用户名: 密码: 验证码:
TLR2介导TB10.4激活RAW264.7通路及细胞因子表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛分枝杆菌的主要宿主细胞是巨噬细胞,该菌入侵机体后通过TLR传递分子信号激活丝裂原蛋白激酶(MAPK),最终激活核转录因子(NF-κB),激活巨噬细胞免疫应答的关键分子,上调IL-1、IL-6和TNF-等炎症因子的转录和表达,激活机体的先天免疫应答。为探讨TB10.4是否通过TLR调控炎症反应及相关信号通路的信号转导,本研究开展了以下工作:
     首先通过ELISA检测rTB10.4对RAW264.7细胞TNF-.、IL-6和IL-12p40细胞因子表达的影响,结果显示rTB10.4能够显著激活TNF-、IL-6和IL-12p40的表达,并且呈剂量依赖关系。采用TLR2和TLR4的抗体对RAW264.7细胞进行预处理,结果显示TLR2抗体可以显著抑制rTB10.4诱导RAW264.7细胞表达TNF-、IL-6和IL-12p40,而TLR4抗体无此抑制作用。表明rTB10.4诱导RAW264.7细胞产生TNF、IL-6和IL-12p40可能是依赖TLR2通路传递信号。
     采用Western Blot和量化流式细胞分析仪检测rTB10.4诱导细胞因子的表达是否与MAPK信号通路的激活有关,结果显示,rTB10.4能够诱导RAW264.7细胞激活p38和ERK1/2信号通路,并且诱导RAW264.7细胞发生明显的p38及ERK核转位;但rTB10.4不能激活RAW264.7细胞中JNK信号通路磷酸化。通过使用TLR-2及TLR-4抗体预处理RAW264.7细胞,评估rTB10.4激活RAW264.7细胞中p38和ERK1/2磷酸化是否通过TLR2和TLR4信号通路,结果显示TLR-2抗体显著降低rTB10.4诱导的p38和ERK1/2磷酸化;p38激酶的特异性抑制剂SB203580和MAPK激酶1/2特异性抑制剂U0126能够显著抑制rTB10.4诱导RAW264.7细胞分泌TNF-、IL-6和IL-12p40细胞因子。
     进一步采用NF-κB荧光素酶报告系统、Western Blot和量化流式分析仪检测rTB10.4诱导细胞因子的表达是否依赖NF-κB信号通路,结果表明rTB10.4在刺激RAW264.7细胞后12h和24h能显著激活NF-κB,并通过诱导IκB的降解激活p65的磷酸化,诱导RAW264.7细胞中NF-κBp65发生明显核转位。NF-κB特异性抑制剂BAY11-7082作用结果表明:rTB10.4蛋白刺激RAW264.7细胞分泌表达TNF-、IL-12p40和IL-6依赖NF-κB信号通路。
     综上所述,本研究首次研究发现了rTB10.4能够上调RAW264.7细胞TNF-、IL-6和IL-12p40的表达,并且这一过程是通过TLR2受体介导p38MAPK、ERK1/2和NF-κB信号通路实现。该研究为牛结核病感染与诊断提供了分子基础,并且对理解牛分枝杆菌与宿主细胞的相互作用及分子机制提供新的研究思路。
Macrophages play a significant role in the host defense mechanism of Mycobacterium bovis,Toll-like receptors (TLR) are key molecules involved in activating macrophages, Several proteinkinases, such as mitogen-activated protein kinases (MAPKs) and the nuclear translocation of theNuclear Factor-Kappa B (NF-κB) are also activated via the TLR signaling pathway,stimulating thetranscription and production of IL-1, IL-6and TNF-, activating the innate immune response. Toevaluate whether rTB10.4interact with Toll-like receptors (TLRs) and the signaling pathways for activeinflammation, this study has carried out mainly works as the following aspects:
     Firstly, we tested the activation role of M. bovis-derived recombinant TB10.4protein (rTB10.4) onthe expression of TNF-, IL-6, and IL-12p40in RAW264.7cells by ELISA. The result showed thatRAW264.7cells, exposed to rTB10.4, produced significantly higher levels of TNF-, IL-6, and IL-12p40in a dose-dependent manner than control groups. Furthermore, the expressions of TNF-, IL-6, andIL-12p40were inhibited in RAW264.7cells when TLR2signals were blockaded by treating withanti-TLR2. However, TLR4had no such effects after treating with anti-TLR4. These data suggested thatthe activation role of rTB10.4on expression of cytokines was mediated by TLR2signals.
