation of iNOS, COX-2, c-jun expression. Uyghur traditional medicine Xipayi Kui Jie’an may regulate COX-2 in the transcription level, whereas the regulation to the gene of iNOS and c-jun may occur at the post-transcription level. Proteomics analysis results showed that the protein expression of different groups were concentrated in the range of pH7.0~8.5 region of isoelectric point. That result imply that the occurrence of ulcerative colitis in the rats and the therapeutic effect of Uyghur traditional medicine Xipayi Kui Jie’an are highly related to many different kinds of proteins. We also successfully constructed eukaryotic expression vector and the pSilencer interference carrier in COS-7 cells. After applied the gene gun-mediated RNAi technique on rat UC model, we found that the expression of c-jun is down regulated, and the technique of RNAi gene therapy is effective in treating UC.
引文
[1] Liszka L, Woszezyk D, Pajak J. Histopathological diagnosis of microscopic colitis[J]. Gastroenterol Hepatol, 2006, 21(5):792~797.
    [2]王兴鹏.现代胃肠病学[M].上海科技出版社, 2000, 56.
    [3]欧阳钦,潘国宗,温忠慧等中华医学会消化病学分会.炎症性肠病诊断治疗规范的建议[C].胃肠病学, 2001, (6):56~59.
    [4]杜正光.溃疡性结肠炎183例临床分析[J].山东医药, 2006, 46(22):35.
    [5]欧阳钦,梁红亮.溃疡性结肠炎[J].继续医学教育, 2006, 20(3):30~34.
    [6]张志明.贝复济保留灌肠治疗慢性非特异性溃疡性结肠炎临床观察[J].中国肛肠病杂志, 2004, 24(7):17~19.
    [7] Sehmidt C, Stallmaeh A. Etiology and Pathogenesis of inflammatory bowel disease[J]. Minerva Gastroenterol Dietol, 2005, 51(2):127~145.
    [8]姜杰新.溃疡性结肠炎病因及发病机制的研究进展[J].医师进修杂志(内科版), 2004, 27(12):51~52.
    [9]张素真.溃疡性结肠炎发病的免疫学机制[J].国际检验医学杂志, 2006, 27(5):419~424.
    [10]陈勇.溃疡性结肠炎免疫学发病机理及中医药治疗探讨[J].深圳中西医结合杂志, 2006, 16(1):56~60.
    [11] Toyoda H, Yang H, Rotter JI, et al. Ulcerative colitis:a genetically heterogeneous disorder defined by genetic(HLA class II)and subclinical(antineutrophil cytoplasmic antibodies)markers[J]. Cli Invest, 1993, 92(2):1080~1084.
    [12] Jesus K, Yamamoto-Furusho, Luis F, et al. Clinical and Genetic Heterogeneity in Mexican Patients With Ulcerative Colitis[J]. Human Immunology, 2003, 64(1):119~123.
    [13] Xia B, Crusius JBA, Meuwissen SGM, et al. Inflammatory bowel disease:definition, epidemiology, etiologic aspects, and immunogenetic Studies[J]. World J Gastroenterol, 1998, 4:446~458.
    [14] Anand AC, Adya CM. Cytokines and inflammatory bowel disease[J]. Trop Gastroenterol, 1999, 20:97~106.
    [15]郭海建,刘新民,刘俊.溃疡性结肠炎患者白细胞介素-8活性研究[J].山西医药杂志, 2005, 34(11):920~921.
    [16]安毛毛,张军东,王彦.细胞因子失衡与溃疡性结肠炎研究现状[J].药学服务与研究, 2005, 5(1):86~89.
    [17] Sawa Y, Oshitani N, Adachi K, et al. Comprehensive analysis of intestinal cytokine messenger RNA profile by realtime quantitative polymerase chain reaction in patients with inflammatory bowel disease[J]. Int J Mol Med, 2003, 11(2):175~177.
    [18] Inoue S, Matsumoto T, Jida M, et al. Characterization of cytokine expression in the rectal mucosa of ulcerative colitis:correlation with disease activity[J]. Am J Gastroenterol, 1999, 94(9):2441~2243.
    [19]李军华,何小飞,于皆平. NF-κB?iNOS在大鼠实验性结肠炎肠组织的表达及意义[J].胃肠病学和肝病学杂志, 2003, 12(5):436~439.
    [20]刘慧荣,施达仁,吴焕淦.隔药灸对溃疡性结肠炎患者结肠粘膜COX-2? TNF-α表达的影响[J].中医药学刊, 2005, 6(23):989~992.
    [21] Neurath M F, Fuss I, Schrmann G, et al. Cytokine gene transcription by NF-Κb family members in patients with inflammatory bowel disease[J]. Ann NY Acad Sci, 1998, 859:149~150.
    [22]金晶. NF-JB的研究进展[J].国外医学药学分册, 2000, 27(3):133~137.
    [23]黄俊,罗和生,李颖.大鼠实验性溃疡性结肠炎中NO?MDA?SOD的变化[J].武汉大学学报(医学版), 2002, 23(2):146~148.
    [24]徐萍,周小江,吕农华,等.溃疡性结肠炎组织中环氧合酶-2与一氧化氮合酶的表达及意义[J].中华消化内镜杂志, 2003, 20(6):398~399.
    [25]王少鑫,盛传伦.环氧合酶-2对溃疡性结肠炎致病作用的研究进展[J].国外医学·消化系疾病分册, 2002, 22(3):151~153.
    [26]甘华田,欧阳钦,贾道全,等.溃疡性结肠炎患者核因子κB活化与细胞因子基因表达[J].中华内科杂志, 2002, 41(4):252~255.
    [27]陈垦,汤斌,祝斌,等.溃疡性结肠炎患者血清一氧化氮检测及意义[J].中国医师杂志, 2002, 4(10):1073~1075.
    [28] Nathan C. Nitric oxide as a secretory product of mammalian cells[J]. FASEB, 1992, 6:3051~3064.
    [29]吴昆岚,张苏闽,汪义军.溃疡性结肠炎肠薪膜Inos mRNA表达的检测(附92例溃疡性结肠炎肠镜资料分析)[J].河北医学, 2003, 9(11):1011~1012.
    [30] Baskol G, Baskol M, Yurei A, et al. Serum paraoxonasel activity and malondialdehyde levels in Patients with ulcerative colitis[J]. Cell Bioehem Funet, 2006:24(3):283~286.
    [31]刘建生,田怡,张晓红.溃疡性结肠炎与一氧化氮和氧自由基关系及丹参治疗作用研究[J].中国医师杂志, 2006, 8(8):1040~1042.
    [32] Geng Y, Hansson GK, Holme E, Interferon gamma and tumor nectosis factorsynergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells[J]. Cire Res, 1992, 71:1268~1276.
    [33]葛贺,孙红.氧自由基和一氧化氮在溃疡性结肠炎发病机制中的作用[J].北华大学学报(自然科学版), 2003, 4(5):411~412.
    [34] Swidsinski A, Ladhoff A, Pernthaler A, et al. Mucosal flora in inflammatory bowel disease[J]. Gatroenterology, 2002, 122:44~54.
    [35]姜恩平,孙红霞,曲娴. 2, 4-二硝基氯苯诱导的大鼠溃疡性结肠炎[J].北华大学学报, 2006, 7(2):121~124.
    [36] Slater D M, Dennes W J, Campa J S, et al. Expression of cyclo-oxygenase types-1 and -2 in human myometrium throughout pregnancy[J]. Mol Hum Reprod (5):880–884.
    [37] Slater DM, Dennes W, Sawdy R, et al. Expression of cyclo-oxygenase types-1 and -2 in human fetal membranes throughout pregnancy[J]. J Mol Endocrinol (22): 125–130.
    [38] Smith C J, Zhang Y, Koboldt C M, et al. Pharmacological analysis of cyclooxygenase-1 in inflammation[J]. Proc Natl Acad Sci USA 1998, 95(22): 13313–13318
    [39] Chakraborty I, Das SK, Wang J, et al. Developmental expression of the cyclo-oxygenase-1 and cyclo-oxygenase-2 genes in the peri-implantation mouse uterus and their differential regulation by the blastocyst and ovarian steroids[J]. J Mol Endocrinol(16):107–122.
