用户名: 密码: 验证码:
纯电动轿车动力总成控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车是由蓄电池输出电能,采用电动机驱动,单一动力源的汽车。其具有零排放的特点,与燃料电池汽车,混合动力汽车相比,具有许多共同的关键性技术,整车结构相对简单,成本较低,特别适用于城市运行工况,因而对纯电动汽车的研究具有重大意义。
     本文围绕国家“863”计划电动汽车重大专项“QR纯电动轿车”(2002AA501700)项目动力总成控制系统开展了深入系统的理论和试验研究,在广泛调研国内外电动汽车发展状况的基础上,主要完成了整车系统功能设计,动力总成驱动控制、能量回馈控制,高压电管理系统的研究,控制程序的编写,仿真平台的建立及实车道路试验等一系列的工作。
     本文基于整车多节点控制器的架构,采用分层控制的思想,定义了各个控制器的功能及交互接口,为各控制器节点之间设计了CAN通讯网络,搭建了QREV的整车平台。围绕延长纯电动汽车续驶里程这一核心问题,研究了动力总成驱动控制技术,提出了整车经济运行与动力运行模式,将整车运行划分为起步、驱动、失效、空转及能量回馈等五种状态并研究了相应的控制策略。深入分析了电动汽车能量回馈的原理,提出了滑行能量回馈模式及制动能量回馈模式,并提出一种基于常规汽车制动结构的电动汽车能量回馈控制系统,研究了整车与驱动电机的交互策略,运用无刷直流电机扭矩闭环的PI调节器及半桥调制实现了能量回馈,为电动汽车的能量回馈提供了易于实现的工程解决方案。开发了电动汽车高压电管理系统ADM(Auto Disconnect Module),可监测高压电路的绝缘、预充电、接地及高压互锁等八种高压电路状态,并于高压电试验台证明了ADM高压接触器动态响应良好,在135ms内完成高压接触器稳定闭合接通过程,可于13ms内迅速断开接触器,比GB/T 18384.1-2001中20ms切断高压的响应速度要求提高35%,完全满足国标及SAE的安全性能指标。为调试动力总成控制器,基于MC68376开发了动力总成控制器的硬件在环仿真系统,于上位PC机里建立了整车模型,电机模型及蓄电池模型,采用了Labview图形语言及C语言,多线程的编程技术,实现了内嵌模型与图形监测界面的调用,保证了上位机运行的实时响应。
     所研究的成果运用于国家“863”计划电动汽车重大专项“QR纯电动轿车”(2002AA501700)上,并于专用试车场进行了道路试验,整车性能良好,0~50km加速为8.4s,采用制动回馈技术后,能量回馈率达9%,车辆续驶里程达300多公里,超出国家科技部要求50%,整车性能通过了第三方检测机构北方车辆所的检验,圆满通过国家科技部验收。
Pure electric vehicle uses motor as driving unit and power batteries as single energy sources, which can realize zero emissions. Comparing with fuel cell vehicle and hybrid vehicle, it has the most common key technologies, simpler structure and lower cost. It is much better for city cycle running. Therefore it is very important to do research and development for pure EV.
    
     Based on the national high technology research and development program“863”, No. 2002AA501700, this research focus on the powertrain system of“QR pure electric vehicle”(QREV) and engage in systemic theory and experiment study. With detailed investigation on current domestic and international electric vehicle (EV) status, this paper studies QREV system function design, powertrain driving control, energy regeneration (ER) control and high voltage administration system. The control program, simulation platform and real road test were also described in this paper.
