用户名: 密码: 验证码:
邻苯二酚和乙(甲)醇气相单醚化合成邻羟基苯乙(甲)醚催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻羟基苯乙(甲)醚是香料、农业、医药、染料等工业中重要的中间体和原料,有着广泛的用途。以邻苯二酚和乙(甲)醇为原料、气相单醚化法合成邻羟基苯乙(甲)醚具有成本低、毒性和腐蚀性小等优点,是目前世界上最先进、最具竞争力的工艺路线之一。本论文以该反应为目标反应,重点围绕磷酸铝体系催化剂,通过改进和优化制备方法,制备出一系列具有不同孔结构和表面酸碱性质的催化剂,并对性能较好的催化剂进行了放大合成及催化剂成型研究。结合多种表征手段研究了催化剂的结构、表面酸碱性质与反应性能之间的关系,探讨了催化剂的活性中心性质及催化作用机制等问题。
     从磷铝两组分催化剂入手,通过筛选不同的磷源、调控各种制备参数(如:合成终点的pH值、P/Al比等),制备出具有高活性和高稳定性的磷酸铝催化剂。该方法制备过程简单、重现性好,经公斤级放大后,所制备催化剂的性能没有明显变化。对该催化剂进行挤出成型实验结果表明:添加一定量硝酸和硅胶作为粘结剂,可以得到机械强度和催化性能良好的催化剂。稳定性考察结果表明:催化剂在邻苯二酚和甲醇气相反应上连续进行480小时未见明显失活,在邻苯二酚和乙醇反应上累积寿命可达2000小时以上。
     考察了以柠檬酸作为有机添加剂制备的介孔磷酸铝催化剂上邻苯二酚分别与甲醇和乙醇反应的催化性能,系统地比较了两个反应在相同催化剂上邻苯二酚转化和产物分布的异同,结合催化剂表面酸碱性质探讨了催化剂的活性中心性质与反应性能之间的关系。结果表明:催化剂表面弱酸弱碱中心是邻苯二酚与乙(甲)醇O-烷基化反应的主要活性中心;与甲醇相比,乙醇与邻苯二酚选择合成邻羟基苯乙醚需要强度更弱的酸中心。
     采用溶剂热合成法制备了具有AFI结构的微孔AlPO-5材料并用于上述反应,结果表明这类催化剂上邻羟基苯甲醚的选择性均达到96%以上,显示出很高的目的产物选择性。此外,我们还考察了二氧化硅为载体的负载偏钨酸铵催化剂和以柠檬酸为添加剂制备的介孔钛硅材料的催化性能,结合材料表面酸碱性质进一步探讨了催化剂的活性中心本质和催化作用机制等问题。
Guathol and guaiacol are important synthetic intermediate in fine chemical production. They are widely used in the production of flavouring agents, fragrances, agricultural chemicals and pharmaceuticals. Traditionally, guathol and guaiacol were synthesized by homogeneous phase and batch processes, which had complicated technological process and were corrosive, toxic and environmental hazardous. Recently, vapour-phase alkylation of catechol with methanol and ethanol for the synthesis of guaiacol and guathol has received more attention, since this route is more economical and more environmentally friendly for industrial applications. This process will be the main direction of scientific research and industrial production in future.
     Some heterogeneous catalysts have been tested in the vapour-phase alkylation of catechol with ethanol (methanol) early. However, a common problem is that most of the tested catalysts exhibited unsatisfactory activity and/or unfavourable rapid deactivation. These drawbacks restrict the application of this route to produce guathol(guaiacol). Recently, our research team found that Al-P-Ti and Al-P-Ti-Si showed high catalytic activity and stability in the vapour-phase of catechol and ethanol (methanol), which indicates a good prospect. However, from the perspective of industrial applications, the preparation process of the catalysts is relative complexity and the shaping technics need to study systemically. Otherwise, the relationship between the acid-base properties of the catalysts and their catalytic performance for the reaction needs to study further.