    [40] Damm J, Rau T, Maiho¨fner C, et al. Constitutive expression and localization of COX-1 and COX-2 in rabbit iris and ciliary body[J]. Exp Eye Res2001, 72(6): 611~621.
    [41] Iseki S. Immunocytochemical localization of cyclooxygenase-1 and cyclooxygenase- 2 in the rat stomach[J]. Histochem J, 1995, 27(4):323~328.
    [42] Maihofner C, Schlotzer-Schrehardt U, Guhring H, et al. Expression of cyclooxygenase- 1and -2 in normal and glaucomatous human eyes[J]. Invest Ophthalmol Vis Sci, 2001, 42(11):2616–2624.
    [43] Samad T A, Moore K A, Sapirstein A, et al. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity[J]. Nature(Lond), 2001, 410(6827):471–475.
    [44] Nantel F, Denis D, Gordon R, et al. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation[J]. Br J Pharmacol 128(4):853~859.
    [45] Fitzgerald GA, Austin S, Egan K, et al. Cyclo-oxygenase products and atherothrombosis[J]. Ann Med, 2000, 32(Suppl 1):21–26.
    [46] Schmassmann A, Peskar BM, Stettler C, Netzer P, et al. Effects of inhibition of prostaglandin endoperoxide synthase-2 in chronic gastro-intestinal ulcer models in rats[J]. Br J Pharmacol, 1998, 123(5):795–804.
    [47] Huang Z F, Massey J B, Via D P. Differential regulation of cyclooxygenase -2(COX-2)mRNA stability by interleukin-1 beta(IL-1 beta)and tumor necrosis factor alpha(TNF-alpha)in human in vitro differentiated macrophages[J]. Biochem Pharmacol, 2000, 59(2):187
    [48] Topper J N, Cai J, Falb D, Gimbrone MA Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli:cyclo- oxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress[J]. Proc Natl Acad Sci USA, 1996, 93:10417~10422.
    [49] Gupta R A, DuBois R N, and Wallace M C. New avenues for the prevention of colorectal cancer:targeting cyclo-oxygenase-2 activity[J]. Best Pract Res Clin Gastroenterol 2002, (16):945~956.
    [50] KoSC, ChappleKS, HawcroftG, et al. Paracrine cyclooxygenase-2 mediate dsignalling by macrophage spromotes tumorigenic progression of intestinal epithelialcells[J]. Oncogene, 2002, 21(47):7175~7186.
    [51] Subbaramaiah K, Dannenberg AJ. Cyclooxygenase2:a molecular target for cancer prevention and treatment[J]. TrendsPharmacol Sci, 2003, 24(2):96~102.
    [52] Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis[J] Biochim Biophys Acta, 2001, 1470(2):M69–M78.
    [53] Tsujii M, Kwano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells[J]. Cell, 1998, 93(5):705–716.
    [54] Agoff SN, Brentnall TA, Crispin DA, et al. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia[J]. Am J Pathol 2000, 157(3):737~745
    [55] Shattuck-Brandt RL, Varilek GW, Radhika A, et al. Cyclooxygenase 2 expression is increased in the stroma of colon carcinomas from IL-10[J]. Gastroenterology 2000, 118(2):337~345.
    [56] Roberts YJ, Morgan K, Miller ft, et al. Neuronal COX-2 expression in human myenteric plexus in active inflatrunatory bowel disease[J]. Gut. 2001, 48(4):468.
    [57]方维丽,王邦茂,刘心娟,等环氧合酶2和前列腺素在溃疡性结肠炎中的作用[J].中华内科杂志, 2003. 42(9):652
    [58] Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancerbinding protein NF-κB by a posttranslational mechanism[J]. Cell, 1986, 47:921~928.
    [59] Wang J, Ellwood K, Lehman A M, et al. A mathematical model for synergistic eukaryotic gene activation.[J]. J Mol Biol, 1999, 286(2):315~325
    [60] Timothy S, Blackwell, Christman JW. The Role of Nuclear Factor-κB in Cytokine Gene Regulation[J]. Am J Reapir Cell Mol Biol, 1997, 17:3-9.
    [61] Michael JM, Sankar G. . IκB Kinase:Kinsmen with Different Crafts[J]. Science, 1999, 284:271~273.
    [62] Mireille D, Makio H, Chen Y, et al. Positive and Negative Regulation of IκB Kinase Activity through IKKβSubunit Phosphorylation[J]. Science, 1999, 284:309~313.
    [63]崔红生,武维屏,赵燕荣,等.哮喘宁煎剂治疗支气管哮喘急性发作期的临床研究[J].北京中医药大学学报, 1999, 22(1):57.
    [64]吕坤聚,戚好文,李玉松,等.豚鼠哮喘模型气道中炎症细胞浸润与c-jun表达的关系[J].中国病理生理杂志, 1997, 13(4):352.
    [65] Sartor RB. Cytokine in intestinal inflammation:Pathophysiological and clinical considerations[J]. Gastroenterology, 1994, 106(2):533~539
    [66] Hyams J S, Fitzgerald J E, Treem WR, et al. Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease[J]. Gastroenterology, 1993, 104(5):1285~ 1292
    [67] Holtkamp W, Stollberg T, Reis HE. Serum interleukin-6 is related to disease activity but not disease specificity in inflammatory bowel disease[J]. J Clin Gastroenterol, 1995, 20(2):123
    [78] Holub MC, Mako E, Devay T, et al. Increased interleukin-6 levels, interleukin-6 receptor and gp130 expression in peripheral lymphocytes of patients with inflammatory bowel disease[J]. Scand J Gastroenterol, 1998, 228:47~50
    [69] Grottrup-Wolfers E, Moeller J, Karbach U, et al. Elevated cell- associated levels of interleukin 1βand interleukin 6 in inflamed mucosa of inflammatory bowel disease[J]. Eur J Cli Invest, 1996, 26(2):115~122
    [70] Kazuo K, Atsushi F, Mitsune T, et al. Elevation of interleukin-6 in inflammatory bowel disease is macrophage and epithelial cell- dependent[J]. Dig Dis Sci, 1995, 40(5):949
    [71]崔淑兰,汤斌,梁坚,等.溃疡性结肠炎患者血清IL-6测定及临床意义探讨[J].医学综述, 1998, 4(5)248.
    [72]李琪佳,宫恩聪,刘叔平,等.溃疡性结肠炎发病机制的免疫病理学及分子病理学研[J].中华消化杂志, 2000, 20(5):324~326
    [73]郭海建,邓长生,夏冰.溃疡性结肠炎患者白细胞介素-6活性研究[J].中华消化杂志, 2001, 21(4):223~225
    [74]丁伟群,林庚金,徐三荣,等.溃疡性结肠炎发病中白介素水平的变化[J].复旦学报(医学版), 2001, 28(4)330~335
    [75]刘伟,钟良,孙大裕.溃疡性结肠炎的药物治疗现状与前景[J].国外医学.消化系疾病分册, 2003, 23(5):261~263
    [76]哈木拉提·吾甫尔主编.维吾尔医药及其它传统医药学研究与应用[M].新疆人民卫生出版社, 2003, 7:39~40.
    [77]哈木拉提·吾甫尔主编.维吾尔医气质?体液论及其现代研究[M].新疆科学技术出版社, 2003, 7:55.
    [78]相应征,雷汉民,姜孝文,等.老鹤草靴质类化合物的抗炎?免疫和镇痛作[J].西北国防医学杂志, 1998, 18(3):172~174.
    [79]丽敏,卢春风,路雅真,等.抗腹泻作用的研究[J].黑龙江医药科学, 2003, 26(5):28~29.
    [80]李秀萍,李春远,渠桂荣.五倍子的研究概况[J].中医药学报, 2002, 30(3):72~74.
    [81]毛新民,哈木拉提·吾甫尔.肝郁脾虚型溃疡型结肠炎大鼠的免疫学研究[J].新疆医科大学学报, 2004, 27(4):367~369.
