用户名: 密码: 验证码:
井下冲撞式煤矸分离中颗粒动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矸石作为煤炭开采的伴生物,在地面堆积后形成矸石山,对矿区环境带来很多不利影响。要从根源上解决矸石排放和堆积造成的环境问题,就需要在井下实现煤和矸石分离,并将矸石就地进行填充。井下冲撞式煤矸分离技术是基于煤和矸石的物理机械特性差异提出的适用于井下的煤和矸石分离方法,它具有安全性高、处理量大、占用空间小、使用成本低等优点,不但可以减少矸石地面堆积造成的环境污染,还可以降低煤矿的运输成本,减轻过度开采导致的沉陷灾害,对实现煤矿绿色开采具有重要意义。为此,本论文采用理论分析、数值模拟和试验研究相结合的方式,对井下冲撞式煤矸分离的关键问题——颗粒动力学行为进行研究,为该技术的推广和应用奠定了理论基础。
     本论文基于Hertz理论和双线性强化弹塑性模型,以Drucker-Prager屈服准则为依据,建立了准脆性球形颗粒与反弹板碰撞接触的初始屈服模型和碰撞接触模型,得到了颗粒初始屈服响应、碰撞接触响应和反弹距离的主要影响因素,并研究了各因素对准脆性颗粒碰撞接触响应的影响规律。对煤和矸石颗粒与反弹板的碰撞反弹行为进行有限元模拟,得出了反弹速度和反弹距离差异随各影响因素的变化规律。
     以新汶矿业集团协庄矿工作面的煤和矸石为研究对象,通过单颗粒碰撞反弹试验对煤和矸石颗粒的反弹距离进行了研究。试验结果表明:当初始速度较小时,理论计算的反弹距离与试验结果较吻合;初始速度较大时,部分颗粒发生破碎,理论计算的反弹距离大于试验测量的反弹距离;协庄矿的煤和矸石颗粒在初始速度大于7.5 m/s时可以按照反弹距离差异分离出部分矸石。
     基于分形理论、最弱环模型和碰撞动力学理论,建立了颗粒冲击过程的断裂破碎概率模型和破碎粒度分布模型,得到断裂破碎概率与冲击速度的内在联系,确定了破碎粒度分选的粒度界线,并给出基于破碎粒度分选的矸石分离质量比计算公式。对三个矿区工作面的煤和矸石进行冲击破碎试验,结果表明,煤和矸石颗粒冲击破碎时的断裂破碎概率和破碎粒度都具有分形特征,同一矿区矸石颗粒断裂破碎概率和破碎粒度的分形维数都小于煤颗粒对应的分形维数,可以通过破碎粒度差异实现煤和矸石的初步分离。
     利用三维离散单元法对粒度为50~100 mm的颗粒群连续抛射和反弹行为进行了模拟分析,结果表明提高颗粒群反弹距离的主要途径是提高入料中间颗粒与反弹板的接触概率和减少入料中间颗粒的碰撞干扰。提出了平均触板概率(MCPP)、无干扰触板概率(NTCPP)、二次碰撞概率和二次碰撞频率四个指标,分别用以描述颗粒群的触板情况和颗粒群的二次碰撞行为,并分析了各指标随颗粒入料量、颗粒断裂破碎概率和颗粒抛射速度等因素的变化规律。对特定入料量和颗粒抛射速度下的颗粒群连续抛射过程进行模拟研究,确定了反弹板的尺寸和反弹距离分选界线,并提出了用反弹距离和破碎粒度相结合实现井下煤矸分离的技术方案,为井下冲撞式煤矸分离的工业应用奠定了基础。
     提出了矸石分离质量比、丢煤质量比和末煤质量比三个指标,用以评价井下冲撞式煤矸分离的效果,以经济效益为基础建立了分离效果综合评定指标的计算公式。使用三维离散元模拟和BP神经网络模型相结合的方法对分离效果进行了预测,为井下冲撞式煤矸分离的定性和定量评价提供依据。
Gangue, the accompanying mineral of coal mining, is always transported to the ground and accumulated as hillock. The gangue hillock causes many adverse effects on the surrounding environment. Achieving separation for coal and gangue underground and backfilling gangue in situ is the method that can radically solve the environmental problems produced by discharge and accumulation of gangue. With regard to this, impact separation technique for coal and gangue underground is presented depending on the differences of physical and mechanical properties for coal and gangue. With the advantages of high security, great treating capacity, small volume and low cost, this technique can reduce the environmental pollutions and bring down the transportation cost of coal mine as well as solve the subsidence caused by over-extraction partially. Therefore, the impact separation for coal and gangue underground has the significance for realizing the green mining. To provide theoretical basis for popularization and application of the technique, the theoretical analysis, numerical simulation and experiments are combined to investigate the particle dynamics behavior during the impact separation process in this dissertation.
     According to the Drucker-Prager yield criterion and based on the Hertz theory and the bilinear hardening elastio-plastic model, the initial yield model and impact contact model for impact between quasi-brittle spherical particle and rebound plate are built. The main influence factors and the influence law for initial yield response, impact contact response and the rebound distance are developed. Simultaneously, the impact rebound behaviors of coal and gangue particles are simulated by using finite element method and the variance rules of the differences for rebound velocities and rebound distances are developed.
     Taking coal and gangue particles from working face in Xiezhuang mining of Xinwen Mining Group as study objects, rebound distance experiments are carried out. The results indicate that the theoretical distance quite agree with the experimental result when the initial velocity is low, but is larger than the experimental result when the initial velocity is high because of the particle crushing. For coal and gangue in Xiezhuang mining, partial gangue can be separated by the difference of rebound distance when the initial velocity is higher than 7.5 m/s.
     Based on fractal theory, weakest link model and impact dynamics theory, the fracture crushing probability model and the crushing granularity distribution model are built as well as the inherence relation between the fracture crushing probability and the impact velocity is developed. The granularity boundary of separation by crushing granularity is determined, while the calculation formula for the mass ratio of separated gangue is put forward. The impact crushing expriments are completed for coal and gangue from three working faces. The results show that the fracture crushing probability and the crushing granularity of coal and gangue particles in impact crushing process both have fractal feature. Furthermore, the analysis indicates that the fractal dimensions of the fracture crushing probability and the crushing granularity for gangue particles are both smaller than ones of coal particles from the same working face, which demonstrates that the primary separation for coal and gangue can be achieved using separation by the crushing granularity.
     The simulation analysis on continuously projecting and rebound behaviors of particle group with granularity between 50 mm and 100 mm are carried out using three-dimension discrete element method. The study shows that main approaches to increase the rebound distances of particle group are to raise the contact probability between feeding middle particles and rebound plate and to decrease the impact interference among feeding middle particles. Four indexes are proposed to describe status of contacts between particle and rebound plate and secondary impact behaviors of particle group, including mean contact plate probability, non-trouble contact plate probability, secondary impact probability and secondary impact frequency. The indexes variance rules with particle feeding amount, fracture crushing probability and projecting velocity are thoroughly discussed.
     For certain particle feeding amount and projecting velocity, the continuously projecting and rebound behaviors of particle group are simulated to determine the dimensions of the rebound plate and the boundary of separation by the rebound distance. The technical scheme of combining the rebound distance and the crushing granularity to realize separation for coal and gangue underground is put forward, which lays a foundation for the industry application of this technique.
     Three indexes including the mass ratio of separated gangue, the mass ratio of waste coal and the mass ratio of slack coal are proposed to evaluate the effect of impact separation for coal and gangue. Based on economic benefits, the calculation formula of comprehensive evaluation index for separation effect is obtained. Combining with three- dimension discrete element method and BP neural network model, the effect of impact separation for coal and gangue is predicted. All above provide foundation for qualitative and quantitative evaluation of impact separation for coal and gangue underground.
引文
[1]张吉雄,缪协兴.煤矿矸石井下处理的研究[J].中国矿业大学学报,2006,35(2):197~200.
    [2] 2009-2012年中国煤矸石工业投资分析及前景预测报告[R].中国:中投顾问,2009.
    [3] Y. Z. Sun, J.S. Fan, P. Qin, et al. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China[J]. Environ Geochem Health, 2009, 31: 81~89.
    [4]李侠.煤矸石对环境的影响及再利用研究[D].西安:长安大学,2005.
    [5] X. Querol, M. Izquierdo, E. Monfort, et al. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China[J]. International Journal of Coal Geology, 2008, 75: 93~104.
    [6]卞正富,金丹,董霁红等.煤矿矸石处理与利用的合理途径探讨[J].采矿与安全工程学报,2007,24(2):132~136.
    [7]张宏敏,李树伟,胡斌.煤矸石对矿山生态环境的破坏及其资源化[J].采矿技术,2008,8(5):62~64.
    [8]王国平.辽宁阜新煤矸石资源化研究[D].成都:成都理工大学,2005.
    [9]郭建刚.浅谈煤矸石的危害与综合利用[J].科技情报开发与技术,2008,18(17):221~222.
    [10]王小辉,张俊,李永峰.煤矸石资源的综合利用及合理分布[J].煤炭加工与综合利用,2008,3:47~50.
    [11]裴晓东,张人伟,杜高举等.煤矸石的综合利用技术探讨[J].煤矿安全,2008,9:99~101.
    [12]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,32(1):1~7.
    [13]缪协兴,钱鸣高.中国煤炭资源绿色开采研究现状与展望[J].采矿与安全工程学报,2009,26(1):1~14.
    [14]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343~348.
    [15]李伯衡.半煤岩巷道矸石处理方法探讨[J].山东煤炭科技,2002,6:38~39.
    [16]张文海,张吉雄,赵计生等.矸石充填采煤工艺及配套设备研究[J].采矿与安全工程学报,2007,24(1):79~83.
    [17]缪协兴,张吉雄.矸石充填采煤中的矿压显现规律分析[J].采矿与安全工程学报,2007,24(4):379~382.
    [18]刘春明,王恒.矸石井下处置绿色开采技术[J].煤矿开采,2008,13(6):30~32,45.
    [19]王有俊.矸石直接充填及其效益分析[J].辽宁工程技术大学学报,2003,22(增刊):70~71.
    [20]冯振忠.井下巷道矸石充填输送机的研制及应用[J].矿山机械,2006,34(11):86~88.
    [21]张魁武,李金洲.掘进矸石在井下的处理[J].华北科技学院学报,2005,2(2):46~47.
    [22]孙希奎,李学华.利用矸石充填置换开采条带煤柱的新技术[J].煤炭学报,2008,33(3):259~263.
    [23]《选煤手册》编委会.选煤手册—工艺与设备[M].北京:煤炭工业出版社,1993.
    [24]王章国,匡亚莉,林喆等.基于粒子群算法的重介质分选产品结构优化[J].煤炭学报,2010,35(6):998~1001.
    [25] E.J. Meyer, I.K. Craig. The development of dynamic models for a dense medium separation circuit in coal beneficiation[J]. Minerals Engineering, 2010, 23(10): 791~805.
    [26] T.J. Napier. Modelling and simulating dense medium separation processes-A progress report[J]. Minerals Engineering, 1991, 4(3~4): 329~346.
    [27] A.K. Mukherjee, B.K. Mishra. An integral assessment of the role of critical process parameters on jigging[J]. International Journal of Mineral Processing, 2006, 81(3): 187~200.
    [28]匡亚莉,解京选,戈军等.跳汰过程中25和13 mm颗粒运动的数学模型[J].中国矿业大学学报,2010,39(6):837~842.
    [29]赵玉清,王学东,史红军.跳汰选煤中模糊PID控制方法试验研究[J].煤炭科学技术,2010,38(7):89~91.
    [30]王祖瑞.风力选煤在我国的应用前景[J].选煤技术,1996,4:7~11.
    [31]周淑艳,李桂莉.梁家煤矿风选系统的研究与改造[J].山东煤炭科技,2006,1:19~21.
    [32] D. P. Patil, J. S. Laskowski. Development of zero conditioning procedure for coal reverse flotation[J]. Minerals Engineering, 2008, 21(5): 373-379.
    [33] Biswajit Sarkar, Avimanyu Das, S. P. Mehrotra. Study of separation features in floatex density separator for cleaning fine coal[J]. International Journal of Mineral Processing, 2008, 86: 40~49.
    [34]程勇,王勉华.选煤系统中的模糊模式识别方法[J].工况自动化,2006,4:25~27.
    [35]宋晓茹.基于ARM和CPLD的煤矸石在线自动分选系统研究[D].西安:西安科技大学,2006.
    [36] K. S. Klempner, A. I. Smirnov, E. D. Umanets. Optimal thresholds in radiometric coal separation[J]. Plenum Publishing Corporation, 1983, 6: 550~553.
    [37]邢伟,宁玉伟.基于g射线探测技术的煤矸石分选系统的设计[J].河南农业大学学报,2007,41(4):455~457.
    [38]孔力,李红,徐恕宏等.双能g射线透射法煤矸石在线识别与分选系统[J].华中理工大学学报,1997,25(10):107~108,112.
    [39]赵维义,邹畹珍,李庆国.煤矸石在线自动分选技术及其技术修正问题分析[J].核电子学与探测技术,1997,17(2):144~149.
    [40]郭世名,张光华,张增贵.选煤厂原煤选矸工艺的探讨[J].煤炭技术,2002,21(9):37.
    [41]伍福德,陈安华,刘霞光.滚筒碎选机设计参数的最优选择[J].湘潭矿业学院学报,1991,6(1):57~63.
    [42]丰建荣.煤和矸石井下破碎分选理论及实验研究[D].太原:太原理工大学,2006.
    [43]董长双,姚平喜,刘志河.井下煤和矸石液压式自动分选技术[J].煤炭科学技术,2007,35(3):54~56.
    [44]丁开旭,张志高,张建臣.旋转冲击式井下煤矸分离可行性研究[J].煤矿机械,2007,28(8):44~45.
    [45]刘飞,杜长龙,赵子江等.煤和矸石选择性破碎的可行性研究[J].选煤技术,2008,5:28~29.
    [46]方树鹏.顶水式井下煤矸分选机理的研究[D].徐州:中国矿业大学,2009.
    [47]赵振华,李明航,刘小平等.井下矸石筛分系统研究与应用[J].山东煤炭科技,2008,5:119~120.
    [48] K.L. Johnson著,徐秉业等译.接触力学[M].北京:高等教育出版社,1992.
    [49] G.M.L. Gladwell著,范天佑译.经典弹性理论中的接触问题[M].北京:北京理工大学出版社,1991.
    [50]加林.弹性理论的接触问题[M].北京:科学出版社,1958.
    [51]黄承义,顾王明,郑际嘉.应用有限元混合法分析两弹性接触体的动力响应(理论部分)[J].解放军工程学院学报,1994,1:17~23.
    [52] Y. W. Kwon, H. Aygunes. Dynamic finite element analysis of laminated beams with delamination cracks using contact-impact conditions[J]. Computers and Structures, 1995, 58(6): 1161~1169.
    [53] Jerome M. Solberg, Panayiotis Papadopoulos. A finite element method for contact/impact[J]. Finite Elements in Analysis and Design, 1998, 30: 297~311.
    [54] S. A. Meguid, G. Shagal, J.C. Stranart, et al. Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses[J]. Finite Elements in Analysis and Design, 1999, 31: 179~191.
    [55] E. A. Repetto, R. Radovitzky, M. Ortiz. Finite element simulation of dynamic fracture and frag-mentation of glass rods[J]. Computer Methods Applied Mechanics and Engineering, 2000, 183: 3~14.
    [56]马士垚,张进国.滚动轴承接触问题的有限元分析[J].机械设计与制造,2010,9:8~9.
    [57]肖宏,杨霞,陈泽军等.赫兹接触理论在采用边界元法分析轧机轴承载荷中的应用[J].中国机械工程,2010,21(21):2532~2535.
    [58] Jing Bo Liu, Shailendra K. Sharan, Duo Wang, et al. A dynamic contact force model for contactable cracks with static and kinetic friction[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 123: 287~298.
    [59]范天佑,H.G. Hahn, A. Voigt.瞬态接触动力学的三维问题[J].中国科学(A辑),1996,26(7):642~648.
    [60] S. H. Duan, T. Q. Ye. Three-dimensional frictional dynamic contact analysis for predicting low-velocity impact damage in composite laminates[J]. Advances in Engineering Software, 2002, 33: 9~15.
    [61]姚廷强,迟毅林,黄亚宇等.带传动系统的多体动力学建模与接触振动研究[J].系统仿真学报,2009,21(16):4945~4950.
    [62] M.W. Heinstein, F.J. Mello, S.W. Attaway, et al. Contact-impact modeling in explicit transient dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187: 621~640.
    [63] A. Bajer, L. Demkowicz. Dynamic contact/impact problems, energy conservation, and planetary gear trains[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 4159~4191.
    [64] M. Campo, J.R. Fernández, W. Han, et al. A dynamic viscoelastic contact problem with normal compliance and damage[J]. Finite Elements in Analysis and Design, 2005, 42: 1~24.
    [65] Baoquan An, Dwayne D. Tannant. Discrete element method contact model for dynamic simulation of inelastic rock impact[J]. Computers and Geosciences, 2007, 33: 513~521.
    [66] M. Barboteu, J.R. Fernández, R. Tarraf. Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 3724~3732.
    [67] S. Migórski, A. Ochal, M. Sofonea. A dynamic frictional contact problem for piezoelectric materials[J]. Journal of Mathematical Analysis and Applications, 2010, 361(1): 161~176.
    [68]刘书,刘晶波,方鄂华.动接触问题及其数值模拟的研究进展[J].工程力学,1999,16(6):14~28.
    [69] Dazhi Jiang, Wei shen, Xingye Wang. Dynamic contact algorithm of an isotropic projectile contacting an orthotropic target[J]. Computer Methods in Applied Mechanics and Engineering, 2000,189: 575~585.
    [70] S.Z. Wu, K.T. Chau. Dynamic response of an elastic sphere under diametral impacts[J]. Mechanics of Materials, 2006, 38:1039~1060.
    [71]何思明,吴永,李新坡.颗粒弹塑性碰撞理论模型[J].工程力学,2008,25(12):19~24.
    [72]张志春,强洪夫,高巍然.一种光滑粒子流体动力学-有限元法转换算法及其在冲击动力学中的应用[J].西安交通大学学报,2011,45(1):105~110.
    [73] Seung Jo Kim, Nam Seo Goo. Dynamic contact responses of laminated composite plates according to the impactor’s shapes[J]. Computers and Structures, 1997,65(1): 83~90.
    [74] Dahsin Liu, Basavaraju B. Baju, Xinglai Dang. Size effects on impact response of composite laminates[J]. International Journal of Impact Engineering, 1998, 21(10): 837~854.
    [75] A.E. Bogdanovich, S.P. Yushanov. Three-dimensional variational impact contact analysis of composite bars and plates[J]. Composites: Part A, 2000, 31: 795~814.
    [76] A.N. Shupikov, S.V. Ugrimov. The impact problem for two strips[J]. International Journal of Solids and Structures, 2006, 43: 3817~3831.
    [77] M. Beppu, K. Miwa, M. Itoh, et al. Damage evaluation of concrete plates by high-velocityimpact[J]. International Journal of Impact Engineering, 2008, 35(12): 1419~1426.
    [78]单仁亮,安保全,华长清等.石板冲击凿入的变形与破坏规律研究[J].中国矿业大学学报,2005,34(5):551~556.
    [79]沈真,杨胜春,陈普会.复合材料层压板抗冲击行为及表征方法的实验研究[J].复合材料学报,2008,25(5):125~134.
    [80]郑翔,童小燕,程起有等.复合材料低速冲击及剩余压缩强度试验研究[J].机械科学与技术,2010,29(11):1574~1577.
    [81] Baisheng Wu, Huixiang Zhong. Efficient computation for lower bound dynamic buckling loads of imperfect systems under impact loading[J]. International Journal of Non-Linear Mechanics, 2000, 35: 735~743.
    [82]侯健,顾祥林,林峰.混凝土块体碰撞过程中的动能损耗[J].同济大学学报(自然科学版),2008,36(7):880~884.
    [83] E. W. Andrews, A. E. Giannakopoulos, E. Plisson, et al. Analysis of the impact of a sharp indenter[J]. International Journal of Solids and Structures, 2002, 39: 281~295.
    [84]葛藤,贾智宏,周克栋.钢球和刚性平面弹塑性正碰撞恢复系数研究[J].工程力学,2008,25(6):209~213.
    [85] C. Thornton. A note on the effect of initial particle spin on the rebound behaviour of oblique particle impacts[J]. Powder Technology, 2009, 192: 152~156.
    [86] M. Papini, J.K. Spelt. Impact of rigid angular particles with fully-plastic targets Part I: Analysis[J]. International Journal of Mechanical Sciences, 2000, 42: 991~1006.
    [87] A.H. Kharaz, D.A. Gorham, A.D. Salman. An experimental study of the elastic rebound of spheres[J]. Power Technology, 2001, 120: 281~291.
    [88] Chuan-yu Wu, Long-yuan Li, Colin Thornton. Rebound behaviour of spheres for plastic impacts[J]. International Journal of Impact Engineering, 2003, 28: 929~946.
    [89] J. Fu, M.J. Adams, G.K. Reynolds, et al. Impact deformation and rebound of wet granules[J]. Power Technology, 2004, 140: 248~257.
    [90] H. Dong, M.H. Moys. Experimental study of oblique impacts with initial spin[J]. Power Technology, 2006, 161: 22~31.
    [91] M. Takaffoli, M. Paponi. Finite element analysis of single impact of angular particles on ductile targets[J]. Wear, 2009, 267: 144~151.
    [92]郭吉丰,升谷保博,宫崎文夫.具有摩擦的刚体碰撞[J].应用力学学报,2004,21(2):77~82.
    [93]鲍四元,邓子辰.利用DMSM方法求解弹性撞击恢复系数[J].动力学与控制学报,2005,3(4):44~48.
    [94]秦志英,陆启韶.基于恢复系数的碰撞过程模型分析[J].动力学与控制学报,2006,4(4):294~298.
    [95]姚文莉,陈滨,徐鉴.基于能量恢复系数的多刚体系统的摩擦碰撞[J].北京大学学报(自然科学版),2007,43(5):585~591.
    [96]吕中杰,黄风雷.圆板非弹性冲击过程的碰撞恢复系数[J].北京理工大学学报,2008,28(4): 283~286.
    [97]安雪斌,潘尚峰.多体系统动力学仿真中的接触碰撞模型分析[J].计算机仿真,2008,25(10):98~101.
    [98]赵正军.煤岩冲击破碎过程的力学行为分析[D].太原:太原理工大学,2002.
    [99] H. Y. Liu, S. Q. Kou, P.–A. Lindqvist. Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing[J]. Mechanics of Materials, 2005, 37: 935~954.
    [100] B. Kekec, M. Unal, C. Sensogut. Effect of the textural properties of rocks on their crushing and grinding features[J]. Journal of University of Science and Technology Beijing, 2006, 13(5): 385~392.
    [101] M. S. Guimaraes, J. R. Valdes, A. M. Palomino, et al. Aggregate production: Fines generation during rock crushing[J]. International Journal of Mineral Processing, 2007, 81: 237~247.
    [102]郭学彬,肖正学,史瑾瑾等.石灰岩冲击损伤实验与破碎特性研究[J].爆炸与冲击,2007,27(5):438~444.
    [103] A. Refahi, B. Rezai, J. Aghazadeh Mohandesi. Use of rock mechanical properties to predict the Bond crushing index[J]. Minerals Engineering, 2007, 20: 662~669.
    [104] Mats Lindqvist. Energy considerations in compressive and impact crushing of rock[J]. Minerals Engineering, 2008, 21: 631~641.
    [105] Li Fang-wei, Li Yan-huan, Xu Zhen-liang, et al. Numerical simulation on the impacting and comminuting of coal based on LS-DYNA[J]. Journal of Coal Science and Engineering (China), 2008, 14(4): 644~647.
    [106] G. R. Mcdowell, M. D. Bolton, D. Robertson. The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079~2102.
    [107] W. Schubert, M. Khanal, J. Tomas. Impact crushing of particle-particle compounds-experiment and simulation[J]. International Journal of Mineral Processing, 2005, 75: 41~52.
    [108]张柱,杨云川,晋艳娟.单颗粒破碎机理分析[J].太原科技大学学报,2005,26(4):306~308.
    [109] G. Marketos, M. D. Bolton. Quantifying the extent of crushing in granular materials: A probability- based predictive method[J]. Journal of the Mechanics and Physics of Solids, 2007, 55: 2142~2156.
    [110] L. M. Tavares, Patricia B. das Neves. Microstructure of quarry rocks and relationships to particlebreakage and crushing[J]. International Journal of Mineral Processing, 2008, 87: 28~41.
    [111] G. Unland, Y. Al-Khasawneh. The influence of particle shape on parameters of impact crushing[J]. Minerals Engineering, 2009, 22: 220~228.
    [112]李微,刘欣,沈玉国等.层合板低速冲击响应的动力接触分析方法[J].机械强度,1997,19(4):67~69.
    [113]杜忠华,赵国志,钟延光.冲击载荷作用下陶瓷面板破碎机理的研究[J].弹箭与制导学报,2006,26(4):140~142.
    [114] C. Czarnota, N. Jacques, S. Mercier, et al. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum[J]. Journal of the Mechanics and Physics of Solids, 2008, 56: 1624~1650.
    [115] A. V. Loktev. The dynamic contact of an impactor and an elastic orthotropic plate when there are propagating thermoelastic waves[J]. Journal of Applied Mathematics and Mechanics, 2008, 72: 475~480.
    [116] G.T. Camacho, M. Ortiz. Computational modeling of impact damage in brittle matierials[J]. International Journal of Solids and Structures, 1996, 33(20-22): 2899~2938.
    [117] L.M. Tavares, R.P. King. Single-particle fracture under impact loading[J]. International Journal of Mineral Processing, 1998, 54: 1~28.
    [118] M.M. Chaudhri. Impact breakage of semi-brittle spheres[J]. Power Technology, 2004, 143-144: 31~40.
    [119] W. Schubert, M. Khanal, J. Tomas. Impact crushing of particle-particle compounds-experiment and simulation[J]. International Journal of Mineral Processing, 2005, 75: 41~52.
    [120] G. Unland, Y. Al-Khasawneh. The influence of particle shape on parameters of impact crushing[J]. Minerals Engineering, 2009, 22(3): 220~228.
    [121] S. Antonyuk, S. Palis, S. Heinrich. Breakage behaviour of agglomerates and crystals by static loading and impact[J]. Powder Technology, 2011, 206(1-2): 88~98.
    [122] K.T. Chau, X.X. Wei, R.H.C. Wong, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses[J]. Mechanics of Materials, 2000, 32: 543~554.
    [123]张占一,杨云川.简单冲击粉碎实验装置设计及实验结果分析[J].沈阳理工大学学报,2005,24(3):73~75.
    [124]秦志英,赵月静,侯书军.物料冲击破碎过程的一种非线性力模型[J].振动与冲击,2006,25(2):35~37.
    [125]张柱,杨云川,黄德武等.模拟冲击破碎的MCA方法[J].太原科技大学学报,2007,28(3):237~241.
    [126]周风华,王永刚.影响冲击载荷下脆性材料碎片尺度的因素[J].爆炸与冲击,2008,28(4):298~303.
    [127] L. Liu, K.D. Kafui, C. Thornton. Impact breakage of spherical, cuboidal and cylindrical agglomerates[J]. Powder Technology, 2010, 199(2): 189~196.
    [128]黄松元.散体力学[M].北京:机械工业出版社,1993.
    [129] M. Sommerfeld. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport[J]. International Journal of Multiphase Flow, 2003, 29: 675~699.
    [130] Orlando Ayala, Wojciech W. Grabowski, Lian-Ping Wang. A Hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles[J]. Journal of Computational Physics, 2007, 225: 51~73.
    [131]王晓亮,何榕,陈永利.煤颗粒热解过程中孔隙分形维数变化的数值模拟[J].清华大学学报(自然科学版),2008,48(2):244~247.
    [132]刘传平,王立,岳献芳等.颗粒流本构关系的实验研究[J].北京科技大学学报,2009,31(2):256~260.
    [133]胡溧,黄其柏,柳占新等.颗粒阻尼的动态特性研究[J].振动与冲击,2009,28(1):134~138.
    [134]张兴刚,隆正文,胡林.颗粒体系中力分布的标量力网系综模型[J].物理学报,2009,58(1):90~96.
    [135]甘阳,George V. Franks.颗粒间作用力影响颗粒体系流变性能的研究进展[J].科学通报,2009,54(1):1.
    [136]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [137]孙其诚,王光谦.颗粒流动力学及其离散模型评述[J].力学进展,2008,38(1):87~100.
    [138] P. J. Woytowitz, R. H. Richman. Modeling of damage from multiple impacts by spherical particles[J]. Wear, 1999, 233~235: 120~133.
    [139] Francesco Paolo Di Maio, Alberto Di Renzo. Analytical solution for the problem of frictional- elastic collisions of spherical particles using the linear model[J]. Chemical Engineering Science, 2004, 59: 3461~3475.
    [140]赵海波,郑楚光,陈胤密.考虑颗粒碰撞的多重Monte Carlo算法[J].力学学报,2005,37(5):564~572.
    [141] Chin-hung Hsu, Keh-chin Chang. A Lagrangian modeling approach with the direct simulation Monte-Carlo method for inter-particle collisions in turbulent flow[J]. Advanced Powder Technology, 2007, 18(4): 395~426.
    [142]刘红娟,邹春,田智威等.撞击流中单颗粒运动行为的数值模拟[J].华中科技大学学报(自然科学版),2008,36(5):106~109.
    [143] Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discrete elementmethod(DEM) for materials with viscoelastic or plastic behavior[J]. Chemical Engineering Science,2008,63(6):1523-1541.
    [144]刘石,何玉荣,赵云华等.离散单元法模拟颗粒在斜板上运动及分离过程[J].哈尔滨工业大学学报,2010,42(9):1491~1494.
    [145]李晓光,徐德龙,范海宏.大颗粒流化床中颗粒受力的数值模拟[J].西安交通大学学报,2006,40(7):836~840.
    [146] A. M. Ardekani, S. Dabiri, R. H. Rangel. Collision of multi-particle and general shape objects in a viscous fluid[J]. Journal of Computational Physics, 2008, 227: 10094~10107.
    [147]张勇,金保升,钟文琪.基于颗粒尺度DEM直接数值模拟的喷动流化床颗粒运动特性[J].东南大学学报(自然科学版),2008,38(1):110~115.
    [148]赵永志,程易.水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J].物理学报,2008,57(1):322~328.
    [149] Cleary P W. DEM prediction of industrial and geophysical particle flows[J].Particuology, 2010, 8(2):106-118.
    [150] Price M, Morrison G. Estimating 3D particle motion from high-speed video for simulation validation[J].Engineering Computations,2009,26(6):658-672.
    [151] Hersir Sigurgeirsson, Andrew Stuart, Wing-Lok Wan. Algorithms for particle-field simulations with collisions[J]. Journal of Computational Physics, 2001, 172: 766~807.
    [152]刘阳,陆慧林,刘文铁等.气固流化床的离散颗粒运动-碰撞解耦模型与模拟[J].燃烧科学与技术,2003,9(6):551~555.
    [153]闫洁,罗坤,樊建人等.稀疏两相射流中颗粒碰撞的数值研究[J].化工学报,2008,59(4):866~874.
    [154] R.E. Stratton, C.M. Wensrich. Modelling of multiple intra-time step collisions in the hard-sphere discrete element method[J]. Powder Technology, 2010, 199(2):120~130.
    [155] D.C. Richardson, K.J. Walsh, N. Murdoch, et al. Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests[J]. Icarus, 2011, 212(1):427~437.
    [156]李瑞霞,柳朝晖,贺铸等.各向同性湍流内颗粒碰撞率的直接模拟研究[J].力学学报,2006,38(1):25~32.
    [157]赵海波,郑楚光.离散系统动力学演变过程的颗粒群平衡模拟[M].北京:科学出版社,2008.
    [158] M. Sommerfeld. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 2001, 27(1):1829~1858.
    [159] L.I. Zaichik, V.M. Alipchenkov, A.R. Avetissian. Modelling turbulent collision rates of inertialparticles[J]. International Journal of Heat and Fluid Flow. 2006, 27(5): 937~944.
    [160] H. Mio, A. Shimosaka, Y. Shirakawa, et al. Cell optimization for fast contact detection in the discrete element method algorithm[J]. Advanced Powder Technology, 2007, 18(4): 441~453.
    [161] M. Kodam, R. Bharadwaj, J. Curtis, et al. Cylindrical object contact detection for use in discrete element method simulations. Part I– Contact detection algorithms[J]. Chemical Engineering Science, 2010, 65(22): 5852~5862.
    [162] M. Kodam, R. Bharadwaj, J. Curtis, et al. Cylindrical object contact detection for use in discrete element method simulations. Part II– Experimental validation[J]. Chemical Engineering Science, 2010, 65(22): 5863~5871.
    [163]蔡毅,赵海亮,由长福等.颗粒碰撞率的实验研究[J].工程热物理学报,2004,25(6):974~976.
    [164] Changfu You, Hailiang Zhao, Yi Cai, et al. Experimental investigation of interparticle collision rate in particulate flow[J]. International Journal of Multiphase Flow, 2004, 30: 1121~1138.
    [165] Changfu You, Hailiang Zhao, Xuchang Xu, et al. Effect of spatial inhomogeneity and temporal fluctuation of particle distributions on interparticle collision rate in particulate flows[J]. Power Technology, 2007, 172: 188~192.
    [166]鲁录义,周逢森,冯诗愚等.多分散系统不同粒径颗粒碰撞的多重八叉树搜索算法[J].西安交通大学学报,2008,42(3):304~308.
    [167]黄绵松,安雪晖.颗粒离散元的HACell检索算法用于SCC模拟[J].清华大学学报(自然科学版),2010,50(9):1357~1360.
    [168]屠尔昌宁诺夫,约菲斯,卡斯帕亮著,刘昕成,何新义,吴绍倩译.矿山岩石力学基础[M].北京:煤炭工业出版社,1981.
    [169]杜妍辰,王树林.两颗粒弹塑性正碰撞的耗散模型[J].机械工程学报,2009,45(2): 149~156.
    [170]周甲伟.井下弹力式煤矸分选机理的试验研究[D].徐州:中国矿业大学,2009.
    [171]刘飞.井下冲击破碎式煤矸分选机设计与研究[D].徐州:中国矿业大学,2009.
    [172]刘瑜,杜长龙,付林,高魁东.煤块冲击破碎速度研究[J].振动与冲击,2011,30(3):20~23.
    [173] J.A. Zukas著,张志云,丁世用,魏传忠译.碰撞动力学[M].北京:兵器工业出版社,1989.
    [174] V. Braizmer, Y. Kligerman, I. Etsion. The effect of contact conditions and material properties on the elasticity terminus of a spherical contact[J]. International Journal of Solids and Structures, 2006, 43: 5736~5749.
    [175]孟召平,张孝文.煤材料变形力学特性分析[M].焦作工学院学报,1996,15(4):29~34.
    [176]刘连峰.弹塑性颗粒物质准静态变形的细观力学行为[J].岩土工程学报,2007,29(4):524~530.
    [177]王克协,吴承埙.经典力学教程[M].吉林:吉林大学出版社,1994.
    [178]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [179]龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003.
    [180]王怀,葛如海,栗艳丽,王晓.网格密度对车辆碰撞仿真的影响与计算效率[J].江苏大学学报(自然科学版),2002,23(4):29~33.
    [181] R.L. Jackson, I. Green. A finite element study of elasto-plastic hemispherical contact against a rigid flat[J]. Journal of Tribology, 2005, 127(2): 343~354.
    [182] Chang W.R., Etsion I., Bogy D.B.. Static friction coefficient model for metallic rough surfaces[J]. Journal of Tribology, 1988, 110(1): 57~63.
    [183]李先炜.岩块力学性质[M].北京:煤炭工业出版社,1983.
    [184]杨圣奇,温森.不同直径煤样强度参数确定方法的探讨[J].岩土工程学报,2010,32(6):881~892.
    [185] B.B.劳恩,T.R.威尔肖著,陈顺,尹祥础译.脆性固体断裂力学[M].北京:地震出版社,1985.
    [186] B.K.阿特金森著,尹祥础,修济刚等译.岩石断裂力学[M].北京:地震出版社,1992.
    [187] M.F. Ashby, S.D. Hallam. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metallurgica, 1986, 34: 497~510.
    [188] S. Nemat-Nasser, M.M. Obata. A microcrack model of dilatancy in brittle material[J]. Journal of applied mechanics, 1988, 55(2): 24~35.
    [189]郭彦双.脆性材料中三维裂隙断裂试验、理论与数值模拟研究[D].北京:清华大学,2007.
    [190]李延春.三维裂隙扩展的CT试验及理论分析研究[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [191]杨新辉.脆性/韧性断裂机理与判据及裂尖变形理论研究[D].大连:大连理工大学,2005.
    [192]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993.
    [193]康亚明,刘长武,贾延等.岩石的统计损伤本构模型及临界损伤度研究[J].四川大学学报(工程科学版),2009,41(4):42~47.
    [194]王明超,张佐光,孙志杰等.玄武岩纤维丝束强度的Weibull和Gauss分布统计分析[J].复合材料学报,2008,25(3):105~109.
    [195]周青松.混凝土非匀质强度损伤统计分析[J].矿业快报,2005,8:19~21.
    [196]高峰,谢和平,赵鹏.Weibull模量和岩石强度的分形性质[J].科学通报,1993,38(15): 1435~1438.
    [197]舒志乐,刘新荣,刘保县等.基于分形理论的土石混合体强度特征研究[J].岩土力学与工程学报,2009,28(S1):2651~2656.
    [198] A. Tasdemir. Fractal evaluation of particle size distributions of chromites in different comminution environments[J]. Minerals Engineering, 2009, 22: 156~167.
    [199]牟致忠.机械零件可靠性设计[M].北京:机械工业出版社,1988.
    [200]曾文曲,王向阳,孙炜等.分形理论与分形的计算机模拟[M].沈阳:东北大学出版社,2001.
    [201]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [202]顾璠,许晋源,沈红梅.煤颗粒燃烧破碎特性及其分数维理论[J].中国科学(A辑),1994,24(2):201~208.
    [203] Y.S. Cheong, G.K. Reynolds, A.D. Salman, M.J. Hounslow. Modelling fragment size distribution using two-parameter Weibull equation[J]. International Journal of Mineral Processing, 2004, 74:227~237.
    [204] R. Danzer, P. Supancic, J. Pascual, T. Lube. Fracture statistics of ceramics-Weibull statistics and deviations from Weibull statistics[J]. Engineering Fracture Mechanics, 2007, 74: 2919~2932.
    [205] S.A. Kotrechko, Yu. Meshkov, I. Dlouhy. Computer simulation of effect of grain size distribution on Weibull parameters[J]. Theoretical and Applied Fracture Mechanics, 2001, 35: 255~260.
    [206]耿建平,田取珍,杨双锁.煤体破碎特性分析[J].山西煤炭,2003,23(2):18~20,25.
    [207]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994,13(3):240~246.
    [208] A. Bershadskii. Fractal mini-max principle in fragmentation related to fracture[J]. Chaos, Solitons and Fractals, 2002, 13:185~186.
    [209] Yongfu Xu. Explanation of scaling phenomenon based on fractal fragmentation[J]. Mechanics Research Communications, 2005, 32: 209~220.
    [210]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [211]刘送永,杜长龙,李建平.煤截割粒度分布规律的分形特征[J].煤炭学报,2009,34(7):977~982.
    [212]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.
    [213]高峰,谢和平.脆性材料的分形统计强度理论[J].固体力学学报,1996,17(3):239~245.
    [214]李伟,朱德懋,胡选利等.不连续散粒体的离散单元法[J].南京航空航天大学学报,1999,31(1):85~91.
    [215]温彤,雷杰,裴春雷.一种离散单元法的弹性可变形颗粒模型[J].重庆大学学报,2009,32(7):743~746.
    [216]欧阳洁,李静海.确定性颗粒轨道模型在流化床模拟中的研究进展[J].化工学报,2004,55(10):1581~1592.
    [217] A. Munjiza, K.R.F. Andrews. NBS contact detection algorithm for bodies of similar size[J]. International Journal for Numerical Methods in Engineering, 1998, 43(4): 131~149.。
    [218] B. Muth, M.K. Müller, P. Eberhard, et al. Contacts between many bodies[J]. Machine Dynamics Problems, 2004, 28(1): 101~114.
    [219] E.G. Nezami, Y.M.A. Hashash, D. Zhao, et al. A fast contact detection algorithm for 3-D discreteelement method[J]. Computer and Geotechnics, 2004, 31: 575~587.
    [220]徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981.
    [221] L.M.卡恰诺夫著,周承倜译.塑性理路基础(第二版)[M].北京:人民教育出版社,1982.
    [222]陆银龙,王连国,杨峰等.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,29(3):640~648.
    [223]刘送永.采煤机滚筒截割性能及截割系统动力学研究[D].徐州:中国矿业大学,2009.
    [224]谢素超,高广军.薄壁结构吸能预测的多元非线性回归分析[J].应用基础与工程科学学报,2010,18(4):714~721.
    [225] Simon Haykin著,叶世伟,史忠植译.神经网络原理[M].北京:机械工业出版社,2004.
    [226]王宇浩.基于遗传神经网络的汽车故障诊断研究[D].长沙:中南大学,2010.
    [227]杨俊东.基于BP神经网络的油耗测量方法研究[D].长春:吉林大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700