     Base on preliminary work, we focus on preparing the Al-P-O catalysts with different texture and acid-base properties by improving and optimizing the preparation method. The vapour-phase O-methylation of catechol with ethanol (methanol) has been investigated over these catalysts. Magnifying and shaping of the catalysts which showed better catalytic performance are also studied. The relationship between the texture, acid-base properties and the catalytic performance of catalysts were studied by different characterization means of XRD, BET, TPD, SEM and FTIR of pyridine and ammonia adsorption etc. Meanwhile, the nature of active center and the reaction mechanism were also discussed.
     TFirstly, Al-P-O catalysts were prepared with a simple precipitation method. The catalytic properties of Al-P-O samples synthesized with different P sources, pH and P/Al ratio in the vapour-phase O-ethylation of catechol with ethanol were investigated. Al1P1.1 prepared with NH4H2PO4 and shows higher activity. With the incresacing of pH, the activity of the reaction increase and the catalyst prepared with 7 showed the highest activity. Magnifying, repeatability and shaping of the catalysts were also studied. Samples prepared with different batchs give higer activity and yield of guathol (above 80%), so this preparation method shows good repeatability. Silica gel, nitric acid and sesbania gum powder as shaping additives were attempted to shape the catalyst. With the increasing amount of silica gel and nitric acid, the mechanical strength of shaped catalysts increase and the conversion of catechol decrease gradually. When the amount of silica gel were 0-10% and nitric acid were 8.7-17.4%, the mechanical strength of shaped catalysts and the conversion of catechol were comparatively higher. The shaped catalysts were satisfied with amplificatory reaction.The catalyst shows the excellent durability. The stability of the catalysts is investigated for the vapour-phase alkylation of catechol with methanol and the vapour-phase alkylation of catechol with ethanol. The catalyst can keep high stability for more than 450h and 2000h respectively.
     Mesoporous aluminophosphate materials have been synthesized in the presence of citric acid. The results of characterization showed that P/Al molar ratio could adjust the acidic-basic property. The vapour-phase selective O-methylation of catechol with methanol reaction and catechol with ethanol reaction are carried out separately to investigate the catalytic performances of AlPO materials with different P/Al ratios. The conversion of catechol and the production distribution were compared in these two reactions systemically. Among AlPO materials with different P/Al ratios, AlP1.1O shows the highest activity and the highest yield of the main product in the two reactions. The conversion of catechol and the production distribution on AlP0.9O、AlP1.0O and AlP1.05O samples have distinct difference bewteen the two reactions. When catechol reacted with methanol, the conversion of catechol increased with the increasing P/Al ratios and the selectivity of guaiacol are all above 60%. When catechol reacted with ethanol, catechol is nearly reacted to produce C-alkylation productions. It supposes that ethanol produce carbenium ions easily on these catalysts, so the carbenium ions are probability to attack the atom of the catechol and produce C-alkylation productions. Meanwile, the conversion of catechol is very high. On AlP1.1O and AlP1.15O samples,there have no difference of catechol conversion and the production distribution. The conversion of catechol are both above 85% of the two reactions, and the yield of guaiacol and guathol are 73.8% and 64.1% respectively. According to the characterization results, weak acid-base sites are the active centers of O-methylation of catechol with methanol and ethanol. The weaker acid-base centers are required of the latter reaction than that of the former reaction.
     AlPO-5 molecular sieve prepared by solvothermal method was investigated on the vapour-phase O-methylation of catechol with methanol. AlPO-5 was highly selectivity of the main product guaiacol (96%), but the conversion of catechol was lowly (38%). Different hydroxy-carboxylic compounds (citric acid, glucose and polyethylene glycol) were attempted to modify AlPO-5. The samples synthesized with polyethylene glycol was the highest conversion of catechol(68%) and the selectivity of guaiacol was highly (94%).