    [82]毛新民,哈木拉提·吾甫尔.溃结安对TNBS导致实验性溃疡型结肠炎大鼠凝血的影响[J].新疆医科大学学报, 2004, 27(5):377~379.
    [83]毛新民,哈木拉提·吾甫尔,等.溃结安对TNBS导致实验性溃疡型结肠炎模型大鼠免疫系统的影响[D].毛新民博士论文, 2004年.
    [84]武鸿莉,毛新民.溃结安对兔及溃疡性结肠炎模型大鼠血小板聚集的影响[J].新疆医科大学学报, 2005, l(28):28~30.
    [85]刘延泽.丹宁类化合物防癌抗癌活性研究[J].天然产物研究与开发, 1995, 7(3):l~7.
    [86] Fire A, Xu S, Montgomery MK, et al. Potent and Inerference by stranded RNA in Caenoth-abdetols elegans[J]. Nature, 1998, 391:808~811.
    [87] Hammond SM, Bemstain E, Beach D, et al. An RNA-directed muciease mediate post transcriptional gene silencing in Drosophlla cells[J]. Nature, 2000, 404: 293~296.
    [88] Zamore PD, Thschl T, Sharp PA, et al. RNAi:Double-stranded RNA directs theATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. cell, 2000, 101(1):25~33.
    [89] Scherr M, Battmer K, Winkler T, et al. Specific inhibition of ber-abl gene expression by small interfering RNA[J]. Blood, 2003, 101(4):1566~1569.
    [90] Xia H, Mao Q, Eliason SL, et al. RNAi suppresses polyglu-tamine-induced neurodegeneration in a model of spinacerebellarataxia[J]. Nature Medicine, 2004, 10(8):775~776
    [91] Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference(RNAi)[J]. Oncogene, 2002, 21(37):5716~5724
    [92] ZENDERL, HUTKERS, LIEDTKEC, et al. Caspase8 small Interfering RNA prevents acute liver failureinmice[J]. Proc Natl AcadSciUSA, 2003, 100(13): 7797~7802.
    [93] TorchilinVP, LevchenkoTS, RammohanR, et al. Cell transfection in vitro and in vivo with nontoxic TAT peptide liposome DNA complexes[J]. Proc Natl Acad Sci USA2003, 100(4):1972~1977.
    [94] SchwarzeSR, HoA, Vocero AkbaniA, et al. In vivo protein transduction:delivery of abiologically active protein into the mouse[J]. Science, 1999, 285:1569~1572.
    [95] Braasch DA et al. Biodistribution of phosphodiester and phosphorothioate siRNA[J]. Bioorg Med Chem Lett, 2004, 14(5):1139~1143
    [96] Bader GD, Heilbut A, Andrens B, et al. Functional genomics and protemic:Charting a multidimensional map of the yeast cell[J]. Trends Cell Biol, 2003, 13(7):344~356.
    [97] Mortiz AL, Ji H, Schutz F, et al. A proteome strategy for fractionating proteins and peptides using for continues free flow electrophoresis coupled off line to reversed phase higy performance liquid chromatography[J]. Anal Chem, 2004, 76(16): 4811~4824.
    [98] Patterson SD. Proteomics:the industrialization of protein chemistry[J]. Curr Opin Biotech, 2000, 11:413~418.
    [99] Jain KK. Proteomics:new technologies and their applications[J]. DDT, 2001, 6(9):457~459.
    [100]Click ME, Falchuk IM. Dinitrochlorobenzene - induced Colitis in the Guinea - pig:Studies of Colonic Lamina Propria Lymphocytes[J]. Gut, 1981, 22:120~125.
    [101]江学良,权启镇,王东等.复合法建立大鼠溃疡性结肠炎模型[J].青海医学院学报, 1999, 20(4):1~3.
    [102]Stevceva L, Pavli P, Husband A, et al. Dextran Sulphate Sodium-induced Colitis isAmeliorated in Interleukin 4 Deficient Mice[J]. Genes Immun, 2001, 2(6):309~316.
    [103]Kirsner JB. Historical origins of current IBD concepts[J]. World J Gastroenterol 2001, 7(2):175~184
    [104]Wu HG, Zhou LB, Shi DR, et al. Morphological study on colonic pathology in ulcerative colitis treated by moxibustion[J]. World J Gastroenterol, 2000, 6(6):861~865
    [105]Mac Donald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease[J]. Scand J Immunol2000, 51(1):2~9
    [106]Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease[J]. Annu Rev Med, 2000, 51:289~298.
    [107]Ardizzone S, Porro GB. Inflammatory bowel disease:new insights into pathogenesis and treatment[J]. J Int Med, 2002, 252(6):475~496.
    [108]Wang C, Mayo MW, Baldwin Jr AS. TNF- and cancer therapy-induced apoptosis:potentiation by inhibition of NF-κB[J]. Science, 1998, 274(5228): 784~787.
    [109]Vijay R Baichwal, Patrick A Baeuerle, Apoptosis:Activate NF-κB or die?[J]. Current Biology, 1997, 7:R94~R96.
    [110]Dumont A, Hehner SP, Hofmann TG, et al. Hydrogen peroxideinduced apoptosis is CD95-independent, requires the release of mitochondrial-derived ROS and the activation of NF-kappa B[J]. Oncogene, 1999, 18:747~757.
    [111]Hanahan D, Weinbery RA. The hallmarks of cancer[J]. Cell, 2000, 100(1):57~70.
    [112]Gilmore TD, Koedood M, Piffat KA, et al. Rel/N F-κB /IκB Proteins and Cancer[J]. Oncogene, 1996, 13(7):1367~1378.
    [113]Wang CY, Cusack JC Jr, Liu R, et al. Control of Inducible Chemo Resistance: Enhanced Antitumor Therapy through Increased Apoptosis by Inhibition of NF-kappa B[J]. Nat Med, 1999, 5(4):412~417.
    [114]Ferrer I, Marti E, Lopez E, et al. NF-κB Immuno-reactivity is Observed in Association with BetaA4 Diffuse Plaques in Patients with Alzheimer′s Disease[J]. Neuropathol Appl Neurobiol, 1998, 24(4):271~277.
    [115]Schreiber S, Nikolaus S, Hampe J. Activation of Nuclear Factor kappa B in Inflammatory Bowel Disease[J]. Gut, 1998, 42:477~484.
    [116]Thiele K, Bierhaus A, Autschbach F, Hofmann M, Stremmel W, et al. Cell Specific Effects of Glucocorticoid Treatment on the NF-kappa B p65/Ikappa B alpha System in Patients with Crohn’s Disease[J]. Gut, 1999, 45:693~704.
    [117]郝筱倩.细胞因子的表达和NF-кB的激活在溃疡性结肠炎中作用机制的探讨[J].胃肠病学, 2005, 1(6):1~3.
    [118]刘一品,李延青.核因子кB的表达在溃疡性结肠炎发病机制中的意义[J].胃肠病学, 2006, 11(2):103~106.
    [119]Neurath MF, Pettersson S, Meyerzumbuschenfelde KH, et al. Local Administration of Antisense Phosphorothioate Oligonucleotides to the p65 Subunit of NF-kappaB Abrogates Established Experimental Colitis in Mice[J]. Nat Med, 1996, 2: 998~1004.
    [120]Rogler G, Brand K, Vogl D, et al. Nuclear Factor-κB is Activated in Macrophages and Epithelial Cells of Inflamed Intestinal Mucosa[J]. Gastroenterology, 1999, 115(2):357~369.
    [121]田伟,李立新,郭实士.湖南汉族群体HLA2DR2等位基因多态性与系统性红斑狼疮的相关性研究[J].湖南医科大学学报, 2000;25(1):15.
    [122]余鸿,刘敦玉等. c- Fos和巢蛋白在鼠胚肺内的表达及缺氧对其影响[J].中国现代医学杂志, 2006, 16(16):2457~2460.