     The delaminating control mode was used to manage QREV multipoint controller and the mutual interface of every control unit were studied. The CAN communication network was designed to make the vehicle control platform. In order to extend pure EV running distance, this thesis focused on powertrain driving control technology research. The economy mode and power mode were designed and the related control strategy was studied, which contains start, drive, fail, idle and ER mode. With the energy regeneration principle deeply analyzing the cruising energy and braking energy regeneration was designed. Based on the regular braking system, B mode and C mode of ER method was developed, PI torque closed-loop control for brushless direct current motor (BLDCM) and PWM half bridge control method were designed, which provides a feasible method for ER engineering application. The auto disconnect module (ADM) was developed in this thesis, which can monitor insulation, pre-charge, grounding and high voltage inter-lock, total eight type of high voltage status. With high voltage experiment, ADM had very good dynamic respond. It can finish the high voltage connect within 135ms and disconnect in 13ms, which was 35% quicker than GB/T 18384.1―2001 request. Its performance can meet National and SAE safety criteria. The hardware in loop (HIL) simulation was built for the powertrain control module (PTCM) debugging in this paper. The vehicle model, BLDC model and battery model were built in PC. The Labview graphic language, C language and multithreading programming skill were used to make the models and graphic monitoring interface transferring, which ensure the HIL system real time respond.
     The research was applied on national high technology research and development program“863.QR pure electric vehicle”, No. 2002AA501700. The QREV has good driving capability and can acceleate to 50km within 8.4s. The energy feedback can reach 9% with ER technology. The vehicle can run more than 300km, which is 50% higher than national science and technology department request. The vehicle performance met the inspection of North China vehicle quality certificated research institute and National science and technology department’s validation.
引文
1王秉刚,中国清洁汽车的行动的成就与展望,汽车工程,2005,(6):p643-p646
    2兰召华,黄妙华,电动汽车产业化发展状况及相关策略的研究,专用汽车,2002.4
    3李中华,质子交换膜燃料电池在电动车辆上的应用,上海汽车,2006,(9):p2~5
    4 Antoni Szumanowski,陈清泉,孙逢春,混合电动车辆基础,北京理工大学出版社,2001
    5汤秀红,刘伟涛,电动汽车技术发展综述,城市车辆,2002,(5)
    6 Riazenman M J, Engineering the EV future [J], IEEE Spectrum, 1998.11, P18~20
    7汪卫东,世界汽车安全技术的最新发展[J],汽车工业研究,2004.4,P36~37.
    8 Buom-Sik Shin, Myung-Seok Lyu, Combution System Development in a Small Bore HSDI Diesel Engine for Low Fuel Consuming Car, SAE 2001-01-1257
    9曹秉刚,张传伟,白志峰,李竟成,电动汽车技术进展和发展趋势[J],西安交通大学学报,2004.1,p1~5
    10 Ernest H. Wakefield.叶云屏,孙逢春译,《电动汽车发展史》,北京,北京理工大学出版社,1997
    11白木,周艳琼,电动车发展动态,机电一体化,2001,(3):75-79
    12张翔、赵韩、张炳力、钱立军,中国电动汽车的进展[J],汽车研究与开发,2004,(1):P19~24.
    13孙逢春,电动汽车发展现状与趋势,科学中国人,2006,(8):44~47
    14万沛霖.电动汽车的关键技术.北京:北京理工大学出版社,1998.12
    15朱世麟.电牵引基础.北京:中国铁道出版社,1994.9
    16张琛.无刷直流电动机原理与应用.北京:机械工业出版社,1996
    17 Andrew W. Phillips, etal.“Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies”, SAE Paper 900619
    18 F.Aghili, M.Buehler, J.M.Hollerbach . Quadratic Programming in Control of Brushless Motors.Proceedings of the 2001 IEEE International Conference on Robotics & Automation,Seoul,Korea May 2001
    19闵庆云.电动汽车用永磁无刷电机的控制与驱动.中小型电机,1998. 25(4)
    20胡明辉,秦大同,舒红等,混合动力汽车电池管理系统SOC的评价,重庆大学学报,2003,(26):p20-23
    21朱元,韩晓东,田光宇等,电动汽车动力电池SOC预测技术研究,电源技术(研究与设计), 2000,(24):p153-156
    22 SAE J1766:1998电动车辆和混合电动车辆用电池系统整体碰撞试验推荐规程
    23 SAE J2234:1998 GUIDELINES FOR ELECTRIC VEHICLE SAFETY
    24 GB/T 18384.1――2001电动汽车安全要求第1部分:车载储能装置
    25 GB/T 19751――2005混合动力电动汽车安全要求
    26梁龙,混合动力电动汽车驱动系统的开发与运用,汽车工程2001,(2)
    27陈伯时主编《电力拖动自动控制系统》,第二版,机械工业出版社,2000.6
    28汤藴缪,史乃主编《电机学》,机械工业出版社,2002.7
    29张存山,范瑜,考虑IGBT特性的无刷直流电机数学模型,电工技术学报,2005,(7): p22-p27
    30邬宽明,CAN总线原理和应用系统设计[M],北京:航空航天出版社,2002.3.
    31 Etschberger K. CAN-based higher layer protocols and profiles [A]. Proceedings of the 4-the International CANConference [C]. Berlin 1997
    32齐秋群,刚寒冰.MOTOROLA 32位单片机M68300系列原理与应用.北京理工大学出版社.1993
    33毛楠、孙瑛,电子电路抗干扰实用技术[M],北京:国防工业出版社,1996.1
    34 M.米奇克著,陈荫兰译,汽车动力学,北京:人民交通出版社,1992.3
    35罗玉涛,俞明,陈炳坤等,电动车制动能量反馈控制研究,机床与液压,2002,第5期:162-164
    36王子杰、黄妙华、邓亚东,EV再生制动系统的建模与仿真,武汉理工大学学报,2001,Vol.23,No.4, p312~328
    37 FRIEDL MEIER G,FRIEDRICH J,NOREIKAT K E.et al.Test Experiences With the Daimler Chrysler Hydrogen-fueled fuel cell Electric Vehicle NECAR4. Edited by MAO ZQ,VEZIROGLU TN. Proceeding of the 13th World Hydrogen Energy Conference. Beijing,2000:1357-1363
    38 S.R.Cikanek,K.E.Bailey.Regenerative Braking System For A Hybrid Vehicle. Proceedings of the American Control Conference Anchorage,AK May 8-10,2002
    39 Panagiotidis M. , et al.Development and Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle.SAE 2000 World Congress
    40 John Paterson,Mike Ramsay. Electric Vehicle Braking by Fuzzy Logic Control.IEEE,1993
    41张毅,杨林,卓斌,电动汽车能量回馈的整车控制,汽车工程,2005,(27):p24~27
    42 Noboru Sato, Kazuhiko Yagi.Thermal behavior analysis of nickel metal hydride batteries for electric vehicles[J].JSAE Review,2000, 21:205–211
    43何小明.电动汽车动力蓄电池系统仿真及其管理系统的研究[D].硕士学位论文.上海:上海交通大学,2004
    44张毅,杨林,李立明,电动汽车无刷直流电动机的回馈制动控制,上海交通大学学报,2005,(39):p1457~1461
    45何锋,杨宁编著,汽车动力学,贵州科技出版社,20.00,2003年4月第一版
    46邬志国,张云龙,袁大宏.电控发动机ECU故障自诊断简析.汽车技术.2001.5
    47.钱人一.汽车发动机的车载故障诊断.汽车技术.1999.10
    48 Recommended Practice for Diagnostic Trouble Code Definitions. SAE, J2012. Issued, 1992-03
    49 GM S10纯电动车维修手册
    50周启明.基于OBDⅡ的电控汽车计算机辅助诊断系统.[M]西安公路交通大学.2000.6
    51陈国金等.发动机故障特征量提取方法的研究.内燃机学报.2002.3
    52梁峰,高压共轨式电控柴油机故障自诊断系统研究[D],博士学位论文,上海:上海交通大学,2006
    53吕红兵,罗智中.汽车发动机故障诊断模糊专家系统研究.内燃机工程.1999.4
    54 Y.Inoue, S.Uehara, K.Maguro, Y.Hirabayashi,“Multiples Systems for Automotive Integrated Control”, SAE Paper #930002.
    55刘慧银等编著.Motorola微控制器MC68HC08原理及其嵌入式应用.清华大学出版社,2001年8月
    56 JEAN.J.LABROSSE编著,uc/os_II源码公开的实时嵌入式操作系统.中国电力出版社,2001,8
    57 Micbael.Barr编著,C/C++嵌入式系统编程,中国电力出版社,2001,3
    58 Kirk.Zurell编著,嵌入式系统的C程序设计.机械工业出版社,2002,1
    59谭浩强等编著,C程序设计,清华大学出版社,1991,7
    60 GB/T 18384.1—2001电动汽车安全要求第1部分:车载储能装置
    61 GB/T 18384.2—2001电动汽车安全要求第2部分:功能安全和故障保护
    62 GB/T 18384.3—2001电动汽车安全要求第3部分:人员触电防护
    63 GB/T 18487.1—2001电动车辆传导充电系统一般要求
    64 GB/T 18487.2电动车辆传导充电系统电动车辆与交直流电源的连接要求
    65 SAE J1766:1998电动车辆和混合电动车辆用电池系统整体碰撞试验推荐规程
    66 SAE J2234:1998 GUIDELINES FOR ELECTRIC VEHICLE SAFETY
    67 SAE J1715:1994电动道路车辆术语
    68 UL 2202—1996 Electric Vehicle Charging Equipment
    69 UL 2231—1996 Personal Protection Systems for Electric Vehicle (EV) Supply Circuits: Part 1: General Requirements
    70 GB/T 18332.2—2001电动道路车辆用金属氢化物镍蓄电池
    71 GB/T 18333.1—2001电动道路车辆用锂离子蓄电池
    72朱杰,汽车安全技术的发展趋势[J],公路与汽运,2003.8,P1~3
    73 IEC 60479–1: Effects of current on human beings and livestock–Part 1: General aspects
    74邱关源,电路(第四版),北京:高等教育出版社,2000
    75 CII Technologies TM,Kilovac产品样本,上海西艾爱电子有限公司
    76 J M Ogden, M M Steinbugler, T G Kreutz. A comparison of hydrogen, methol and gasoline as fuels for fuel cell vehicle: implications for vehicle design and infrastructure development. J Power Sources. 79, 143-168(1999)
    77 M Nadal, F Barbir. Development of a hybrid fuel cell/battery powered electric vehicle. Int J Hydrogen Energy,1996, 21(6):497-505
    78 Ken Dircks. Recent advances in fuel cells for transportation applications. SAE-1999-01-0534:39
    79郑玉全,微型抢占式多任务实时内核设计,单片机与嵌入式系统应用,2004,(1):p21-25
    80广州周立功单片机发展有限公司,USBCAN智能CAN接口卡用户手册,2003.5
    81汪敏生.LabVIEW基础教程[M](第1版).北京:电子工业出版社,2002:1-16
    82 P.Pillay, Z.Xu. Motor Current Signature Analysis[J]. IEEE,1996: 587-594
    83 Donald L.Shirer. LabVIEW 6i Adds Internet Features to Data Acquisition Environment[J].Computing in Science & Engineering,2001:8-11
    84 Miriam Gulotta. Teaching Computer interfacing with Virtual Instruments in an Object-Oriented Language[J],Biophysical Journal,1995,19:2168-2173
    85 I. R. Kendall,An investigation into the use of hardware-in-the-loop simulation testing for automotive electronic control systems, Control Engineering practice 7(1999) 1343-1356
    86 ColeGHS.Asimpleelectricvehiclesimulationprogramversion2.0[C].Idaho, Idaho:EG&GIdaho,Inc.,1993
    87 Hardware-in-the-loop simulation for the investigation of truck disel injection system, Jochen Schaffnit, Stefan Sinsel, Rolf Isermann, Institute of Automatic Control Technical University of Darmstadt Landgraf-Georg-str.4 Proceedings of the American Control Conference Philadelhia,Pennsylvania June 1998
    88张东升,陈兴林,多任务技术在嵌入式系统中的应用,电脑与信息技术,2004,(1):p31-34
    89孙德明,何正,嘉高强,基于LabVIEW平台的在线监测诊断系统多任务调度策略,计算机工程与应用,2003,(4):p69-71
    90唐航波,高压共轨柴油机ECU硬件在环仿真系统研究[学位论文],上海,上海交通大学,2005
    91 Katsuhiko Ogata著,卢伯英,于海勋等译,现代控制工程(第四版),北京,电子工业出版社,2003
    92杨天怡,黄勤,微型计算机控制技术,重庆,重庆大学出版社,1996
    93熊世和,机电系统计算机控制技术,西安,电子科技大学出版社,1993
    94王海峰,任章,异步电机矢量变换控制系统的MATALB/SIMULINK仿真,电气传动自动化,2003年第4期:23-25
    95 MOTOROLA, Queued Serial Module Reference Manual. MOTOROLA, INC, 1996
    96 R.A.Guinee, C.Lyden. Accurate Modelling and Simulation of a DC Brushless Motor Drive System for High Performance Industrial Applications. 0-7803-5471-0. IEEE 1999
    97 F.Aghili, M.Buehler, J.M.Hollerbach . Quadratic Programming in Control of Brushless Motors.Proceedings of the 2001 IEEE International Conference on Robotics & Automation,Seoul,Korea May 2001
    98 Sun Fengchun,Zhang Chengning,Guo Haitao,Battery Management System with State of Charge Indicator for Electric Vehicles,Journal of Beijing Institute of Technology,1998,Vol 7,No.2,166-171
    99 Jung, Do Yang,Lee, Baek Haeng,Kim,Sun Wook , Development of battery management system for nickel-metal hydride batteries in electric vehicle applications, Journal of Power Sources, Volume:
    109, Issue: 1, June 15, 2002, p. 1-10
    100张鹏,孟进,许英等,镍氢电池的原理及与镍镉电池的比较,国外电子元器件,1997年第5期,16-18
    101孙逢春,何洪文,陈勇等,镍氢电池充放电特性研究,汽车技术,6-8
    102 Alzieu, J.; Gagnol, P.; Smimite,H. Development of an on-board charge and discharge management system for electric-vehicle batteries,Journal of Power Sources Volume: 53, Issue: 2, February, 1995, pp. 327-333
    103 Keith Wipke、Matthew Cuddy、Steven Burch,ADVISOR 2.1: A User-Friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach,IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,1999.11,Vol.48 No.6
    104 Ahmad A. Pesaran,Battery thermal models for hybrid vehicle simulations,Journal of power sources, 2002,(110):p377-382
    105林成涛,仇斌,陈全世,电流输入电动汽车电池等效电路模型的比较,机械工程学报,2005,(41):p76-81
    106陈全世,林成涛,电动汽车用电池性能模型研究综述,汽车技术,2005,(3):p1-5
    107 Advanced vehicle simulator (ADVISOR), Version 3.2
    108 Noboru Sato, Kazuhiko Yagi,Thermal behavior analysis of nickel metal hydride batteries,JSAE Review,2000,(21):p205-211
    109付正阳,林成涛,陈全世,电动汽车电池组热管理系统的关键技术,公路交通科技,2005,(3):p119~123
    110 Ahmad A. Pesaran, Ph.D.,Thermal Performance of EV and HEV Battery Modules and Packs, NREL report, December 1997
    111 Ahmad A. Pesaran, Ph.D.,Battery Thermal Management in Evs and HEVs: Issues and Solutions, NREL report,February 2001
    112 Pritpal Singh. A Fuzzy Logic Approach to State-of-Charge Determination in High Performance Batteries with Applications to Electric Vehicles[C]. EVS-17, Montreal, 2000
    113 Sun Fengchun,Zhang Chengning,Guo Haitao,Battery Management System with State of Charge Indicator for Electric Vehicles,Journal of Beijing Institute of Technology,1998,Vol 7,No.2,166-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700