     Other weak acid-base catalysts were investigated in the vapour-phase O-methylation of catechol and methanol. AMT impregnated C, TiO2 and SiO2 catalysts were highly active and selective for the vapour-phase O-methylation of catechol with methanol. The activity of AMT impregnated C and TiO2 decreased obviously in 24h, no obviously activity loss occurs with the running term of 47h on AMT/ SiO2 sample. With further increasing reaction time, the activity of the catalyst decreased gradually, which may be mainly caused by the coke formation on the surface of the catalysts. In order to remove the carbon deposition, the used catalyst was calcined at higher temperature. The conversion of catechol increased slightly, but the stability decreaed. This result is consistent with the performance of catechol and methanol over the catalyst calcined at higer temperature. According to the result of CO2-TPD and NH3-TPD, the catalyst calcined at higer temperature present a certain amount of relatively stronger acid-base centers. These results further suggest that weak acid-base sites are acitive centers for the vapour-phase of catechol and methanol to produce guaiacol. Ti-Si samples possessed weak acid-base sites were also investigated in the vapour-phase O-methylation of catechol and methanol. Reaction activity decreased significantly within 6h, may be due to the sample surface on the Lewis acid sites caused by coke formation. Bronsted acid site of the materials with weak acid-base is active center in the O-methylation of catechol with methanol.
引文
[1] Dorothea G. in phenol derivatives[M], Ullman Encyclopedia of Industreal Chemistry, ed. Barabara E, Stephen H and Gail S, VCH Verlagsgerellschaft, Weinhein,1991.
    [2]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998.
    [3]章思规.精细有机化学品手册,下册[M].北京:北京科学技术出版社,1991:956.
    [4]韩金勇,段辉,王锁.邻羟基苯乙醚的制备及其前景分析[J].化工科技市场,2000 (5):12-14.
    [5]俞志明.中国化工产品大全[M].北京:中国物资出版社.1996.
    [6]曹佐英,何兴涛,李菊仁.相转移催化法合成乙基香兰素的研究[J].化学世界,1995 (1):31-33.
    [7]济南市轻工业研究所.合成食用香料手册[M].北京:轻工业出版社,1985.
    [8]宋国安.香兰素的合成工艺进展[J].上海化工,1998,23(6):31-35.
    [9]袁履冰,丁勇.香兰素合成及分离技术进展[J].现代化工,1990(1):33-35.
    [10]梁诚.邻苯二酚的生产及应用[J].精细石油化工进展,2000,1(4):13.
    [11]刘玉敏,刘河,许梅.香兰素的合成方法评述[J].河北化工,1997(4):40-42.
    [12]陈焕章,王爱军,卜欣立.香兰素的合成与分离[J].精细石油化工,1995(4):27-31.
    [13]罗富源,吴联真.天然愈创木酚的提取[P].CN 1114956, 1996-01-17.
    [14]郭幼庭,郭凤兰,赵树森,等.从杂酚油馏分中提取愈创木酚的研究[J].东北林业学院学报.198, 11(2):169-172.
    [15]袁云程,高大彬,冯苏宁.相转移催化制备邻硝基苯乙醚[J].染料与染色,1991,28(2):14.
    [16]翁理勇,邱方利,何建国.愈创木酚合成工艺的改进[J].浙江化工,1992,23(2):57-59.
    [17]张能,谭祝捷,梁桂芸.乙基香兰素的合成[J].河北化工,1990(2):13-14.
    [18]林原斌,龚纯英.催化氧化法合成邻羟基苯甲醚[J].湘潭大学自然科学学
    [19]广东工学院.精细化工基本生产技术及应用[M].广州:广东科技出版社,1995.
    [20]张振青,李国镇,方绮云.对烷氧基苯酚合成法的探索[J].华东化工学报,1984(4):523-529.
    [21]滕殿华,李同真,马淑琴.对羟基苯甲醚的生产方法[J].化学与粘合,1996(2):105-106.
    [22] Stoochnoff B A, Benoiton N L. The methylation of some phenols and alcohols with sodium hydride/methyl iodide in tetrahydrofuran at room temperature[J]. Tetrahedron Lett., 1973, 14(1): 21-24.
    [23]董永明,文广伶,高企秀,等.中麻催醒剂-Ⅰ.二甲氨基甲酸间-(烷氨基)烷氧基苯酯的合成[J].药学学报,1981,16(2):105-110.
