用户名: 密码: 验证码:
流域广义干旱风险评价与风险应对研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为水循环过程的一类极值过程,干旱随着气候变化和人类活动影响的深入,呈现出广发频发态势,危及到流域的水安全和生态安全。干旱事件的发生具有确定性和随机性的双重特性,需在遵循自然—人工二元水循环原理的基础上,采用风险模式进行应对。
     本文从水资源系统的角度,提出广义干旱的内涵及定量化评价方法;结合自然气候变化、人为气候变化、下垫面条件改变、水利工程调节等对干旱事件的影响特性,构建广义干旱演变的整体驱动模式,并定量识别其驱动机制;结合干旱事件演变的确定性和随机性特征,提出广义干旱风险评价方法与基于3S技术的广义干旱风险区划方法;从节流与开源两方面提出流域广义干旱风险应对措施,并评估措施的实施效果。在上述理论与技术的支撑下,选取干旱事件频发的东辽河流域进行实证研究。
     通过识别东辽河流域广义干旱的驱动机制可知,流域广义干旱在1960~1981年主要受自然气候变化、下垫面条件改变和水利工程调节的影响,在1982~2010年主要受自然气候变化、人为气候变化、下垫面条件改变和水利工程调节的影响。
     从水资源系统的角度构建东辽河流域广义干旱评价指标,指标的计算结果与梨树县和公主岭市典型场次的实际旱情较为一致,且该指标在东辽河流域的模拟效果要优于标准化降水指标、Palmer干旱指标和缺水率指标。采用广义干旱评价指标分析东辽河流域广义干旱的时空分布情况可知,1960~2010年流域各评价单元的广义干旱次数、持续时间、强度有较大的差异;各评价单元的广义干旱次数、持续时间和强度在不同年代间亦发生了较大的变化;不同年代流域广义干旱次数、持续时间和强度的重心在空间上发生了明显的转移。
     通过评价东辽河流域广义干旱风险且绘制流域广义干旱风险区划图可知,流域高风险区主要分布在流域上游的金满水库、八一水库、椅山水库、安西水库、三良水库的供水范围内,以及下游的南崴子灌区、秦屯灌区、梨树灌区和双山灌区。人为气候变化、下垫面条件变化(主要是土地利用变化)、水利工程的调节均在一定程度上使得东辽河流域广义干旱高风险区的面积减少,而低风险区的面积增加。
     通过从提高农田灌溉水利用系数、减少田间土面蒸发和流域外调水三个方面提出了东辽河流域广义干旱风险应对方案且评估方案的实施效果可知,提高灌溉水利用系数,可使部分评价单元广义干旱风险值降低,同时又提高了另一部分评价单元的广义干旱风险值;减少田间土面蒸发,可使流域大部分评价单元的广义干旱风险值得到大幅度的降低;实行流域外调水后,可以降低流域水利工程供水范围内的评价单元的广义干旱风险值。
     通过本研究,将进一步发展变化环境下干旱应对理论与技术,并为东辽河流域干旱综合应对提供科学依据。
Drought is the extreme event in water cycle. With the increasing impact of climatechange and human activities, drought happens in more area with higher frequency, andnow it endangers the water and ecology security in river basin. The occurrences of droughtevents usually contain dual characteristics: determinacy and randomness. A risk modelbased on "natural-artificial" dualistic water cycle theory should be taken to cope with thisproblem.
     From the perspective of the water resources system, this article proposed aconnotation and a quantitative evaluation method to generalized drought. The drivingfactors of natural climate variability (NCV), anthropogenic climate change (ACC),underlying conditions change (UCC) and hydraulic engineering regulation (HER) can alterthe impacts of drought events. The unitary driver model of generalized drought evolutionwas built. After combining the dual characteristics of drought events, the methods ofgeneralized drought risk assessment and generalized drought risk division were proposedbased on3S technology. Some measures were put forward to cope with generalizeddrought risk, and their effects were evaluated. Based on the above theories andtechnologies, Dongliao River Basin with high frequency of drought events was taken foran example.
     According to the identification of the driving mechanism of generalized drought inDongliao River Basin, it could be seen that the generalized drought was affected by NCVand HER during1960to1981, and affected by NCV, ACC and HER during1982to2010.
     The results simulated by generalized drought assessment index were comparativelyunanimous to the drought disasters happened in Lishu and Gongzhuling of Dongliao RiverBasin actually. The results simulated by the generalized drought assessment index werebetter than that of Standard Precipitations Index, Palmer Drought Severe Index and Rate ofWater Deficit Index. The generalized drought frequency, duration and severity differwidely between assessment units in Dongliao River Basin from1960to2010. They werealso different in different years, and their centers of gravity transferred obviously in thespace.
     The risk values of the assessment units of Jinman Reservoir, Bayi Reservoir, YishanReservoir, Anxi Reservoir, Sanliang Reservoir, Nanwaizi Irrigated Area, Qintun IrrigatedArea, Lishu Irrigated Area and Shuangshan Irrigated Area were higher than other assessment units. The areas with high risk were decreased, and the areas with low riskwere increased by the impacts of ACC, UCC and HER.
     Some response strategies of enhancing the coefficient of farmland irrigating water use,decreasing the soil evaporation and implementing inter-basin water transfer project wereproposed to cope with generalized drought in Dongliao River Basin. The risk values ofsome assessment units were decreased, and some assessment units were increased byenhancing the coefficient of farmland irrigating water use. Nearly all assessmentunits risk values were reduced by decreasing the soil evaporation. The risk values of theassessment units of reservoirs were decreased by implementing interbasin water transferproject.
     Based on this research, both theories and technologies to cope with the droughtproblems in changing environment will be further developed, and provide scientific basisto deal with drought problem in Dongliao River Basin in the meantime.
引文
[1]王雪梅译.气候变暖导致全球干旱[J].科学新闻,2011,6:56-59.
    [2] United Nations International Strategy for Disaster Reduction Secretariat (UNISDR), Globalassessment report on disaster risk reduction. Risk and poverty in a changing climate. Invest todayfor a safer tomorrow, New York, UNISDR,2009.
    [3] Aiguo Dai, Kevin E. Trenberth et al. A Global Dataset of Palmer Drought Severity Index for1870-2002: Relationship with Soil Moisture and Effects of Surface Warming[J]. Journal ofHydrometeorology,2004,5:1117-1130.
    [4] Le Quesne, C., C. Acuna, J.A. Boninsegna, A. Rivera, J. Barichivich. Long-term glaciervariations in the Central Andes of Argentina and Chile, inferred from historical records andtree-ring reconstructed precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,281:334-344.
    [5] Federal Emergency Management Agency (FEMA). National Mitigation Strategy: Partnerships forBuilding Safer Communities. Mitigation Directorate, p.2, Washington, DC: Federal EmergencyManagement Agency;1995,40.
    [6] Kallis G. Droughts. Annu Rev Env Resour,2008,33:85-118.
    [7] Dai A.G. Drought under global warming: a review [J]. Wiley Interdisciplinary Reviews: ClimateChange,2011,2(1),45-65.
    [8] Intergovernmental Panel on Climate Change (IPCC), Managing the risks of extreme events anddisasters to advance climate change adaptation, Cambridge University Press, Cambridge, UK,and New York, NY, USA,2012.
    [9]秦大河.气候变化与干旱.科技导报,2009,11:7.
    [10]翁白莎,严登华.变化环境下我国干旱灾害的综合应对[J].中国水利,2010,7:4-7.
    [11]国家防汛抗旱总指挥部.中国水旱灾害公报.北京:中华人民共和国水利部,2010.
    [12]王浩,王建华等.基于二元水循环模式的水资源评价理论方法.水利学报,2006,37(12):1496-1502.
    [13]王浩.实行最严格的水资源管理制度关键技术支撑探析[J].河南水利与南水北调,2011,9:46.
    [14] American Meteorological Society (AMS), Meteorological drought--policy statement, BullAmerican Meteorological Society,1997,78,847-849.
    [15]严登华,何岩等.东辽河流域河流系统生态需水研究[J].水土保持学报,2001,15(1):46-49.
    [16]邓慧平,李爱贞等.气候波动对莱州湾地区水资源及极端旱涝事件的影响[J].地理科学,2000,20(1):56-60.
    [17]刘德祥等.气候变暖对甘肃干旱气象灾害的影响[J].冰川冻土,2006,28(5):707-712.
    [18]邓振镛等.干旱灾害对干旱气候的响应[J].冰川冻土,2007,29(1):114-118.
    [19]任国玉,姜彤等.气候变化对中国水资源情势影响综合分析[J].水科学进展,2008,19(6):772-779.
    [20] Polemio M., Casarano D. Climate change, drought and groundwater availability in southern Italy.Geological Society, London,2008,39-51.
    [21] Thomas R Karl, Gerald A Meehl, et al. Weather and Climate Extremes in a Changing Climate.Regions of Focus: North America, Hawaii, Caribbean, and US Pacific Islands [M], ClimateChange Science Program,2008.
    [22]王新华,延军平等.近48年大同市旱涝灾害对气候变化的响应[J].干旱地区农业研究,2010,28(5):274-278.
    [23]白莹莹,高阳华等.气候变化对重庆高温和旱涝灾害的影响[J].气象,2010,36(9):47-54.
    [24]谢安,许永罡等.中国东北近50年干旱发展及全球气候变暖的响应[J].地理学报,2003,58(增刊):75-82.
    [25]翟盘茂,邹旭恺.1951-2003年中国气温和降水变化及其对干旱的影响[J].气候变化研究进展,2005,1(1):16-18.
    [26]顾静,赵景波等.中地区元代干旱灾害与气候变化[J].海洋地质与第四纪地质,2007,27(6):111-117.
    [27]章大全,张璐等.近50年中国降水及温度变化在干旱形成中的影响[J].物理学报,2010,59(1):655-663.
    [28]游珍,徐刚等.农业旱灾中人为因素的定量分析—以秀山县为例[J].自然灾害学报,2003,12(3):19-24.
    [29]高升荣.清代淮河流域旱涝灾害的人为因素分析[N].中国历史地理论丛,2005,20(3):80-86.
    [30]符淙斌,温刚.中国北方干旱化的几个问题[J].气候与环境研究,2002,7(1):22-29.
    [31]姜逢清,朱诚等.当代新疆洪旱灾害扩大化:人类活动的影响分析[J].地理学报,2002,57(1):57-66.
    [32] Deo R.C., et al. Impact of historical land cover change on daily indices of climate extremesincluding droughts in eastern Australia [J]. Geophysical Research Letters,2009.
    [33] Huqiang Zhang, Yaohui Li, et al. Potential impacts of land-use on climate variability andextremes[J]. Advances in Atmospheric Sciences,2009,26(5):840-854.
    [34]穆兴民,王飞等.西南地区严重旱灾的人为因素初探[J].水土保持通报,2010,30(2):1-4.
    [35]程国栋,王根绪.中国西北地区的干旱与旱灾—变化趋势与对策[J].地学前沿,2006,13(1):3-14.
    [36]王建华,郭跃.2006年重庆市特大旱灾的特征及其驱动因子分析[J].安徽农业科学,2007,35(5):1290-1292,1294.
    [37]童亿勤,杨晓平等.宁波市水旱灾害孕灾环境因子分析[J].灾害学,2007,22(3):33-35.
    [38]张家团,屈艳萍.近30年来中国干旱灾害演变规律及抗旱减灾对策探讨[J].中国防汛抗旱,2008,5:48-52.
    [39] Amin Shaban. Impact of Climate Change on Water Resources of Lebanon: Indications ofHydrological Droughts. Environmental Science and Engineering,2008,125-143.
    [40]龚志强,封国林.中国近1000年旱涝的持续性特征研究[J].物理学报,2008,57(6):3920-3931.
    [41]张允,赵景波.1644-1911年宁夏西海固干旱灾害时空变化及驱动力分析[J].干旱区资源与环境,2009,23(5):96-99.
    [42]郭瑞,查小春.泾河流域1470-1979年旱涝灾害变化规律分析[J].陕西师范大学学报(自然科学版),2009,37(3):90-95.
    [43]侯光良,于长水等.青海东部历史时期的自然灾害与LUCC和气候变化[J].干旱区资源与环境,2009,23(1):86-92.
    [44]史东超.河北省唐山市干旱状况与旱灾成因分析[J].安徽农业科学,2011,39(8):4684-4686.
    [45]迟鹏,张升堂.我国北方大面积干旱成因分析[J].安徽农业科学,2011,39(19):11464-11466.
    [46] Wilhite D A, Glantz M H. Understanding the drought phenomenon: The role of definitions. WaterInternational,1985,10:111-120.
    [47] Redmond K. The depiction of drought A commentary. Bulletin of the American MeteorologicalSociety,2002,83(8):1143-1147.
    [48] Wilhite D. A.Drought and Water Crises: Science, Technology, and Management Issues
    [M].USA: Taylor and Francis,2005.
    [49] Munger TT. Graphic method of representing and comparing drought intensities. Mon. Wea. Rev.,1916,44:642-643.
    [50] Kincer JB. The seasonal distribution of precipitation and its frequency and intensity in the UnitedStates. Mon. Wea.Rev.,1919,47:624-631.
    [51] Blumenstock GJ. Drought in the United States analyzed by means of the theory of probability[R].USDA Tech. Bull.819,1942:63.
    [52]徐尔灏.论年雨量之常态性[J].气象学报,1950,2.
    [53] McQuigg J. A simple index of drought conditions. Weatherwise,1954,7:64-67.
    [54] McGuire JK, Palmer WC. The1957drought in the eastern United States[J]. Mon. Wea. Rev.,1957,85:305-314.
    [55] Marcovitch S. The measure of droughtiness[J]. Mon. Wea. Rev.,1930,58:113.
    [56] De Martonne E.,1926. Une nouvelle fonction climatologique: L’indice d’aridité. LaMeteorologie,449-458.
    [57]马柱国,华丽娟,任小波.中国近代北方极端干湿事件的演变规律.地理学报,2003,58(增刊):69-74.
    [58]中央气象局气象台.1950~1971年我国灾害性天气概况及其对农业生产的影响[M].北京:农业出版社,1972.
    [59] Bahlme HN, Mooley DA. Large-Scale drought/floods and Monsoon circulation[J]. MonthlyWeather Review,1980,108:1197-1211.
    [60]刘昌明,魏忠义.华北平原农业水文及水资源[M].北京:科学出版社,1989.
    [61] Dracup JA, Lee KS and Paulson EG. On the definition of droughts[J]. Water Resources Research,1980,16:297-302.
    [62] Shafer BA, Dezman LE. Development of a surface water supply index (SWSI) to assess theseverity of drought conditions in snowpack runoff areas[C]//Proceedings of the (50th)1982Annual Western Snow Conference, Fort Collins, CO: Colorado State University.1982:164-75.
    [63] Keeth JJ, Byram GM. A drought index for forest fire control: USDA Forest Service ResearchPaper SE-38[R]. Asheville, NC: Southeastern Forest Experment Station,1968:33.
    [64]王小平,郭铌.遥感监测干旱的方法及研究进展[J].干旱气象,2003,21(4):76-79.
    [65] Palmer WC. Meteorological drought[J]. Weather Bureau Research Paper,1965,45:58.
    [66] Garen DC. Revised Surface-Water Supply Index for the western United States[J]. Journal WaterResources Plan. Manage,1991,119:437-454.
    [67] GB/T20481-2006,中华人民共和国国家标准—气象干旱等级.北京:中国标准出版社,2006.
    [68] Francesco Serinaldi, Brunella Bonaccorso, Antonino Cancelliere, Salvatore Grimaldi.Probabilistic characterization of drought properties through copulas. Physics and Chemistry ofthe Earth,2009,34:596-605.
    [69] J. T. Shiaua and R. Modarres. Copula-based drought severity-duration-frequency analysis in Iran.Meteorological Applications,2009,16:481-489.
    [70] McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to timescales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc.,1993:179-184.
    [71]张强,邹旭恺等.GB/T20481-2006,气象干旱等级,中华人民共和国国家标准.北京:中国标准出版社,2006.
    [72]闫桂霞,陆桂华等.基于PDSI和SPI的综合气象干旱指数研究[J].水利水电技术,2009,40(4):10-13.
    [73]许继军,杨大文等.长江上游干旱评估方法初步研究[J].人民长江,2008,39(11):1-5.
    [74]王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用[J].武汉大学学报:信息科学版,2001,26(5):412-419.
    [75] Sandholt Inge, Rasmussen Kjeld, Andersen Jens. A simple interpretation of the surfacetemperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensingof Environment,2002,79(2/3):213-224.
    [76]莫伟华,王振会,孙涵,等.基于植被供水指数的农田干旱遥感监测研究[J].南京气象学院学报,2006,29(3):396-402.
    [77] Ghulam Abduwasit, Qin Qiming, Teyip Tashpolat, et al. Modified perpendicular drought index(MPDI): A real-time drought monitoring method[J]. ISPRS Journal of Photogrammetry andRemote Sensing,2007,62(2):150-164.
    [78] Ghulam Abduwasit, Qin Qiming, Zhan Zhiming. Designing of the perpendicular drought index[J].Environmental Geology,2007,52(6):1045-1052.
    [79] Peters Albert J, Waltershea Elizabeth A, Ji Lel, et al. Drought monitoring with NDVI-basedStandardized Vegetation Index[J]. Photogrammetric Engineering and Remote Sensing,2002,68(1):71-75.
    [80] Ghulam Abduwasit, Li Zhaoliang, Qin Qiming, et al. A method for canopy water contentestimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index[J].Science in China D: Earth Sciences,2007,37(7):957-965.(in Chinese with English abstract)
    [81]黄崇福.综合风险评估的一个基本模式[J].应用基础与工程科学学报,2008,16(3):371-381.
    [82] UNEP. Global Environment Outlook3: Past, Present and Future Perspectives[M]. London:Earthscan Publications Lid,2002.
    [83] Hardy C C. Wildland fire hazard and risk: problems, definitions, and context[J]. Forest Ecologyand Management,2005,211(1-2):73-82.
    [84] Knutson C, HayesM, Phillips T. How to Reduce Drought Risk. Wisconsin, Nebraska: WesternDrought Coordination Council,1998.
    [85] Wilhite D A, Hayes M J, Knutson C, et al. Planning for drought: Moving from crisis to riskManagement. Water Resoure. Assoc.,2000,36(4):697-710.
    [86] K. Yurekli,, A. Kurunc. Simulating agricultural drought periods based on daily rainfall and cropwater consumption. Journal of Arid Environments.2006,67(4):629-640.
    [87]王彦集,刘峻明等.基于加权马尔可夫模型的标准化降水指数干旱预测研究[J].干旱区农业研究,2007,25(5):198-203.
    [88]彭世彰,魏征等.加权马尔可夫模型在区域干旱指标预测中的应用[J].系统工程理论与实践.2009,29(9):173-179.
    [89]汪哲荪,周玉良等.改进马尔可夫链模型在梅雨和干旱预测中的应用[J].水电能源科学,2010,28(11):1-5.
    [90]王春乙,安顺清等.时间序列的ARMA模型在干旱长期预测中的应用[J].中国农业气象,1989,10(1).
    [91]顾本文,谢应齐.AR(p)模型在云南降水预报及旱涝等级划分中的应用[J].云南大学学报(自然科学版),1998,20(1):59-63.
    [92] A. K. Mishra and V. R. Desai. Drought forecasting using stochastic models. StochasticEnvironmental Research and Risk Assessment.2005,19(5):326-339.
    [93]迟道才,张宁宁等.时间序列分析在辽宁朝阳地区干旱灾变中的应用[J].沈阳农业大学学报,2006,(4):627-630.
    [94]杨绍辉,王一鸣等.ARIMA模型预测土壤墒情研究[J].干旱地区农业研究,2006,24(2):114-118.
    [95]韩萍,王鹏新等.多尺度标准化降水指数的ARIMA模型干旱预测研究[J].干旱地区农业研究,2008,26(2):212-219.
    [96] Ping Han, Peng Xin Wang, et al. Drought forecasting based on the remote sensing data usingARIMA models. Mathematical and Computer Modelling in Agriculture.2010,51(11-12):1398-1403.
    [97]冯平,钟翔等.基于人工神经网络的干旱程度评估方法[J].系统工程理论与实践,2000,(3):141-144.
    [98]尚松浩,毛晓敏等.冬小麦田间墒情预报的BP神经网络模型[J].水利学报,2002,(4):60-63.
    [99]周良臣,康绍忠等.BP神经网络方法在土壤墒情预测中的应用[J].干旱地区农业研究,2005,(5):98-102.
    [100] Crespo. J.L, Mora, E. Drought estimation with neural networks. Advance in engineering software.1993,18(3):167-170.
    [101] Morid. S, Smakehtin. V, and Bagherzadeh. K.2007Drought forecasting using artificial neuralnetworks and time series of drought indices. International journal of climatology27:2103-2111.
    [102] G. Incerti, E. Feoli, et al. Analysis of bioclimatic time series and their neural network-basedclassification to characterise drought risk patterns in South Italy. International Journal ofBiometeorology,2007,51(4):253-263.
    [103]陈晓楠,黄强等.基于混沌优化神经网络的农业干旱评估模型[J].水利学报,2006,37(2):247-252.
    [104] Tae-Woong Kim and Juan B. Valdés, F.ASCE. Nonlinear Model for Drought Forecasting Basedon a Conjunction of Wavelet Transforms and Neural Networks [J]. Journal of hydrologicengineering.2003,8(6):319-329.
    [105]李祚泳,邓新民.四川旱涝灾害时间分布序列的分形特征研究[J].灾害学,1994(3):88-91.
    [106]郭毅,赵景波.1368-1948年陇中地区干旱灾害时间序列分形特征研究[J].地球科学进展,2010,25(6):630-637.
    [107]薛晓萍,赵红等.山东棉花产量旱灾损失评估模型[J].气象,1999(1):26-30.
    [108]冯利华.基于信息扩散理论的气象要素风险分析[J].气象科技,2000(1):27-29.
    [109]任鲁川.灾害熵:概念引入及应用案例[J].自然灾害学报,2000,9(2):26-31.
    [110]丁晶,袁鹏等.中国主要河流干旱特性的统计分析[J].地理学报,1997,52(4):88-95.
    [111]袁超.渭河流域主要河流水文干旱特性研究[D].陕西:西北农林科技大学,2008.
    [112]许崇海,罗勇等.全球气候模式对中国降水分布时空特征的评估和预估[J].气候变化研究进展,2010,6(6):398-404.
    [113] Jason C. Knievel at a1. The dismal Mode of Summer Rainfall Across the Conterminous UnitedStates in10-km simulation by the WRF Model.84th AMS Annual Meeting, Seattle, U.S.A,2004.
    [114] Juang H M, H Kanamits M. The NMC nested regional spectral model[J]. Mon Wea Rev,1994,122(1):3-26.
    [115]冯锦明,符淙斌.不同区域气候模式对中国地区温度和降水的长期模拟比较[J].大气科学,2007,31(5):806-815.
    [116]黄琳煜,包为民等.水文模型在计算干旱等级中的应用比较[J].水电能源科学,2008,26(6):12-14.
    [117]张莉莉.基于分布式水文模拟的汉江上游干旱评估研究[D].长江科学院,2009:51-64.
    [118]孙荣强.旱情评定与灾情指标之探讨[J].自然灾害学报,1994,3(3):49-55.
    [119]顾颖,刘培.应用模拟技术进行区域干旱分析[J].水科学进展,1998,9(3):66-71.
    [120]卞传恂,黄永革等.以土壤缺水量为指标的干旱模型[J].水文,2000,20(2):5-10.
    [121]王文楷,张震宇.河南省旱涝灾害的地域分异规律和减灾对策研究[J].灾害学,1991,6(2):48-53.
    [122]李克让,尹思明等.中国现代干旱灾害的时空特征[J].地理研究,1996,15(3):6-15.
    [123]李世奎.中国农业灾害风险评价与对策[M].北京:气象出版社,1999.
    [124]王素艳.北方冬小麦干旱风险评估及风险区划研究[D].北京:中国农业大学,2004.
    [125]张文宗,张超等.冀鲁豫灌溉条件下冬小麦干旱风险区划方法研究[J].安徽农业科学,2010,38(8):4158-4161,4164.
    [126]何斌,赵林等.湖南省农业旱灾风险综合分析与定量评价[J].安徽农业科学,2010,38(3):1559-1562,1578.
    [127]陈红,张丽娟等.黑龙江省农业干旱灾害风险评价与区划研究[J].中国农学通报,2010,26(3):245-248.
    [128]国家防汛抗旱总指挥部办公室.防汛抗旱专业干旱培训教材.北京:中国水利水电出版社,2010:305-307.
    [129]王浩.综合应对中国干旱的几点思考[J].中国水利,2010,8:4-6.
    [130]成福云.以保障民生为目标大力加强抗旱减灾工作[J].中国水利,2009,9:12-13.
    [131] HAYESMJ, WILHE LMIOV, KNUTSONCL. Reducing drought risk: bridging theory andpractice[J]. Natural Hazards Review,2004,5(2):106-113.
    [132]成福云,马建明,张伟兵.澳大利亚国家干旱政策——保障生产力和应对风险的抗旱管理[J].防汛与抗旱,2003(3):52-56.
    [133] Masayoshi SATOH, Satoshi KONO, Yonghuai REN.日本水权体制中的水资源配置及管理(译文)[J].中国水利,2004(18):67-69.
    [134] Department of Agriculture and Cooperation, Ministry of Agriculture government of India.Manual for Drought Mangement[R].2009,12.
    [135]中国21世纪议程管理中心著.国际水资源管理经验及借鉴.社会科学文献出版社,2011,16-55.
    [136] SL424-2008,中华人民共和国行业标准—旱情等级标准.北京:中国水利水电出版社,2008.
    [137]王浩等.变化环境下流域水资源评价方法[M].北京:中国水利水电出版社,2009.
    [138]仇亚琴.水资源综合评价及水资源演变规律研究[D].北京:中国水利水电科学研究院,2006.
    [139]贾仰文,王浩等.基于流域水循环模型的广义水资源评价—评价方法[J].水利学报,2006,37(9):1051-1055.
    [140] Glantz M H. Climate Affairs: a Primer. Washington, D. C.: Inland Press,2003.
    [141] Wilhite D. A. Drought: A Global Assessment. London: Routledge Publishers,2000.
    [142]王浩,杨贵羽,贾仰文,王建华.土壤水资源的内涵及评价指标体系[J].水利学报,2006,37(4):389-394.
    [143]王浩,秦大庸,陈晓军.水资源评价准则及其计算口径[J].水利水电技术,2004,(2):1-4.
    [144]贾仰文,王浩等.黑河流域水循环系统的分布式模拟[J].水利学报,2006,37(5):534-542.
    [145] Friedman DG. The prediction of long-continuing drought in south and southwest Texas[J].Occasional Papers in Meteorology, No.1, The Travelers Weather Research Center, Hartford, CT,1957,182.
    [146]袁文平,周广胜.干旱指标的理论分析与研究展望[J].地球科学进展,2004,19(6):982-991.
    [147] Chow, V.T., Maidment, D.R., Mays, L.W. Applied Hydrology. McGraw-Hill Book Company,New York,1988.
    [148] Shiau, J.T., Shen, H.W.,2001. Recurrence analysis of hydrologic droughts of differing severity. J.Water Resour. Plann. Manage.127,30-40.
    [149] Shiau J T. Return period of bivariate distributed hydrological events[J]. Stochastic EnvironmentalResearch and Risk Assessment,2003,17(1/2):422-571.
    [150] Guo S L, Kachroo R K, and Mngodo R J. Nonparametric kernel estimation of low flow quantiles[J]. Journal of Hydrology,1996,185:335-348.
    [151] Silverman B W. Density Estimation for Statistics and Data Analysis [M]. Chapman&Hall,London,1986.
    [152] Tae-Woong K, Juan B V, and Chulsang Y. Nonparametric approach for estimation return periodsof droughts in arid regions [J]. Journal of Hydrologic Engineering,2003,8(5):237-246.
    [153] Lall U, Rajagopalan B, and Tarboton D G. A nonparametric wet/dry spell model for resamplingdaily precipitation [J]. Water Resources Research,1996,32(9):2803-2823.
    [154]韦艳华,张世英.Copula理论及其在金融分析上的应用[M].北京:清华大学出版社,2008.
    [155] Nelsen R B. An Introduction to Copulas[M]. New York: Springer,2006.
    [156] Sklar A. Fonctions de repartition à n dimensions et leurs marges [J]. Publication de l’ Institut deStatistique de l’Université de Paris,1959,8:229-231.
    [157] Bouyé E, Durrleman V, Nikeghbali A et al. Copulas for finance: a reading guide and someapplications[Z]. Financial Econometrics Research Centre, City University Business School,London,2000.
    [158] Cherubini U, Luciano E, Vecchiato W. Copula Methods in Finance[M]. England: John Wiley&Sons Ltd.,2004.
    [159] Genest C, Mackay J. The joy of Copulas: Bivariate distributions with uniform marginals[J].American Statistician,1986,40:280-283.
    [160] Frees E W, Valdez E A. Understanding relationships using Copulas[J]. North American actuarialjournal,1998,2(1):1-25.
    [161] Patton A J. Skewness, Asymmetric dependence, and portfolios[Z]. London School of Economics&Political Science,2002.
    [162]赵勇,张金萍等.宁夏平原区分布式水循环模拟研究[J].水利学报,2007,38(4):498-505.
    [163]尹津航,卢文喜等.东辽河流域水生态健康状况的模糊综合评价[J].安徽农业科学,2012,40(10):6057-6059,6062.
    [164]水利部松辽水利委员会.中国水旱灾害系列专著东北区水旱灾害[M].长春:吉林人民出版社,2003.
    [165]黄嘉佑.气候状态变化趋势与突变分析[J].气象,1995,21(7):54-57.
    [166]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.
    [167] Yamamoto R.T. lwashima and N.K. Sanga.An analysis of climatic jump[J].Meteor. Soc. Japan,1986,64(2):273-281.
    [168]邵骏,袁鹏,李秀峰等.基于最大熵谱估计的水文周期分析[J].中国农村水利水电,2008,1:30-33.
    [169]张明,张建云,金菊良.基于遗传熵谱估计的年径流周期识别[J].水科学进展,2009,20(3):337-342.
    [170]桑燕芳,王栋.水文时间序列周期识别的新思路与两种新方法[J].水科学进展,2008,19(3):412-417.
    [171]刘建西,龙美希等.川渝地区空中水资源分布及水汽输送特征[J].高原山地气象研究,2010,30(2):31-35.
    [172]刘会玉,张明阳,林振山.我国东北地区降水空间分布及干湿弛豫时间的研究[J].南京气象学院学报,2004,27(1):97-105.
    [173]孙力,安刚,丁立,沈柏竹.中国东北地区夏季降水异常的气候分析[J].气象学报,2000,58(1).
    [174]贾仰文,王浩等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版,2005.
    [175] Jia Y, Ni G, Kawahara Y, et al. Development of WEP model and its application to an urbanwatershed [J]. Hydrological Processes,2001,15(11):2175-2194.
    [176] Penman H L. Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London.Ser.,1948,(A193):120-145.
    [177] Noilhan J, Planton S A. Simple parameterization of land surface processes for meteorologicalmodels [J]. Mon. Wea. Res.,1989,117,536-549.
    [178] Monteith J L. Principles of Environmental Physics [M]. London: Edward Arnold Publishers,1973.
    [179] Jia Y, Tamai N. Modeling infiltration into a multi-layered soil during an unsteady rain [J]. J.Hydrosci. Hydraul. Eng. JSCE,1998b,16(2):1-10.
    [180] Maidment D R. Hand book of Hydrology [M]. New York: McGraw-Hill,1992.
    [181]周祖昊,贾仰文等.大尺度流域基于站点的降雨时空展布[J].水文,2006,26(1):6-11.
    [182]张强,高歌.我国近50年旱涝灾害时空变化及监测预警服务[J].科技导报,2004,(7):21-24.
    [183]袁文平,周广胜.标准化降水指标与Z指数在我国应用的对比分析明[J].植物生态学报,2004,28(4):523-529.
    [184] Byun, H. R., and D. A. Wilhite.1999. Objective quantification of drought severity and duration.Journal of Climate,12:2747-2756.
    [185]黄晚华,杨晓光,李茂松,等.基于标准化降水指数的中国南方季节性干旱近58a演变特征[J].农业工程学报,2010,26(7):50-59.
    [186]刘巍巍,安顺清等.帕默尔旱度模式的进一步修正.应用气象学报,2004,15(2):207-216.
    [187] Dracup JA, Lee KS, Paulson EC. On the statistical characteristics of drought event[J]. WaterResources Research,1980,16(2):289-296.
    [188] Mohan S, Rangacharya NC. A modified method for drought identification[J]. HydrologicalSciences Journal,1991,36(1):11-22.
    [189]冯平,朱元伸.干旱灾害的识别途径[J].自然灾害学报,1997,6(3):41-47.
    [190]陆桂华,闫桂霞,吴志勇等.基于copula函数的区域干旱分析方法[J].水科学进展,2010,21(2):188-193.
    [191]孙景生,康绍忠等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报,2005,21(11):20-24.
    [192]聂晓,王毅勇,刘兴土.节水灌溉对三江平原寒地水稻生理生态需水和产量的影响[J].华北农学报,2011,26(6):168-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700