    [123]Atreya R, Neurath MF. Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer[J]. Clin Rev Allergy Immunol 2005;28:187~196
    [124]Kitamura K, Nakamoto Y, Kaneko S, Mukaida N. Pivotal roles of interleukin-6 in transmural inflammation in murine T cell transfer colitis[J]. J Leukoc Biol 2004;76(6):1111~1117
    [125]邓长生.溃疡性结肠炎患者白细胞介素-6活性研究[J].中华消化杂志2001;21:223~225
    [126]Raddatz D, Bockemuhl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease:relation to clinical and endoscopic activity and outcome[J]. Eur J Gastroenterol Hepatol 2005, 17(5):547~5571
    [127]贾百灵,侯晓华.白细胞介素-6与溃疡性结肠炎的关系[J].胃肠病学和肝病学杂志, 2004;13(3):220~221
    [128]Street ME, de'Angelis G, Camacho-Hubner C, et al. Relationships between serum IGF-1, IGFBP-2, interleukin-1beta and interleukin-6 in inflammatory bowel disease[J]. Horm Res 2004;61(4):159~164
    [129]Lowenstein CJ, Alley EW, Raval P. Macrophage nitric oxide synthase gene-two upstream regions mediate induction by interferon-γand lipopolysaccharide[J]. Proc Natl Acd Sci USA. 1992, 90(20):9730~9734
    [130]Martin E, Nathan C, Xie QW. Role of interferon regulatory factor1 in induction ofnitric oxide synthase[J]. J Exp Med, 1994, 180(3):977~ 984.
    [131]Jung F, Palmer LA, Zhou N, et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes[J]. Circ Res, 2000, 86(31):319~325
    [132]Hu RC, Dai AG, Tan SX. Hypoxia-inducible factor-1 alpha upregulates the expression of inducible nitric oxide synthase gene in pulmonary arteries of hypoxia rat[J]. Chin Med J(Engl), 2002, 115(12):1833~ 1837
    [133]Palmer LA, Johns RA. Hypoxia upregulates inducible(Type II)nitric oxide s ynthase in an HIF-1 dependent manner in rat pulmonary microvascular but not aortic smooth muscle cells[J]. Chest, 1998, 114(1):33~34
    [134] Chen CC, Wang J K, Lin SB, et al. Antisense oligonucleoti destargeting protein kinase C-α?β?γorδbut not-ηinhibit lipopolysaccharide induced nitric oxide synthase expression in Raw 264. 7macrophages[J]. J Immunol, 1999, 161(11):6206 ~6214.
    [135]王伟宁.活动期溃疡性结肠炎发病机制的免疫学探讨[J].中国现代医学杂志. 2003, 13(16):74~76
    [136]许国雄.环氧合酶-2和诱导型一氧化氮合酶在舌不典型增生和鳞癌组织中的表达[J].癌症. 2005, 24(11):1345~1349
    [137]许波,吴玉章.巨噬细胞诱导型一氧化氮合酶的表达调节机制[J].免疫学杂志. 2002, 18(3):156~159
    [138]Subbara maiah K, Wen J C, Michaluart P, et al. Resveratrol inhibits cyclo- oxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells[J]. Biolchem J, 1998, 273(36):21875 ~ 21882.
    [139]Cossta JJ, Matossin F, Resnick MB, et al. Adherenct dependent increase in human monocyte PDGF mRNA as associated in c-fos, c-jun and EGR2 Mrna[J]. J cell Biol, 1998;111(5 Pt 1)::2139~2150
    [140]戚好文,刘振千, c-jun在豚鼠哮喘气道上皮细胞中的表达[J]. Chin J Intern Med, 1997, 36(7), 476~478
    [141]程晓刚,粟永萍等, C-jun蛋白对糖皮质激素受体表达及转录激活能力的影响[J].免疫学杂志, 2005, 21(3), 106~109
    [142]张剑锋等.基质金属蛋白酶与结直肠癌的侵袭和转移[J].国际外科学杂志. 2007, 34(5):323~325
    [143]张庆原,张剑宁. VEGF?uPA在侵袭性垂体腺瘤中的表达及意义[J].中华神经外科疾病研究杂志2007;6(2):146~149
    [144]Newell KJ, Matrisian LM, Driman DK. Matrilysin(matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis[J]. Mol Carcinog, 2002, 34(2):59~63.
    [145]Gura T. A Silence that Speaks Volumes[J]. Nature, 2000, 404(6780):804~808.
    [146]Hammond SM, Caudy AA, Hannon GJ. Post-trsndcriptional Gene Silencing by Double-stranded RNA[J]. Nat Rev Cen, 2001, 2(2):110~119.
    [147]James C. Clemens, Carolyn A. et al. Dixon Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J]. PNAS 2000 97(12):6499~6503
    [148]Jiang M, Milner J. Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells[J]. Genes &Development. 2003, 17(7):832~837
    [149]Cioca DP, Aoki Y, Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines[J]. Cancer Gene Therapy. 2003, 10(2):125~133
    [150]Bradley SP, Rastellini C, da Costa MA, et al. Gene silencing in the endocrine pancreas mediated by short-interfering RNA[J]. Pancreas, 2005, 31(4):373~379.
    [151]蹇锐,程小星,安静等.应用载体介导的RNAi技术抑制Bcl-2的表达[J].第三军医大学学报. 2004, 26(4):294~297
    [152]马鹏鹏,葛晔华,郭睿等.小分子干扰RNA(siRNA)表达载体沉默靶基因的研究[J].解剖学报. 2004, 35(6):607~611
    [153]王明海,王锋超,陆建华等.发卡样NF-κB特异性RNA干扰表达载体的构建及体外效应研究[J].第三军医大学学报. 2004, 26(8):655~657
    [154]唐道林. RNAi及其实验技术进展[J].国外医学生理?病理科学与临床分册. 2004, 24(6):539~542
    [155] Miyagishi M, Taira K. Development and application of siRNA expression vector[J]. Nucleic Acids Res Suppl. 2002, (2):113~114
    [156]Sui GS, Soohoo C, Affar EB. A DNA Vector Based RNAi Ttechnology to Suppress Gene Expression in Mammalian Cells[J]. PANS, 2002, 99(8):5515~5520.
    [157]Jiao S, Cheng L, Wolff JA, et al. Molecular crosstalk:Will virology and growth2factor research aid cytokine drug discovery[J]. Biotechnology, 1993, 11P4:465~471.
    [158]Yang NS, Deluna C, Cheng L. In gene therapeatic:Method and application of direct gene transfer[M]. Birkhavser, Boston:Wolff JA ed. 1994. 193~209.
    [159]Theodore M K, et al. Transformation of microbes, plants and animals by particlebombardment[J] 1 Bio technology, 1992, 10(5):286~290
    [160]LodmellLoehr B I, Willson P, Babiuk L A, et al. Gene gun -mediated DNA immunization primes development of mucosal immunity against bovine herpesvirus 1in cattle[J]. Journal of virology, 2000, 74(13):6077~6086
    [161]Boyer J D, Ugen K E, Wang B, et al. Protetion of chimpanzees form high - dose heterologous H IV - 1 challenge by DNA Vaccination[J]. Nature Medicine 3(1997): 526.
    [162]周光前, Sten Hammarstron. DNA疫苗的免疫学机理,优越性及安全性[J].国外医学预防诊断治疗用生物制品分册, 1997, 20(2), 53~55.
    [163]查圆圆.一种新的基因转移技术-基因枪[J].国外医学肿瘤学分册, 1999, 26(4):193~195.
    [164]张峰;刘晔;刘三光,等.基因枪转导突变特异性K-ras siRNA对胰腺癌细胞生长的抑制作用[J].中华实验外科杂志, 2006, 23(1):28-30
    [165]赵昀,张峰,陈秀等.用绿色荧光蛋白进行转基因蚕研究[J].高技术通讯, 1999, 6:16~19.
    [166]Yang N S, SunW H. Gene gun and other non-viral approaches for cancer gene therapy. NatMed, 1995;1(5):481~483
    [167]Jeffrey M D, Thomas K, Sabine A E. Particle– mediated gene therapy of wounds[J]. Wound Rep and Reg, 2002, 8(6):452.