    [24]李为群,赵硕,张锁莲,等.两相体系选择性合成3-甲氧基苯酚的研究[J].精细化工,1996,13(4):46-48.
    [25]李德鹏,刘非.愈创木酚、邻乙氧基苯酚的合成[J].化学工程师,1998(2):43-44.
    [26]蔡松传,张章福,刘广鉴,等.邻苯二酚单醚的新合成法[J].化学试剂,1989,11(4):248-249.
    [27]曹玉庆,乔卫国,尹雅慧.邻乙氧基苯酚的合成[J].河北大学学报(自然科学版),1998,18(2):206-208.
    [28]曹殿学,张有家,翕善菁,等.固体酸催化合成氢醌单甲醚的研究[J].精细石油化工,1995,(3):29-31.
    [29]翕善菁,张有家,李在能,等.杂多酸催化作用下氢醌与甲醇生成氢醌单甲醚反应机理的探讨[J].应用化学,1988,5(4):81-83.
    [30] Trotta F, Tundo P, Moraglio G. Selective mono-N-alkylation of aromatic amines by dialkyl carbonate under gas-liquid phase-transfer catalysis (GL-PTC) conditions[J]. J. Org. Chem., 1987, 52, 1300-1304.
    [31] Tundo P. Nucleophilic substitution between a gaseous alkyl halide and a solid salt, promoted by phase-transfer catalysts[J]. J. Org. Chem., 1979, 44(12): 2048-2049.
    [32] Angeletti E, Tundo P, Venturello P. Synthetic and mechanistic aspects ofgas–liquid phase-transfer catalysis: carboxylate esters[J]. J. Chem. Soc., Perkin Trans 1, 1982: 993-997.
    [33] Angeletti E, Tundo P, Venturello P. Gas-liquid phase-transfer catalysis: catalytic and continuous transesterification reaction[J]. J. Org. Chem., 1983, 48 (22), 4106-4108.
    [34]黎明,马桂芝,陈艳琴.相转移催化及其在有机合成中的应用[M].长春:东北师范大学出版社,198.
    [35]范如霖,徐传宁.有机合成中的相转移催化作用[M].上海科技出版社,1982.
    [36]李长青,张凡,俞马金.相转移催化合成1-氯-2-邻甲氧基苯氧基乙烷[J].化工科技,2000,8(2):12-14.
    [37] Bomben A, Selva M, Tundo P, et al. A continuous-flow O-methylation of phenols with dimethyl carbonate in a continuously fed stirred tank reactor[J]. Ind. Eng. Chem. Res., 1999, 38 (5), 2075-2079.
    [38] Barnard Ian F, Elvidge John A. Heterocyclic imines and amines. Part 18. Conversion of o-cyanobenzyl cyanide into isoquinoline, benzylisoquinoline, and azachrysene products[J]. J. Chem. Soc., Perkin Trans. 1, 1983, 1137– 1140.
    [39] Tundo P, Venturello P, Angeletti E. Alkylation reactions of ethyl malonate, ethyl acetoacetate, and acetylacetone by gas–liquid phase-transfer catalysis (G.L.–P.T.C.)[J]. J. Chem. Soc., Perkin Trans. 1, 1987, 2159– 2162.
    [40] Angeletti E, Tundo P, Venturello P. Gas–liquid phase-transfer synthesis of phenyl ethers and sulphides with carbonate as base and Carbowax as catalyst[J]. J. Chem. Soc., Perkin Trans. 1, 1982, 1137 - 1141.
    [41]陶立丹,赵育明.愈创木酚合成新工艺的研究[J].染料工业,1997,34(6):35-38.
    [42] Landini D, Maia A, Montanari F, et al. Lipophilic [2.2.2] cryptands as phase-transfer catalysts. Activation and nucleophilicity of anions in aqueous-organic two-phase systems and in organic solvents of low polarity[J]. J. Am. Chem. Soc., 1979, 101 (10), 2526-2530.
    [43]袁群,沈学强,徐瑛.邻烷氧基苯酚的相转移催化合成及其锂化合物的性质[J].应用化学,1989,6(3):42-45.
    [44]李德鹏,谭绩业,张晓辉,等.愈创木酚的合成研究[J].江苏化工,1998,26(5): 81.
    [45] Lee D G, Chang V S. Oxidation of hydrocarbons. 8. Use of dimethyl polyethylene glycol as a phase transfer agent for the oxidation of alkenes by potassium permanganate[J]. J. Org. Chem., 1978, 43 (8), 1532-1536.
    [46] Shiral M, Smid J. Decarboxylation reactions: reactivity of a free carboxylate anion in ethereal solvents. J. Am. Chem. Soc., 1980, 102 (8), 2863-2865.
    [47] Beck S M, Brus L E. Transient Raman Scattering Study of the Initial Semiquinone Radical Kinetics following Photolysis of Aqueous Benzoquinone and Hydroquinone. J. Am. Chem. SOC. 1982, 104(18), 4789-4792.
    [48] Mckillop A, fraud J C, Hug R P. The use of phase-transfer catalysis for the synthesis of phenol ethers[J]. Tetrahedron, 1974, 30(11): 1379-1382.
    [49]陶立丹,赵育明.愈创木酚合成工艺的研究[J].染料工业,1998,35(6):12.
    [50] Tundo P, Trotta F, Moraglio G. Continuous-flow processes under gas-liquid phase-transfer catalysis (GL-PTC) conditions: the reaction of dialkyl carbonates with phenols, alcohols, and mercaptans[J]. Ind. Eng. Chem. Res., 1988, 27 (9), 1565-1571.
    [51] Tundo P, Moraglio G, Trotta F. Gas-liquid phase-transfer catalysis: a new continuous-flow method in organic synthesis Pietro, iovanni, and rancesco[J]. Ind. Eng. Chem. Res., 1989, 28 (7), 881-890.
    [52] Pang J, Xi ZW, Cao GY, et al. Phase transfer catalyzed synthesis of o-ethoxyphenol under microwave irradiation[J]. Synthetic Communications, 1996, 26(18): 3425-3429.
    [53] Jiang YL, Pang J, Yuan YC. A novel preparation of o-ethoxyphenol from o-chlorophenol in the presence of phase transfer catalysis under microwave irradiation[J]. Chinese Chemical Letters, 1994, 5(1): 29-30
    [54] Fu Y, Baba T, Ono Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part I. O-Methylation of catechol over alumina[J]. Appl. Catal. A, 1998, 166, (2): 419-424
    [55] Fu Y, Baba T, Ono Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part II. Selective synthesis of guaiacol over alumina loaded with alkali hydroxide[J]. Appl. Catal. A, 1998, 166, (2): 425-430.
    [56] Fu Y, Baba T, Ono Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part III: Selective synthesis of veratrole over alumina loaded with potassium nitrate[J]. Appl. Catal. A, 1999, 176(2): 201-204.
    [57] Fu Y, Baba T, Ono Y. Vapor-phase reactions of catechol with dimethyl carbonate. Part IV: Synthesis of catechol carbonate over alumina loaded with cesium hydroxide[J]. Appl. Catal. A, 1999, 178(2): 219-223.
    [58] Jyothi T M, Raja T, Talawar M B, et al. Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites[J]. Appl. Catal. A, 2001, 211(1): 41-46.
    [59] Talawar M B, Jyothi T M, Sawant P D, et al. Calcined Mg-Al hydrotalcite as an efficient catalyst for the synthesis of guaiacol[J]. Green Chemistry, 2000, 2(6): 266-268.
    [60] Vijayaraj M, Gopinath C S. Selective production of methoxyphenols from dihydroxybenzenes on alkali metal ion-loaded MgO[J]. Journal of Catalysis, 2006, 243 (2) 376–388.
    [61] Luque R, Campelo J M, Conesa T D et al. Catechol O-methylation with dimethyl carbonate over different acid–base catalysts[J]. New J. Chem., 2006, 30(8), 1228–1234.
    [62] Ardizzi M, Ballarini N, Cavani F. