用户名: 密码: 验证码:
字母顺序及计数加工的脑机制—事件相关电位时空模式分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     心算(mental arithmetic)指不借助外部器具进行的脑内算术操作过程,包括了数量、顺序知识和规则等的应用。数量的大小或顺序判断的研究观察到经典的效应——距离效应(distance effect,DE):被试比较两个数字大小或数字/非数字(如字母、月份等)次序时,对距离较近的反应时间及错误率高于距离较远者,如比较2和4的反应时比2和6长。心算研究观察到问题大小效应(problem-sizeeffect):给受试者呈现一些简单的加法问题,可以是产生式任务(X+Y=?)或证实性任务(X+Y=Z,正确或错误?),记录其反应时和错误率,均可发现随着问题中运算数增大,反应时延长,错误率增高,如12+27比2+3更难。对于问题大小效应的解释有两种:计数理论及提取理论。然而这些研究考察心算的脑机制主要是基于数字材料,由于成人被试大多比较熟练的掌握了数字心算的技能,其心算更多采用回忆提取方式,研究成人的数字心算难以澄清上述两种可能的心算机制。由于成人不熟悉字母心算任务:如给被试呈现计算式:E+2=?或E+2=H要求判断字母H与E相差2字母是否正确;因此,该任务较适合考察成人心算的计数加工策略。我们推测包含顺序信息但缺乏直接数量含义的字母用于心算研究可以分离回忆提取和计数加工两类心算机制,字母顺序判断任务主要涉及前者,而字母间距计数任务涉及后者,本研究利用事件相关电位(event-related potentials,ERP)时空模式考察字母顺序及字母计数任务,试图分离和揭示两类心算策略的神经相关。
     对象和方法
     16名在校大学生参与本实验研究,均为右利手,年龄(25.31±1.46)岁(范围:22~28岁),无神经精神疾患,(矫正)视力正常。
     实验刺激材料为大写的英文字母及1,2,3三个数字,呈现方式为中间灰白色的参考数字及两侧的蓝色字母,字母对之间的距离等于参考数字或(参考数字加1),字母对之间关系有升、降序两种情况。实验设计为2(任务:顺序、计数)×3(参考数字:1,2,3)两因素重复测量析因设计。顺序、计数任务的刺激材料完全相同。被试针对双字母及参考数字图片分别完成两类任务:(1)字母顺序判断任务:判断字母对从左至右的顺序关系:升序或降序;(2)计数任务:判断字母对间隔距离(设相邻两个字母之间的距离为1)与中间参考数字的关系:等于或不等于;分别用左右手按键回答,反应肢与按键的对应关系在被试间和被试内平衡。实验执行过程的顺序为字母顺序判断任务、字母计数任务(升序呈现)、字母计数任务(降序呈现)。
     记录被试的反应时间(reaction time,RT)及正确率。利用19导事件相关电位系统同时记录脑电,分析刺激前100 ms及刺激后1000 ms的ERP数据。ERP数据干扰大者予以剔除运用。SPSS13.0以及ERP系统自身的统计软件分别对反应时、正确率和多通道ERP数据进行两因素重复测量方差分析及参考水平间的配对,检验。各通道ERP所对应的F值经插值获得统计参数映像(statisticalparametric mapping,SPM)—SPM(F),进一步对两任务的ERP进行不同参考数字水平间的配对t检验,各通道ERP对应,值经插值获得SPM(t)。采用双侧检验,显著性水平α=0.05。
     结果
     顺序任务各水平间反应时及正确率无显著差异,计数任务反应时及错误率随字母间距离增加而增加,后者的反应时及正确率高于前者。
     ERP总平均波形对应的时空模式图,早期(300 ms前):顺序、计数任务地形图相似,主要激活了额-顶叶;晚期(350 ms后):顺序任务激活了右额区及左半球,计数任务激活了双侧前额及顶-枕-颞区。
     ERP时空模式的SPM结果:任务与参考值的交互效应在右侧额叶-顶-颞区及中央区(860~1000 ms)达到显著,任务主效应在右额区、左枕部(100~300 ms)及双侧额叶、顶-枕-颞区(350~1000 ms)达到显著,参考值量的主效应在双侧额叶、左枕部(220~280 ms)达到显著,顺序任务简单效应在左额区(240~300 ms)、右额-顶(860~900 ms)达到显著,计数任务简单效应在右额、左枕区(180~280 ms)及右顶-颞区(760~900 ms)达到显著。进一步的两任务各自参考值三水平间两两比较SPM(t)分析结果,顺序任务参考水平间无距离效应的脑区,而计数任务除2和3参考水平外余两两间存在距离效应的脑区:左枕区、右顶颞区。
     结论
     顺序任务是效率高但相对容易出错的任务,特别激活的脑区有右前额和左半球,ERP效应提示右侧半球提取和利用左侧半球存贮的字母顺序知识,反映了从记忆直接提取答案策略的神经相关;计数任务是效率低但相对不容易出错的任务,特别激活的脑区有早晚两个时段的脑区:右额/左枕区(220~280 ms)和右顶颞区(760~900 ms)的激活,额顶ERP效应提示工作记忆机制参与,左顶颞区ERP效应反映字母间距离效应,显示计数策略的神经相关,被试主要采取计数策略来完成任务。
Background
     Mental arithmetic means arithmetic operation within the brain without external apparatus.Its mechanism may involve use the knowledge of quantity,order and rules. One of the classic results observed in symbolic comparison studies is the distance effect,which refers to the reaction time(RT) decreases while the difference between stimuli increases.The mental arithmetic has a effect of problem-size related to the distance effect,such as(12+27=?) more difficult than(2+3=?).The simple addition question may be in the form of the production task(X+Y =?) or the confirmed task (X+Y=Z,true or false?).Most mental arithmetic studies mainly use the number materials.Because of most adults have skilled in number mental arithmetic,so they can retrieve the answer from memories rather than calculate.It's difficult to use the number materials to reveal the real neural mechanisms of mental arithmetic with adults.The alphabetical mental arithmetic is not familiar with adult(the alphabet addition may be E+2=? or E+2=H,true or false?) is more suitable for study mental arithmetic with adults when they use the counting strategy.We apply alphabetical mental arithmetic to separate two types of mental arithmetic processing mechanism, retrieval and counting,when participants performed alphabetical order task use retrieval strategy and performed alphabetical counting task use counting strategy. Aims to isolate and reveal the neural mechanisms of two types of mental arithmetic strategies,we record event-related potential(ERP).
     Methods
     Sixteen students from the Southern Medical University were recruited, right-handed,aged from 22 to 28,with normal or corrected vision and without neurological and psychiatric disorders.
     Uppercase letters and three numbers(1,2,3) were selected as stimulate material. The gray reference number present in the middle and blue letters were present on both sides.The distance between letters is equal to the middle reference number or number added 1,a pairs of letters were ascending or descending order.Each participant performed two kinds of tasks.(1) The order task:one had to judge the order relation between the two letters:ascending or descending order.(2) The counting task:one had to judge if the distance between the letters(distance between adjacent two-letters as one unit) equal the reference number:true or false? The stimulus materials of both tasks were the same.The executive order of both tasks was arranged as:the order task, the ascending alphabetical counting task and the descending alphabetical counting task.RTs,correction rate(%) and EEG of 19 channels of 10-20 system were recorded simultaneously.EEG segments with artifact were rejected.The analysis time of ERP was from 100 ms before and 1000 ms after stimuli onset.
     A two-factor repeated-measures factorial design was adopted with the task factor (order,counting) and the distance factor(1,2,and 3).RTs and correction rate were analyzed with SPSS13.0.The analysis result of ERP was presented in the form of statistical parametric mapping(SPM) of F-value and t-value of two-sides with significance levelα=0.05.
     Result
     The reaction time of the counting task was significantly slower than that of the order task and the correction rate of the former was higher than the latter's. Behavioral performance of the counting task and the distance between letters increased simultaneously.
     Spatiotemporal patterns of ERP of both tasks were similar in early period(before 300 ms):activated frontal-parietal regions.But later(after 350 ms) the right prefrontal and the left hemisphere were significantly activated under the order task and the bilateral frontal and parietal-temporal-occipital network were specially activated under the counting task.
     The spatiotemporal patterns SPM(F) suggested the interaction effect of task×distance were significantly at the right frontal-parietal-temporal and central areas(860~1000 ms);the main effect of task was significantly at the right frontal, left occipital(100~300 ms) and bilateral frontal-parietal-occipital-temporal areas (350~1000 ms).The main effect of distance was significantly at bilateral frontal and left occipital(220~280 ms).The simple effect of the order task were significantly at left frontal(240~300 ms),right frontal-parietal(860~900 ms) and those of the counting task occurred in right frontal,left occipital(180~280 ms),right parietal-temporal(760~900 ms) respectively.Further,spatiotemporal patterns of SPM(t) suggested that no areas were activated increased as the distance between two letters increased under order task,while the left occipital and right parietal-temporal regions activated increased as distance between letters increased except the reference value 2 and 3.
     Conclusion
     The more activation in the right frontal and left hemisphere for the order task suggested the right hemisphere retrieval and utilize knowledge of alphabetical order which stored in the left hemisphere;The frontoparietal network were significant activated in the counting task,suggesting that the executive mechanism of working memory involved in and the left occipital and right parietal-temporal(at 860~890 ms) reflects the problem-size effect.The participants use the retrieval strategy to perform the order task and use counting strategy to fulfill the counting task.
引文
[1]Groen GJ,Parkman JM.A chronometric analysis of simple addition[J].Psychological Review,1972,79:329-343.
    [2]刘昌,李德明.心算活动机制的研究[J].心理学报,1999,31(1):111-117.
    [3]刘昌.心算加工的认知神经科学研究[J].心理科学,2006,29(1):30-39.
    [4]刘昌,王翠艳.心算的加工机制:来自认知神经科学的研究[J].心理科学进展,2008,16(3):446-452.
    [5]Eger E,Sterzer P,Russ MO,et al.A supramodal number representation in human intraparietal cortex[J].Neuron,2003,37:719-725.
    [6]Gevers W,Reynvoet B,Fias W.The mental representation of ordinal sequences is spatially organized[J].Cognition 2003,87:B87-B95.
    [7]Jou J,Aldridge JW.Memory representation of alphabetic position and interval information[J].Journal of Experimental Psychology:Learning,Memory,and Cognition 1999,25:680-701.
    [8]Moyer RS,Landauer TK.Time required for judgments of numerical inequality[J].Nature,1967,215:1519-1520.
    [9]Turconi E,Campbell JID,Seron X.Numerical order and quantity processing in number comparison[J].Cognition 2006,98 273-285.
    [10]Jou J.Multiple number and letter comparison:Directionality and accessibility in numeric and alphabetic memories[J].American Journal of Psychology,2003,116:543-579.
    [11]Michalewski HJ,Kamel A-WM,Starr A.Brain potentials during mental distance judgments[J].International Journal of Psychophysiology,,1988,6 221-229.
    [12]Turconi E,Jemel B,Rossion B,et al.Electrophysiological evidence for differential processing of numerical quantity and order in humans[J].Cognitive Brain Research 2004,21:22-38.
    [13]Sz(u|¨)cs D,Cs(?)pe V.Similarities and differences in the coding of numerical and alphabetical order using acoustic stimulation as revealed by event-related potentials in humans [J].Neuroscience Letters 2004, 360 65-68.
    [14]Marshuetz C, Reuter-Lorenz PA, Smith EE, et al.Working memory for order and the parietal cortex : an event-related functional magnetic resonance imaging study[J].Neuroscience, 2006, 39: 311-316.
    [15]Konishi S, Uchida I, Okuaki T, et al.Neural correlates of recency judgment [J].The Journal of Neuroscience, 2002, 22: 9549-9555.
    [16]李红 曹李.序数表征及其脑机制[J].心理科学进展.
    [17]Marshuetz C, Smith EE, Jonides J, et al.Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms [J].Journal of Cognitive Neuroscience, 2000, 12: 130-144.
    [18]Cabeza R, Mangels J, Nyberg L, et al.Brain regions differentially involved in remembering what and when: a PET study[J].Neuron, 1997, 19: 863-870.
    [19]Tudusciuc O, Nieder A.Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex[J].PNAS 2007, 104(14513-14518).
    [20]Nieder A, Diester I, Tudusciuc O.Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex[J].SCIENCE 2006, 313: 1431-1435.
    [21]Nieder A, Miller EK.A parieto-frontal network for visual numerical information in the monkey[J].PNAS 2004, 101: 7457-7462.
    [22]Milner B, Crosi P, Leonard G.Frontal-lobe contribution to recency judgments [J].Neuropsychologia, 1991, 29: 601-618
    [23]Milner B.Interhemispheric differences in the localization of psychological processes in man[J].Br Med Bull 1971, 27: 272-277.
    [24]Petrides M.Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey.[J].Journal of Neuroscience, 1995, 15(359-375 ).
    [25]D'Esposito M, Postle BR.Neural correlates of component processes of working memory: evidence from neuropsychological and pharmacological studies.[J].In:Control of cognitive processes: attention and performance ⅩⅧ (Monsell S,Driver J, eds), MIT Press, Cambridge, MA, 2000: 579-602.
    [26]Sakai K, Passingham RE.Prefrontal interactions reflect future task operations[J].Nature Neuroscience 2003, 6: 75-81.
    [27]Ashcraft MH, Battaglia J.Cognitive arithmetic: Evidence for retrieval and decision process in mental addition[J].Journal of Experimental Psychology:Human Learning and Memory, 1978, 4(5): 527-538.
    [28]Ashcraft MH.Cognitive arithmetic: A review of date and theory[J].Cognition, 1992, 44: 75-106.
    [29]Zbrodoff JN.Effects of Counting in Alphabet Arithmetic: Opportunistic Stopping and Priming of Intermediate Steps[J].Journal of Experimental Psychology: Learning, Memory, and Cognition 1999, 25: 299-317.
    [30]Logan GD.Toward an instance theory of automatization [J].Psychological Review 1988, 95: 492-527.
    [31]Logan GD, Klapp ST.Automatizing alphabet arithmetic:1.Is extended practice necessary to product automaticity ? [J].Journal of Experimental Psychology: Learning, Memory, and Cognition 1991, 17: 179-195.
    [32]Zbrodoff JN.Why is 9+7 harder than 2+3? Strength and interference as explanations of the problem-size effect[J].Memory & Cognition, 1995, 23:689-700.
    [33]Romero SG, McFarland DJ, Faust R, et al.Electrophysiological markers of skill-related neuroplasticity[J].Biological Psychology 2008, 78: 221-230.
    [34][Kong J, Wang C, Kwong K, et al.The neural substrate of arithmetic operations and procedure complexity [J].Cognitive Brain Research 2005, 22: 397-408.
    [35]Dehaene S, Spelke E, Pinel P, et al.Sources of mathematical thinking: behavioral and brain-imaging evidence[J].science, 1999, 284: 970-974.
    [36]Fehr T, Code C, Herrmann M.Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation[J].BRAIN RESEARCH 2007, 1172: 93-102.
    [37]Kawashima R TM, Okita K, et al.A functional MRI study of simple arithmetic: a comparison between children and adults.Cognitive Brain Research [J].2004, 18:227-233.
    [38]王东,李秀艳,孙延超.心算认知过程的脑事件相关电位变化[J].中国组织工程研究与临床康复,2007,11:1738-1741.
    [39]Iguchi Y,Hashjmoto L.Sequential information processing during a mental arithmetic is reflected in the course of event-related brain potentials[J].Clinical Neurophysiology,2000,111(2):204-213.
    [40]Nunez-Pena ML,Honrubia-Serrano ML,Escera C.Problem size effect in additions and subtractions:an event-related potential study[J],neuroscience Letters,2005,373(1):21-25.
    [41]Wang Y,Kong J,Tang X.Event-related potential N270 is elicited by mental conflict processing in human brain[J],neuroscience Letters,2000,293(1):17-20.
    [42]Cui L,Wang Y,Wang H.Human brain sub-systems for discrimination of visual shapes[J].Neuroreport,2000,11(11):2415-2418.
    [43]Wang H,Wang Y,Kong J.Enhancement of conflict processing activity in human brain under task relevant condition[J].Neuroscience Letters,2001,298(3):155-158.
    [44]杨静,王玉平,王维平.空间位置信息冲突诱发的事件相关电位研究[J].中国临床康复,2002,6(5):671-672.
    [45]Niedggen M,Rosier F,Jost K.Processing of incongruous mental calculation problems:evidence for an arithmetic N400 effect[J].Psychophysiology,1999,36(3):307-324.
    [46]Szucs D,Csepe V.The effect of numerical distance and stimulus probability on ERP components elicited by numerical incongruencies in mental addition[J].Brain Research Cognitive Brain Research,2005,22(2):289-300.
    [47]Baddeley A.The episodic buffer:a new component of working memory?[J].Trends in Cognitive Sciences,2000,4(11):417-423.
    [48]Logic RH,Gilhooly KJ,Wynn V.Counting on working memory in arithmetic problem solving[J].Memory &Cognition,1994,22(4):395-410.
    [49]Shen L,Liu C,Weng X.Mental multiplication and the central executive component of working memory:A dual-task fMRI study[J].Journal of Cognitive Neuroscience,2005.
    [50]周曙,周炜.通用事件相关电位系统的设计和实现[J].中国生物医学工程学会第六届年会,2004,414.
    [51]Habib R,Nyberg L,Tulving E.Hemispheric asymmetries of memory:the HERA model revisited[J].TRENDS in Cognitive Sciences,2003,7(6):241-245.
    [52]Pesenti M,Zago L,Crivello F,et al.Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas[J].Nature Neuroscience,2001,4:103-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700