    [1]杜正光.溃疡性结肠炎183例临床分析[J].山东医药, 2006, 46(22):35
    [2]欧阳钦,梁红亮.溃疡性结肠炎[J].继续医学教育, 2006, 20(3):30-34
    [3]姜杰新.溃疡性结肠炎病因及发病机制的研究进展[J].医师进修杂志(内科版). 2004, 27(12):51-52
    [4] Kirsner JB. Historical Origins of Current IBD Concepts[J]. World J Gastroen- terol 2001, 7(2):175-184
    [5] Wu HG, Zhou LB, Shi DR, et al. Morphological Study on Colonic Pathology in Ulcerative Colitis Treated by Moxibustion[J]. World J Gastroenterol 2000, 6(6): 861-865
    [6] Mac Donald TT, Monteleone G, Pender SL. Recent Developments in the Immune-ology of Inflammatory Bowel Disease[J]. Scand J Immunol 2000, 51(1): 2-9
    [7]郝微微.溃疡性结肠炎发病机理的研究进展[J].陕西医学杂志, 2002, 31(12):1100-1102
    [8]张素真.溃疡性结肠炎发病的免疫学机制[J].国际检验医学杂志, 2006, 27(5):419-424
    [9]陈勇.溃疡性结肠炎免疫学发病机理及中医药治疗探讨[J].深圳中西医结合杂志, 2006, 16(1):56-60
    [10] Toyoda H, Yang H, Rotter JI, et al. Ulcerative Colitis:A Genetically Heterogeneous Disorder Defined by Genetic(HLA class II)and Subclinical(Antineutrophil Cytoplasmic Antibodies)Markers[J]. J Cli Invest, 1993, 92(2):1080-1084
    [11] Jesus K, Yamamoto-Furusho, Luis F, et al. Clinical and Genetic Heterogeneity in Mexican Patients With Ulcerative Colitis[J]. Human Immunology, 2003, 64(1): 119-123
    [12] Papadakis KA, Targan SR. Role of Cytokines in the Pathogenesis of Inflammatory Bowel Disease[J]. Annu Rev Med, 2000, 51:289-298.
    [13] Ardizzone S, Porro GB. Inflammatory Bowel Disease:New Insights into Pathogenesis and Treatment[J]. J Int Med, 2002, 252(6):475-496.
    [14]李军华,何小飞,于皆平. NF-κB?iNOS在大鼠实验性结肠炎肠组织的表达及意义[J].胃肠病学和肝病学杂志, 2003, 12(5):436-439
    [15]刘慧荣,施达仁,吴焕淦.隔药灸对溃疡性结肠炎患者结肠粘膜COX-2 TNF-α表达的影响[J].中医药学刊, 2005, (6):989-992.
    [16] Neurath M F, Fuss I, Schrmann G, et al. Cytokine Gene Transcription by NF-ΚB Family Members in Patients with Inflammatory Bowel Disease[J]. Ann NY Acad Sci, 1998;859:149
    [17]金晶. NF-JB的研究进展[J].国外医学药学分册, 2000, 27(3):133
    [18]黄俊,罗和生,李颖.大鼠实验性溃疡性结肠炎中NO?MDA?SOD的变化[J].武汉大学学报(医学版), 2002, 23(2):146
    [19]徐萍,周小江,吕农华等.溃疡性结肠炎组织中环氧合酶-2与一氧化氮合酶的表达及意义[J].中华消化内镜杂志, 2003, 20(6):398
    [20]王少鑫,盛传伦.环氧合酶-2对溃疡性结肠炎致病作用的研究进展[J].国外医学·消化系疾病分册, 2002, 22(3):151
    [21]甘华田,欧阳钦,贾道全等.溃疡性结肠炎患者核因子κB活化与细胞因子基因表达[J].中华内科杂志, 2002, 41(4):252
    [22]邓长生,夏冰.炎症性肠病[M].北京:人民卫生出版社, 1998∶131-145
    [23] Manilla YR, Wu K, Jewell DP. Enhanced Productionof Intericukin-1βImononuct- ear Cells Isolated from Mucosa with Active Ulcerative Colitis and Crohn's Disease.[J]. Gut, 1989, 30(6):835-839.
    [24]张文俊,许国铭,李兆申.血清白细胞介素1β与溃疡性结肠炎的关系[J].第二军医大学学报, 2002, 23(12):1345-1347
    [25] Atreya R, Neurath MF. Involvement of IL-6 in the Pathogenesis of Inflammatory Bowel Disease and Colon Cancer[J]. Clin Rev Allergy Immunol, 2005; 28(3): 187-196
    [26] Kitamura K, Nakamoto Y, Kaneko S, et al. Pivotal Roles of Interleukin-6 in Transmural Inflammation in Murine T cell Transfer Colitis[J]. J Leukoc Biol, 2004;76(8):1111-1117
    [27]邓长生.溃疡性结肠炎患者白细胞介素-6活性研究[J].中华消化杂志, 2001;21(4):223-225
    [28] Raddatz D, Bockemuhl M, Ramadori G. Quantitative Measurement of Cytokine mRNA in Inflammatory Bowel Disease:Relation to Clinical and Endoscopic Activity and Outcome[J]. Eur J Gastroenterol Hepatol 2005;17(5):547-557
    [29]贾百灵,侯晓华.白细胞介素-6与溃疡性结肠炎的关系[J].胃肠病学和肝病学杂志, 2004;13:220-221
    [30] Street ME, de'Angelis G, Camacho-Hubner C, et al. Relationships between Serum IGF-1, IGFBP-2, Interleukin-1 Beta and Interleukin-6 in Inflammatory Bowel Disease[J]. Horm Res 2004;61(4):159-164
    [31] Sun XM, Hsueh W, Bowel Necrosis Induced by Tumor Necrosis Factor in Rats Immediate by Platelet Activating Factor[J]. J Clin Invest, 1998, 81(5):1328-1331.
    [32]何球藻,吴厚生.[M].细胞与分子免疫学,上海:上海科学技术文献出版社, 1997
    [33] Ishiguro Y. Mucosal Proinflammatory Cytokine Production Correlates with Endo- scopic of Ulcerative Colitis[J]. J Gastroenterol, 1999;34(1):66-74
    [34]江学良,权启镇,王东等.复合法建立大鼠溃疡性结肠炎模型[J].青海医学院学报, 1999;20(4):1~3
    [35] Wang C, Mayo MW, Baldwin Jr AS. TNF- and Cancer Therapy-induced Apoptosis:Potentiation by Inhibition of NF-Κb[J]. Science, 1998, 274(5228): 784-787.
    [36] Vijay R Baichwal, Patrick A Baeuerle. Apoptosis:Activate NF-κB or Die?[J]. Current Biology, 1997;7(1):R94-R96
    [37] Dumont A, Hehner SP, Hofmann TG, et al. Hydrogen Peroxideinduced Apoptosis is CD95-independent, Requires the Release of Mitochondrial-derived ROS and the Activation of NF-kappa B[J]. Oncogene, 1999, 18(7):747-757.
    [38] Hanahan D, Weinbery RA. The Hallmarks of Cancer[J]. Cell, 2000, 100(1):57-70.
    [39] Gilmore TD, Koedood M, Piffat KA, et al. Rel/NF-κB/IκB Proteins and Cancer[J]. Oncogene, 1996, 13(7):1367-1378.
    [40] Wang CY, Cusack JC Jr, Liu R, et al. Control of Inducible Chemo Resistance: Enhanced Antitumor Therapy through Increased Apoptosis by Inhibition of NF-kappa B[J]. Nat Med, 1999, 5(4):412-417.
    [41] Ferrer I, Marti E, Lopez E, et al. NF-κB Immuno-reactivity is Observed in Association with BetaA4 Diffuse Plaques in Patients with Alzheimer′s Disease[J]. Neuropathol Appl Neurobiol, 1998, 24(4):271-277.
    [42] Schreiber S, Nikolaus S, Hampe J. Activation of Nuclear Factor Kappa B in Inflammatory Bowel Disease[J]. Gut, 1998, 42(4):477-484.
    [43] Thiele K, Bierhaus A, Autschbach F, et al. Cell Specific Effects of Glucocorticoid Treatment on the NF-kappa B p65/Ikappa B alpha System in Patients with Crohn’s Disease[J]. Gut, 1999, 45:693-704.
    [44]郝筱倩.细胞因子的表达和NF-кB的激活在溃疡性结肠炎中作用机制的探讨[J].胃肠病学, 2005, 1(6):1-3.
    [45]刘一品,李延青.核因子кB的表达在溃疡性结肠炎发病机制中的意义.[J].胃肠病学, 2006, 11(2):103-106.
    [46] Timothy S, Blackwell, Christman JW. The Role of Nuclear Factor-κB in CytokineGene Regulation.[J]. Am J Reapir Cell Mol Biol, 1997, 17:3-9.
    [47] Neurath MF, Pettersson S, Meyerzumbuschenfelde KH, et al. Local Adminis- tration of Antisense Phosphorothioate Oligonucleotides to the p65 Subunit of NF-kappaB Abrogates Established Experimental Colitis in Mice[J]. Nat Med, 1996, 2(9):998-1004.
    [48] Rogler G, Brand K, Vogl D, et al. Nuclear Factor-κB is Activated in Macrophages and Epithelial Cells of Inflamed Intestinal Mucosa[J]. Gastroenterology, 1999, 115:357-369.
    [49]李红霞,苌新明,和水祥,等. Cox-2?VEGF的表达和胃癌血管生成的关系[J].西安交通大学学报(医学版), 2003, 24(5):471-473.
    [50] Song ZJ, Gong P, Wu YE. Relationship between the Expression of iNOS, VEGF, Tumor Angiogenesis and Gastriccancer[J]. World J Gastroenterol, 2002, 8(4): 591-595.
    [51] Perez-Sala D, Lamas S. Regulation of Cyclooxygenase-2 Expression by Nitric Oxide in Cells[J]. Antioxid Redox Signal, 2001, 3(2):231-248.
    [52]陈垦,汤斌,祝斌等.溃疡性结肠炎患者血清一氧化氮检测及意义[J].中国医师杂志, 2002, 4(10):1073-1075.
    [53] Hall AV, Antoniou H, Wang Y, et a1. Structural Organization of the Human Neuranalnitric Oxide Synthase Gene(NOSl)[J]. Biol Chem, 1994, 269:33082– 330 90.
    [54] Marsden PA, Heng HHG, Duff CL, et a1. Localization of the Human Gene for Inducible Nitric Oxide Synthase(NOS2)to chromosome 17ql1. 2-q12[J]. Genomics, 1994, 19(1):l83-185.
    [55] Nathan C. Nitric Oxide as a Secretory Product of Mammalian cells[J]. FASEB, 1992, 6(12):3051-3064.
    [56] Kimura H, Weisz A, Kurashima Y, et al. Hypoxia Response Element of the Human Vascular Endothelial Growth Factor Gene Mediates Transcriptional Regulation by Nitric Oxide:Control of Hypoxia Inducible Factor Activity by Nitric Oxide[J]. Blood, 2000, 95(1):189-197.
    [57]吴昆岚,张苏闽,汪义军.溃疡性结肠炎肠系膜iNOS mRNA表达的检测(附92例溃疡性结肠炎肠镜资料分析)[J].河北医学, 2003, 9(11):1011-1012.
    [58]王伟宁.活动期溃疡性结肠炎发病机制的免疫学探讨[J].中国现代医学杂志, 2003, 13(16):74-76.
    [59] Forstermann U, Closs E I, Pollock J S, et al. Nitric Oxide SynthaseisozymesCharacterization, Purification, Molecular Cloning, and Functions[J]. Hypertension, 1994, 23(6Pt 2):1121-1131.
    [60] Kroncke KD, Fehsel K, Kolb-Bachofen V. Nitric Oxide:Cytotoxicity Versus Cytoprotection[J]. Biol Chem, 1997, l:l07-120.
    [61] Vakkala M, Kahlos K, Lakari E, et al. Inducible Nitric Oxide Synthase Expression, Apoptosis, and Angiogenesis in situ and Invasive Breast Carcinomas[J]. Clin Cancer Res, 2000, 6(6):2408-2416.
    [62] Linn SC, Morelli PJ, Edry I, et al. Transcriptional Regulation of Human Inducible Nitric Oxide Synthase Gene in an Intestinal Epithelial Cell Line[J]. Am J Physiol, 1997, 272(6 Pt l):G1499-1508.
    [63] Vodovotz Y, Chesler L, Chong H, et al. Regulation of Transforming Growth Factor Beta l by Nitric Oxide[J]. Cancer Res, 1999, 59(9):2142-2149.
    [64] Hogg N. Free Radicals in Disease[J]. Semin Reprod Endocrinol, 1998, 16(4):241-248.
    [65] Singer II, Kawka DW, Scott S, et al. Expression of Inducible Nitric Oxide Synthase and Nitrotyrosine in Colonic Epithelium in Inflammatory Bowel Disease[J]. Gastroenterology, 1996, 111(4):871-885.
    [66] Dijkstra G, Moshage H, van Dullemen HM, et al. Expression of Nitric Oxide Synthases and Formation of Nitrotyrosine and Reactive Oxygen Species in Inflammatory Bowel Disease[J]. J Pathol, 1998, 186(4):416-21
    [67] Masferrer JL, Reddy ST, Zweifel BS, et al. In vivo Glucocorticoids Regulate COX- 2 but not COX- 1 in Peritoneal Macrophages[J]. Pharmacol Exp Ther. 1994, 270(3):1340-1344.
    [68] Wu QM, Li SB, Wang Q, et al. The Expression of COX-2 in Esophageal Carcinoma and its Relation to Clinic Pathologic Characteristics[J]. World chin J Digestol, 2001, 9(1):11.
    [69] Sun B, Wu YL, Zhang XJ, et al. Effects of Sulindacon Growth Inhibition and Apoptosis Induction in Human Gastric Cancer Cells[J]. World chin J Digestol, 2001, 991(9):997
    [70] Sawaoka H, Tsuji S, Tsujii M, et al. Invovement of Cyclooxygenase-2 in Proliferation and Morphogenesis Induced by Transforming Growth Factor Alpha in Gastricepit Helial Cells[J]. Prostaglandins Leukot Essnt Fatty Acids, 1999, 61(5):315-322
    [71] Zimmermann KC, Sarbia M, Weber AA, et al. Cyclooxygenase-2 Expression inHuman Esophageal Carcinoma[J]. Cancer Res, 1999, 59(1):198-204.
    [72] Koga H, Sakisaka S, Ohishi M, et al. Expression of Cyclooxygenase-2 in Human Hepatocellular Carcinoma:Relevance to Tumor Dedifferentiation[J]. Hepatology, 1999, 29(3):688-696.
    [73] Dubois RN, Shao J, Tsujii M, et al. G1delay in Cells Overexpressing Prostaglandin Endoperoxide Synthase-2[J]. Cancer Res, 1996, 56(4):733-737.
    [74] Freeman H, Roecd B, Devine D, et al. Prospective Evaluation of Antineutrophil Autoantibodise in 500 Consecutive Patients with in Flammatory Bowel Disease[J]. Can J Gastroenterol, 1997;11(3):203-207
    [75]王晓娣,董恩珏.抗中性粒细胞胞浆抗体在炎症性肠病中的意义[J].中华内科学杂志, 2000;39(3):160
    [76] Halstensen T. Epithelial deposition of immunogolbulin Gr and activated complement Ic3b and Terminal complement complex I in ulcerative colitis. Gastroenterology, 1990;98∶1264
    [77]李琪佳,宫恩聪,刘叔平,等.免疫复合物IgG及C3C补体在溃疡性结肠炎免疫发病机制中的作用[J].中国综合临床, 2001;17(8):614
    [78] Taniguchi T, Tsukada H, Nadamura H, et al. Effects of the Anti-ICAM -1monocloned Antibody on Dextran Sodium Sulphate Induced Colitis in Rats[J]. J Gastroenterol-Hepatol, 1998;13(9)∶945-949
    [79] Mulden TPJ, Verspaget HW, Janssens AR, et al. Decrease in Two Intestinal Copper/zinc Containing Proteins with Antioxidant Function in Inflammatory Bowel Disease[J]. Gut, 1991, 32(10):1146
    [80] Cummings JH, Pomare EW, Branch WJ, et al. Short Chain Fatty Acids in Human Large Intestine, Portal Hepatic and Venous Blood[J]. Gut, 1987, 28(10):1221
    [81] Den Hond E, Hide M, Evenepoe IP, et al. In vivo Butyrate Metabolism and Colonic Permeability in Extensive Ulcerative Colitis[J]. Gastroenterology, 1998, 115(3):584
    [82] Collins CE, Rampton DS. Platelet Dysfunction:a New Dimension in Inflammatory- bowel Disease. Gut, 1995, 36(1):5
    [83] Collins CE, Rampton DS. Platelets in Inflammatory Bowel Disease Patho- genetic Role and Therapeutic Implications[J]. Aliment Pharmacol Ther, 1997, 11(2):237
    [84]张文俊,李兆申,许国铭,等.细胞凋亡调控蛋白Bcl- 2和Bax在溃疡性结肠炎表达中的研究[J].中华消化内镜杂志, 2003, 20(4):262
    [85] Van Dyke TE, Serhan CN. Resolutionoe Inflammation:a New Paradigm for the Pathogenesis of Periodontal Diseases[J]. Dent Res, 2003, 82(2):82
    [86] Brannigan AE, O’Connell PR, Hurley H, et al. Neutrophil Apoptosis is Delayed in Patients with Inflammatory Bowel Disease[J]. Shock, 2001, 13(5):361
    [87] Suzuki A, Sugimura K, Ohtsuka K, et al. Fas /Fax Ligand Expression and Characateristics of Primed CD45 ROT cell in the inflamed mucosa of ulcerative colitis[J]. Scand J Gastroenterol 2001, 35(22):1278
    [88] Neurath M, Finotto S, Fuss I, et al. Regulation of T- cell Apoptosis in Inflamatory Bowel Disease:To Die or not to Die, That is the Mucosal guestion[J]. Trends Immunol, 2001, 22(1):21
    [89]夏冰.炎症性肠病的遗传学研究进展[J].国外医学内科学分册, 1996, 23(12):513
    [90]江学良,权启镇,刘涛,等.溃疡性结肠炎研究的新进展[J].世界华人消化杂志, 2000, 8(2):217.
    [91]欧阳钦.炎症性肠病发病机制与治疗研究的最新进展[J].中华消化杂志, 2003, 23(8):453-454.
    [92] Rodrigues M, Zerini MC, Barbier D. Immunogistochemical Study of HLA- Drexpression in Lamina Propria of Colonic Mucosa in Children with Crohns Disease and Momspecific Ulcerative Colitis[J]. Arq Gastroenterol, 1998;35:143
    [93] Chiba M, Iizuka M, Horie Y. Futher Studies of HLA-DR Antigens on Colonic Epithelium in Ulcerative Colitis.[J]. Tohoku J Exp Med, 1995;177:161
    [94] Palmieri O, Latiano A, Valvano R, et al. Variants of OCTN1-2 cation Transporter Genes are Associated with Both Crohn’s Disease and Ulcerative Colitis[J]. Aliment Pharmacol Ther, 2006, 23(4):497-506.
    [95] Duerr RH, Taylor KD, Brant SR, et al. A Genome-wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene[J]. Science, 2006, 314(5804): 1461-1463.
    [96] Glas J, Martin K, Brunnler G, et al. MICA, MICB and C141 Polymorphism in Crohn’s Disease and Ulcerative Colitis[J]. Tissue Antigens, 2001, 58(4):243-249.
    [97] Chen M, Xia B, Rodriguez-Gueant RM, et al. Genotypes 677TT and 677CT+1298AC of Methylenetetrahydrofolate Reductase Are Associated with the Severity of Ulcerative Colitis in Central China[J]. Gut, 2005, 54(5):733-734.
    [98]朱元民,王勤河,刘玉兰,等.溃疡性结肠炎环境因素致病作用的研究[J].临床内科杂志, 2002, 19(5):350-351.
    [99] Madsen KL, Doyle JS, Jewell LD, et al. Lactobacillus sSpecies Prevents Colitis in Interleukin10 Gene-deficient Mice[J]. Gastroenterology1999, 116:1107
    [100]Lukas M, Bortlik M, Maratka Z. What Is the Origin of Ulcerative Colitis? Still More Questions than Answers[J]. Postgrad Med J 2006, 82:620-625
    [101]Magee EA, Richardson CJ, Hughes R, Cummings JH. Contribution of Dietary Protein to Sulfide Production in the Large Intestine:an in Vitro and a Controlled Feeding Study in Humans[J]. Am J Clin Nutr2000, 72:1488-1494
    [102]Levine J, Ellis CJ, Furne J K, et al. Fecal Hydrogen Sulfide Production in Ulcerative Colitis[J]. Am J Gastroenterol, 1998, 93:83-87.
    [103]Ramasamy S, Singh S, Taniere P, et al. Sulfide-detoxifying Enzymes in the Human Colon Are Decreased in Cancer and Upregulated in Differentiation[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 291:288-296.
    [104]Christl SU, Eisner HD, Dusel G, et al. Antagonistic Effects of Sulfide and Butyrate on Proliferation of Colonic Mucosa:a Potential Role for These Aagents in the Pathogenesis of Ulcerative Colitis[J]. Dig Dis Sci, 1996, 41:2477-2481.
    [105]Tursi A, Brandimarte G, Giorgetti GM, et al. Low-dose Balsalazide Plus a High-potency Probiotic Preparation is More Effective than Balsalazide alone or Mesalazine in Treatment of Acute Mild-to-moderate Ulcerative Colitis[J]. Med Sci Monit 2004, 10:PI126-131.
    [106]Cui HH, Chen cl, Wang JD, et al. Effects of Probiotic on Intestinal Mucosa of Patients with Ulcerative Colitis[J]. World J Gastroenterol 2004, 10:1521-1525
    [107]Gionchetti P, Rizzello F, Lammers KM, et al. Antibiotics and Probiotics in Treatment of Inflammatory Bowel Diseas[J]. World J Gastroenterol2006, 12: 3306-3313
    [108]Ishikawa H, Akedo I, Umesaki Y, et al. Randomized Controlled Trial of the Effect of Bifidobacteria-fermented Milk on Ulcerative Colitis[J]. J Am Coll Nutr2003, 22:56-63
    [109]Barbosa DS, Cecchini R, EI Kadri MZ, et al. Decreased Oxidative Stress in Patients with Ulcerative Colitis Supplemented with Fish Oil Omega-3 Fatty Acids[J]. Nutrition 2003, 19:837-842
    [110]Galvez J, Rodriguez-Cabezas ME, Zarzuelo A. Effects of Dietary Fiber on Inflammatory Bowel Disease[J]. Mol Nutr Food Res 2005, 49:601-608
    [111]罗秋华, ,邹天然,陈掌珠,孙学札心理社会因素在溃疡性结肠炎中的作用[J].世界华人消化杂志2008, 16(5):556-558
    [112]王昊,吴万春,韩真,金道友,汪萌芽心理应激对溃疡性结肠炎病情及疗效的影响[J].中国临床药理学与治疗学2006, 11:86-90
    [113]刘凤芹,楚更五,李子华,等.心理因素与溃疡性结肠炎[J].健康心理学杂志, 2001, 9(4):307.
    [1] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase gene into petunia results in reversible co-suppression of homologous gene in trans[J]. Plant Cell, 1990, 2(4):279-289.
    [2] Van der krol A, mur L, Beld M, et al. Flavonoid gene in petunia:addition of alimited number of gene copies may lead to a suppression of gene expression[J]. Plant Cell, 1990, 2(4):291-299.
    [3] Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C. elegansembryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4):611-620.
    [4] Fire A, Xu S, Montgomery M K et al. Potent and specific genetic interference bydouble-stranded RNA in C. elegans[J]. Nature, 1998, 391(6669):806-811.
    [5] Hannon G J. RNA interference[J]. Nature, 2002, 418(6894):244 - 251.
    [6] Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val)promoter significantly induce RNAi mediated gene silencing in the cyto-plasm of human cells[J]. Nucleic Acids Res, 2003, 31(2):700-707.
    [7] Irie N, Sakai N, Ueyama T, et al. Subtype and species specific knock down of PKC using short interferencing RNA[J]. Biochmi Biophysi Res Commun, 2002, 298(5): 738.
    [8] Elbashir SM, Martinez j, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. EMBO J, 2001, 20(23):6877 - 6888.
    [9]程杉,熊英,贺俊崎. RNA干扰及其在肿瘤研究中的应用[J].首都医科大学学报2008, 29(1):87 -95.
    [10]Lee N S, Dohj Ima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells[J]. Nat Biotechnol, 2002, 20(5):500 - 505.
    [11]Bohula E A, Salisburya J, SohailM, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin like growth factor receptor(IGF1R)is influenced by secondary structure in the IGF1R transcrip t[J]. J Biol Chem, 2003, 278(18):15991 - 15997.
    [12]Kretschmer, Kazemi F R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility:a comparison with antisense oligonucl-eotides[J]. Nucleic Acids Res, 2003, 31(15):4417 - 4424.
    [13]Reynolds A, Leake D, Boesee Q, et al. Rational siRNA design for RNA interfere- nce[J]. Nat Biotechnol, 2004, 22(3):326 - 330.
    [14]Kumiko Ui-Tei, Yuki Naito, Fumitaka Takahashi, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Res, 2004, 32(3):936 - 948.
    [15]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002, 296(5567):550 - 553.
    [16]Myers JW, Jones J T, Meyer T, et al. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing[J]. Nat Biotechnol, 2003, 21(3):324 - 328.
    [17]Miyagishi M, Taira K. U6 promoter driven siRNAs with four uridine 3′overhangs efficiently suppress targeted gene expression in mammalian cells[J]. Nat Biotechnol, 2002, 20(5):497 -500.
    [18]Xia HB, Mao QW, Eliason SL, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebllar ataxia[J]. Nat Med, 2004, 10(8) 816-820.
    [19]Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature 2001, 411(6836): 494-8
    [20]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21 and 22 nucleotide RNAs[J]. Genes Dev, 2001, 15(2):188
    [21]ZengY, CullenB R. RNA interference in human cells is restricted to the cytoplasm[J]. RNA, 2002, 8(7):855
    [22]BernsteinE, CaudyA A, Hammond S M, et al. Role for a bi dentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818):363
    [23]Zamore P D, Tuschl T, Sharp P A, et al. RNAi:double stranded RNA directs the ATP dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1): 25
    [24]Zamore P D. RNA interference:listening to the sound of silence[J]. Nat Struct Biol, 2001, 8(9):746
    [25]ButcherE C, BergE L, Kunkel E J. Systems biology in drug discovery[J]. Nat Biotechnol, 2004, 22, (10):1253-1259
    [26]Harborth J, Elbashir S M, Bechert K, et al. Identification of essential genes incultured mammalian cells using small interfering RNAs[J]. Cell Sci, 2001, 114(Pt24):4557-4565
    [27]LiuY, Lashuel H A, Choi S, et al. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line[J]. Chem Biol, 2003, (10):837 -846.
    [28]Maeda I, Kohara Y, Yamamoto M, et al. Large scale analysis of gene function in Caenorhabditis elegans by high throughput RNAi[J]. Curr Biol, 2001, 11(3):171- 176
    [29]Paddison P J, Silva J M, Conklin DS. A resource for large-scale RNA-interference based screensin mammalian cells[J]. Nature, 2004, 428(6981):427- 431
    [30]Berns K, Hijmans E M, Mullenders J. A large-scale RNAi screen in human cells identifies new components of the p53 pathway[J]. Nature, 2004, 428(6981):431- 434
    [31]Chen M, ZhangL, Zhang H Y, A universal plasmid library encoding all permutations of small interfering RNA[J]. Proc Natl Acad Sci. USA, 2005, 102(7):2356- 2361
    [32]Conrad C, Erfle H, Warnat P,. Automatic identification of subcellular phenotypes on human cell arrays[J]. Genome Research, 2004, 14(6):1130- 1136
    [33]Mousses S, Caplen N J, Cornelison R. RNAi micro array analysis in mammalian cultured cells[J]. Genome Res, 2003, 13(10):2341- 2347
    [34]Westbrook T F, Martin E S, Schlabach M R. A genetic screen for candidate tumor suppressors identifies REST[J]. Cell, 2005, 121, (6):837- 848
    [35]KolfschotenI GM, vanLeeuwen B, Berns K. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity[J]. Cell, 2005, 121, (6):849- 858
    [36]Kittler R, Putz G, Pelletier L,. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division[J]. Nature, 2004, 432(7020):1036- 1040
    [37]Carthew RW. RNA interference:the fragile X syndrome connection[J]. Curr Biol, 2002, 12(24):852 - 854.
    [38]Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins[J]. Genes Dev, 2002, 16(19):2497-2508
    [39]Novina C D, Murray M F, Dykxhoorn D M, et al. siRNA-directed inhibition of HIV-1 infection[J]. Nat Med, 2002, 8(7):681-686.
    [40]Surabhi R M, Gaynor R B. RNA interference directed against viral and cellular targets inhibits human immunodeficiency virus type1 replication[J]. Virol, 2002, 76(24):12963-12973
    [41]Shlomai A, Shaul Y. Inhibition of Hepatitis B virus expression and replication byRNA interference[J]. Hepatology, 2003, 37(4):764-770.
    [42]Jiang M, Milner J. Selection silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference[J]. Oncogene, 2002, 21(39):6041-6048.
    [43]Wilda M, Fuchs U, WossomannW, et al. Killing of leukemic cells with abcr/abl fusion gene by RNA interference(RNAi)[J]. Oncogene, 2002, 21b(37):5716 - 5724.
    [44]Zhang L, Yang N, Mohamed-Hadley A, et al. Vector–based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti- angiogenesis gene therapy of cancer[J]. Biochem Bio phys Res Com- mum, 2003, 303(4):1169-1178.
    [45]McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference[J]. Nat Biotechnol, 2003, 21(6):639-644
    [46]Li BJ, Tang QQ, Cheng D, et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque[J]. Nature Medicine, 2005, 11:944-951
    [47]Singer O, Marr RA, Rockenstein E, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model[J]. Nat Neurosci, 2005, 8(10):1343-1349
    [48]Sorensen D R, Leirdal M, SIOUD M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice[J]. J Mol Biol, 2003, 327(4):761-766
    [49]Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice[J]. Proc Natl Acad Sci USA, 2003, 100(13):7797-7802.
    [50]Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Res. 2004 Nov 1;32(19):e149
    [51]Soutschek J et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs[J]. Nature, 2004, 432(7014):173-178
    [52]Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA[J] PNAS, 2003, 100:1844 -1848
    [53]Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats[J]. FEBS letter, 2002, 532:227- 2301
    [54]刘宝玉,孟昭力. RNAi技术在药物研究中的应用[J].食品与药品2006, 8(4):62-34
    [55]Zimmermann TS, Lee AC, Akinc A. RNAi-mediated gene silencing in non-human primates[J]. Nature. 2006 441(7089):111-114
    [56]Deng X, Ewton DZ, Pawlikowski B, et al. Mirk/ dyrk1B is a Rho-induced kinase active in skeletal muscle differentiation[J]. J Biol Chem, 2003, 278(42):41347-54
    [57]Kamat h RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature, 2003, 421(6920):231-237.
    [58]Williams NS, Gaynor RB, Scoggin S, et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference[J]. Clin Cancer Res, 2003, 9(3):931-946.
    [59]J acque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference[J]. Nature, 2002, 418(6896):435-438.
    [60]Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells[J]. Nature, 2002, 418(6898):430-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700