     We examined whether rTB10.4could activate the MAPK pathway and then effect the expressionsof cytokines by the methods of Western Blot and Image Stream100. Our results showed that rTB10.4could activate the p38kinase (p38) and extracellular-regulated kinase (ERK) signals and induce thenuclear translocation of p38and ERK. However, rTB10.4had no effects on phosphorylation of JNKpathway. After treated with anti-TLR-2, the phosphorylations of p38and ERK1/2were significantlyreduced in RAW264.7cells. The inhibition of p38and ERK activity with inhibitor of SB203580(p38)or U0126(ERK1/2) had a significant effect on rTB10.4-induced secretion of TNF-, IL-6, and IL-12p40.
     To investigate whether TLR2could contribute to rTB10.4induces the activation of NF-κB byNF-κB luciferase activity detection. RAW264.7cells transfected with a luciferase reporter generevealed that rTB10.4stimulation significantly activated the NF-κB luciferase activity. Then wemeasured the rTB10.4-induced phosphorylation and nuclear translocation of NF-κB p65by Westernblot analysis,these data suggest that rTB10.4mediates the activation of NF-κB p65by triggering thedegradation of IκB in the cytoplasm in time-dependent manner. Then, we detected the ranscriptionalcompetence of nuclear NF-κB p65by rTB10.4stimulation using the ImageStream analysis, the resultsshowed that translocation of NF-κB p65was observely induced by rTB10.4. Furthmore, we pre-treatedRAW264.7cells with a specific NF-κB inhibitor BAY-117082. The production of TNF-or IL-12p40dramatically blocked by BAY-117082. These observations suggested that TB10.4induced theproduction of TNF-, IL-12p40, and IL-6via the NF-κBsignalling pathway.
     In summary, our findings provide evidence that rTB10.4promotes the production of TNF-, IL-6,and IL-12p40in RAW264.7cells via TLR2, and that the p38MAPK, ERK1/2and NF-κB pathways were essential to this process. Thus, our studies provide a better understanding of the molecularmechanisms influencing host/pathogen interactions necessary to prevent Mycobacterium bovisinfection.
引文
[1]安继红,等.老年肺结核患者白细胞介素6分泌水平的研究.中国老年学杂志.1999,13:13-14.
    [2]郭爱珍.我国牛结核病的防控与净化.兽医导刊.2010,8:38-40.
    [3]高蕾,等.IL-12联合结核杆菌DNA疫茁初免一BCG加强免疫的免疫效果观察.四川大学学报(医学版).2008,39:535-539.
    [4]郝牧,等.人IL-12与结核分枝杆菌抗原ESAT-6联合基因疫苗的免疫效果观察.微生物学报,2007,47:477-481.
    [5]金伯泉.固有免疫中模式识别受体及其信号转导—当代免疫学中最伟大的发现之一.细胞与分子免疫学杂志.2006,22(1):1-4.
    [6]姜勇,等.MAPK信号转导通路对炎症反应的调控.生理学报.2000,52(4):267-271.
    [7]姜勇,等.脂多糖激活p38在诱导肿瘤坏死因子基因表达中的作用.中华医学杂志.1999,14(2):138-143.
    [8]刘思国,等.牛结核病研究进展.畜牧兽医科技信息.2003,19(10):10-14.
    [9]闰慧慧,等.核因子KB结构及其研究进展.国际检验医学杂志.2007,28(5):445.
    [10]史艳晖,等.转录因子NF-KB的研究现状及其应用前景.中国生物工程杂志.2007,27(4):110.
    [11]王晓蕾,等.巨噬细胞摄取结核分枝杆菌相关的受体.中华结核和呼吸杂志.2003,26(5):297-299.
    [12]杨晓敏,等.IL-7和IL-2协同对肺结核患者Th1/Th2平衡调节作用的研究.贵州医药.2006,30:315-317.
    [13]张高迪,等.内蒙古哲里木盟人与牛结核相互传播关系的研究.1996,2:47-49.
    [14]张璐,等.丝裂素活化蛋白激酶信号转导通路研究进展.国外医学.生理病理科学与临床分册.1999,19(2):84-87.
    [15]赵明,等.TNF-诱导的c-jun基因表达中的信号转导.生物化学与生物物理学报.2000,32(3):59-65.
    [16] Adams L. In vivo and in vitro diagnosis of Mycobacterium bovis infection. Rev Sci Tech..2001,20(1):304-324.
    [17] Aderem A, et al. Underhill D M. Mechanisms of phagocytosis in macrophages. Annu RevImmunol.1999,17(1):593-623.
    [18] Akira S, et al. Toll-like receptor signalling. Nat Rev Immunol.2004,4(7):499-511.
    [19] Alem N M, et al. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involvingtoll-like receptor2and p38mitogen protein kinase in tuberculosis patients. Infect Immun.2004,72(9):5150-5158.
    [20] Altare F, et al. Impairment of mycobacterial immunity in human interleukin-12receptor deficiency.Science.1998,280(5368):1432-1435.
    [21] Amadori M, et al. Use of recombinant proteins in antibody tests for bovine tuberculosis. VetMicrobiol.2002,85(4):379-389.
    [22] Axelsson, et al. Extensive major histocompatibility complex class I binding promiscuity forMycobacterium tuberculosis TB10.4peptides and immune dominance of human leucocyteantigen (HLA)‐B*0702and HLA‐B*0801alleles in TB10.4CD8+T‐cell responses.Immunology.2010,129(4):496-505.
    [23].Baldwin JR A S. The NF-κBand IκBproteins: new discoveries and insights. Annu Rev Immunol.1996,14(1):649-681.
    [24] Billeskov R, et al. Difference in TB10.4T‐cell epitope recognition following immunization withrecombinant TB10.4, BCG or infection with Mycobacterium tuberculosis. Eur J Immunol.2010,40(5):1342-1354.
    [25] Billeskov R, et al. Induction of CD8T cells against a novel epitope in TB10.4: correlation withmycobacterial virulence and the presence of a functional region of difference-1. J Immunol.2007,179(6):3973-3981.
    [26] Blander J M, et al. Regulation of phagosome maturation by signals from toll-like receptors.Science.2004,304(5673):1014-1018.
    [27] Boadella M, et al. Serologic tests for detecting antibodies against Mycobacterium bovis andMycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). JVet Diagn Invest.2011,23(1):77-83.
    [28] Branger J, et al. Toll-like receptor4plays a protective role in pulmonary tuberculosis in mice. IntImmunol.2004,16(3):509-516.
    [29] Brewster J L, et al. An osmosensing signal transduction pathway in yeast. Science.1993,259(5102):1760-1763.
    [30] Brodin P, et al. ESAT-6proteins: protective antigens and virulence factors?. Trends Microbiol.2004,12(11):500-508.
    [31] Bulut Y, et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptorpathways to activate pro-inflammatory signals. J Biol Chem.2005,280(22):20961-20967.
    [32] Chen S T, et al. Recombinant MPT83derived from Mycobacterium tuberculosis induces cytokineproduction and upregulates the function of mouse macrophages through TLR2. J Immunol.2012,188(2):668-677.
    [33] Collins H L, et al. The many faces of host responses to tuberculosis. Immunology.2001,103(1):1-9.
    [34] Cooper A M, et al. Interleukin12(IL-12) is crucial to the development of protective immunity inmice intravenously infected with Mycobacterium tuberculosis. J Exp Med.1997,186(1):39-45.
    [35] Coulombe F, et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J ExpMed.2009,206(8):1709-1716.
    [36] Corbett E L, et al. The growing burden of tuberculosis: global trends and interactions with the HIVepidemic. Arch Intern Med.2003,163(9):1009-1021.
    [37] Corner L. Post mortem diagnosis of Mycobacterium bovis infection in cattle. Vet Microbiol.1994,40(1):53-63.
    [38] Denkers E Y, et al. Manipulation of mitogen-activated protein kinase/nuclear factor‐κB‐signaling cascades during intracellular Toxoplasma gondii infection. Immunol Rev.2004,201(1):191-205.
    [39] Drennan M B, et al. Toll-Like Receptor2-Deficient Mice Succumb to Mycobacterium tuberculosisInfection. Am J Pathol.2004,164(1):49-57.
    [40] Dvorska L, et al. IS1311and IS1245restriction fragment length polymorphism analyses, serotypes,and drug susceptibilities of Mycobacterium avium complex isolates obtained from a humanimmunodefic iency virus-negative patient. J Clin Microbiol.2002,40(10):3712-3719.
    [41] Dziarski R, et al. Differential activation of extracellular signal-regulated kinase (ERK)1, ERK2,p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterialpeptidoglycan. J Infect Dis.1996,174(4):777-785.
    [42] Divangahi M, et al. NOD2-defi-cient mice have impaired resistance to Mycobacterium tuberculosisinfection through defective innate and adaptive immunity. J Imunol,2008,181:7157-7165.
    [43] Ernst J D. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun.1998,66(4):1277-1281.
    [44] Flynn J L, et al. Immunology of tuberculosis. Annu Rev Immunol.2001,19(1):93-129.
    [45] Ghosh S, et al. NF-κBand Rel proteins: evolutionarily conserved mediators of immune responses.Annu Rev Immunol.1998,16(1):225-260.
    [46] Han J, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.Science.1994,265(5173):808-811.
    [47] Hernandez Pando R, et al. Pulmonary tuberculosis in BALB/c mice with non‐functional IL‐4genes: changes in the inflammatory effects of TNF‐and in the regulation of fibrosis. Eur JImmunol.2004,34(1):174-183.
    [48] Hervas Stubbs S, et al. High frequency of CD4+T cells specific for the TB10.4protein correlateswith protection against Mycobacterium tuberculosis infection. Infect Immun.2006,74(6):3396-3407.
    [49] Hilkens C, et al. Modulation of T-cell cytokine secretion by accessory cell-derived products. EurRespir J Suppl.1996,22:90-94.
    [50] Huynh KK, et al. A delicate dance: host response to mycobacteria. CurrOpin Immunol.2011,23:464-472.
    [51] Ishikawa E, et al. Direct recognition of the mycobacterial glycolipid,trehalose dimycolatem bycype lectin mincle. J Exp Med.2009,206:2879-2888.
    [52] Inohara N, et al. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease.Annu Rev Biochem.2005,74:355-383.
    [53] Janeway, C. A., et al. Innate immune recognition. Annu Rev Immunol.2002,20:197-216.
    [54] Jung S B, et al. The mycobacterial38-kilodalton glycolipoprotein antigen activates themitogen-activated protein kinase pathway and release of proinflammatory cytokines throughToll-like receptors2and4in human monocytes. Infect Immun.2006,74(5):2686-2696.
    [55] Kang P B, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosislipoarabinomannan-mediated phagosome biogenes is. J Exp Med.2005,202(7):987-999.
    [56] Kaur P, et al. Molecular epidemiology of Mycobacterium avium subspecies paratuberculosis: IS900PCR identification and IS1311polymorphism analysis from ruminants in the Punjab region ofIndia. Comp Immunol Microbiol Infect Dis.2011,34(2):163-169.
    [57] Kim K, et al. Mycobacterium tuberculosis Rv0652stimulates production of tumour necrosis factorand monocytes chemoattractant protein‐1in macrophages through the Toll‐like receptor4pathway. Immunology.2012,136(2):231-240.
    [58] Kobayashi M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF),a cytokine with multiple biologic effects on human lymphocytes. J Exp Med.1989,170(3):827-845.
    [59] Kang PB, et al. The human macrophage mannose receptor directs Mycobacterium tuberculosislipoarabinomannan-mediated phagosome biogensis. J Exp Med.2005,202:987-999.
    [60] Kyriakis J M, et al. Mammalian mitogen-activated protein kinase signal transduction pathwaysactivated by stress and inflammation. Physiol Rev.2001,81(2):807-869.
    [61] Ladel C H, et al. Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect Immun.1997,65(11):4843-4849.
    [62] Lee J S, et al. Ex Vivo Responses for Interferon‐gamma and Proinflammatory Cytokine Secretionto Low-Molecular-Weight Antigen MTB12of Mycobacterium tuberculosis during HumanTuberculosis. Scand J Immunol.2006,64(2):145-154.
    [63] Lee J S, et al. The production of tumour necrosis factor‐alpha is decreased in peripheral bloodmononuclear cells from multidrug‐resistant tuberculosis patients following stimulation withthe30-kDa antigen of Mycobacterium tuberculosis. Clin Exp Immunol.2003,132(3):443-449.
    [64] Lee J S, et al. Depressed interleukin-12production by peripheral blood mononuclear cells after invitro stimulation with the30-kDa antigen in recurrent pulmonary tuberculosis patients. MedMicrobiol Immunol.2003,192(2):61-69.
    [65] Li H, et al. Characterization of the porcine p65subunit of NF-κB and its association with virusantibody levels. Mol Immunol.2011,48(6):914-923.
    [66] Ling P, et al. Human IL-12p40homodimer binds to the IL-12receptor but does not mediatebiologic activity. J Immunol.1995,154(1):116-127.
    [67] Lodes M J, et al. Serological expression cloning and immunological evaluation of MTB48, a novelMycobacterium tuberculosis antigen. J Clin Microbiol.2001,39(7):2485-2493.
    [68] L Pez M, et al. The19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosisthrough Toll-like receptor-2. J Immunol.2003,170(5):2409-2416.
    [69] Lowrie D B, et al. Therapy of tuberculosis in mice by DNA vaccination. Nature.1999,400(6741):269-271.
    [70] Lunghi P, et al. Downmodulation of ERK activity inhibits the proliferation and induces theapoptosis of primary acute myelogenous leukemia blasts. Leukemia.2003,17(9):1783-1793.
    [71] Ma X L, et al. Inhibition of p38mitogen-activated protein kinase decreases cardiomyocyteapoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation.1999,99(13):1685-1691.
    [72] Mayordomo L, et al. Pulmonary miliary tuberculosis in a patient with anti-TNF-alpha treatment.Scand J Rheumatol.2002,31(1):44-45.
    [73] Means T K, et al. The biology of Toll-like receptors. Cytokine Growth Factor Rev.2000,11(3):219-232.
    [74] Mootoo A, et al. TNF-in tuberculosis: A cytokine with a split personality. Inflamm Allergy DrugTargets.2009,8(1):53-62.
    [75] Murphy T L, et al. Regulation of interleukin12p40expression through an NF-kappa B half-site.Mol Cell Biol.1995,15(10):5258-5267.
    [76] Nair S, et al. The PPE18Protein of Mycobacterium tuberculosis Inhibits NF-κB/rel–MediatedProinflammatory Cytokine Production by Upregulating and Phosphorylating Suppressor ofCytokine Signaling3Protein. J Immunol.2011,186(9):5413-5424.
    [77] Niemann S, et al. Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrBDNA sequence polymorphism analysis. J Clin Microbiol.2000,38(9):3231-3234.
    [78] Orme I M, et al. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today.1999,20(7):307-312.
    [79] Ottenhoff T H, et al. Novel human immunodeficienc ies reveal the essential role of type-1cytokinesin immunity to intracellular bacteria. Immunol Today.1998,19(11):491-494.
    [80] Park A Y, et al. IL-12is required to maintain a Th1response during Leishmania major infection. JImmunol.2000,165(2):896-902.
    [81].Pathak S K, et al. Mycobacterium tuberculosis lipoarabinomannan-mediated IRAK-M inductionnegatively regulates Toll-like receptor-dependent interleukin-12p40production in macrophages.J Biol Chem.2005,280(52):42794-42800.
    [82] Pandey AK, et al. NOD2, Rip2and IRF5play a critical role in the type I interferon response toMycobacterium tuberculosis. Plos Pathog.2009,5(7): e1000500.
    [83] Pecora N D, et al. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2that regulatesinnate immunity and APC function. J Immunol.2006,177(1):422-429.
    [84] Picard C, et al. Inherited Interleukin-12Deficiency: IL12B Genotype and Clinical Phenotype of13Patients from Six Kindreds. Am J Hum Genet.2002,70(2):336-348.
    [85] Raingeaud J, et al. MKK3-and MKK6-regulated gene expression is mediated by the p38mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol.1996,16(3):1247-1255.
    [86] Reiling N, et al. Mycobacteria-induced TNF-and IL-10formation by human macrophages isdifferentially regulated at the level of mitogen-activated protein kinase activity. J Immunol.2001,167(6):3339-3345.
    [87] Ribero Rodrigues R, et al. Sputum cytokine levels in patients with pulmonary tuberculosis as earlymarkers of mycobacterial clearance. Clin Diagn Lab Immunol.2002,9(4):818-823.
    [88] Rothel J, et al. A sandwich enzyme immunoassay for bovine interferon‐γ and its use for thedetection of tuberculosis in cattle. Aust Vet J.1990,67(4):134-137.
    [89] Saiga H, et al. Innate immune effectors in mycobacterial infection. Clin Dev Immunol.2011,3475-3494.
    [90] Sanjabi S, et al. Selective requirement for c-Rel during IL-12P40gene induction in macrophages.Proc Natl Acad Sci.2000,97(23):12705-12710.
    [91] Saunders B M, et al. Interleukin-6Induces Early Gamma Interferon Production in the InfectedLung but Is Not Required for Generation of Specific Immunity to MycobacteriumtuberculosisInfection. Infect Immun.2000,68(6):3322-3326.
    [92] Schoenen H, et al. Minc le is essential for recognition andadjuvanticity of the mycobacterial cordfactor and its synthetic analog treha-lose-dibehenate. J Immunol.2010,184:2756-2760.
    [93] Sirkar M, et al. Lipoarabinomannan-induced cell signaling involves ceramide andmitogen-activated protein kinase. Clin Diagn Lab Immunol.2002,9(6):1175-1182.
    [94] Skj t R L V, et al. Comparative Evaluation of Low-Molecular-Mass Proteins fromMycobacteriumtuberculosis Identifies Members of the ESAT-6Family as Immunodominant T-Cell Antigens.Infect Immun.2000,68(1):214-220.
    [95] Song C H, et al. Role of mitogen-activated protein kinase pathways in the production of tumornecrosis factor-, interleukin-10, and monocyte chemotactic protein-1by Mycobacteriumtuberculosis H37Rv-infected human monocytes. J Clin Immunol.2003,23(3):194-201.
    [96] Stern A S, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocytematuration factor from human B-lymphoblastoid cells. Proc Natl Acad Sci.1990,87(17):6808-6812.
    [97] Takeuchi O, et al. Pattern recognition receptors and inflammation. Cell.2010,140:805-820.
    [98] Tanne A, et al. C-type lectins in immunity to Mycobacterium tuberculosis. Front Biosci(Schol Ed),2011,3:1147-1164.
    [99] Thibault V C, et al. New variable-number tandem-repeat markers for typing Mycobacterium aviumsubsp. paratuberculosis and M. avium strains: comparison with IS900and IS1245restrictionfragment length polymorphism typing. J Clin Microbiol.2007,45(8):2404-2410.
    [100] Ting JP, et al. The NLR genefamily: a standard nomenclature. Immunity.2008,28:285-287.
    [101] Thoma-Uszynski S, et al. Induction of direct antimicrobial activity through mammalian toll-likereceptors. Science.2001,291(5508):1544-1547.
    [102] Trajkovic V, et al. Effect of Mycobacterium tuberculosis-specific10-kilodalton antigen onmacrophage release of tumor necrosis factor alpha and nitric oxide. Infect Immun.2002,70(12):6558-6566.
    [103] Van Crevel R, et al. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev.2002,15(2):294-309.
    [104] Vasselon T, et al. Toll-like receptor2(TLR2) mediates activation of stress-activated MAP kinasep38. J Leukoc Biol.2002,71(3):503-510.
    [105] Wajant H, et al. Tumor necrosis factor signaling. Cell Death Differ.2003,10(1):45-65.
    [106] Wolf S, et al. Activity of IL12as adjuvant in promoting Th1and Th2recall responses. ResImmunol.1995,146(7):486-489.
    [107] Wood P, et al. Development of a simple, rapid in vitro cellular assay for bovine tuberculosis basedon the production of gamma interferon. Res Vet Sci.1990,49(1):46-49.
    [108] Zarember K A, et al. Tissue expression of human Toll-like receptors and differential regulation ofToll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines.J Immunol.2002,168(2):554-561.
    [109] Yang Y, et al. NOD2pathway activation by MDP or Mycobacterium tuberculosis infectioninvolves the stable polyybiquitination of Rip2. J Biol Chem,2007,282:6223-6229.
    [110] Zganiacz A, et al. TNF-is a critical negative regulator of type1immune activation duringintracellular bacterial infection. J Clin Invest.2004,113(3):401-413.
    [111] Ziegler-Heitbrock H, et al. Pyrrolidine dithiocarbamate inhibits NF-kappa B mobilization andTNF production in human monocytes. J Immunol.1993,151(12):6986-6993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700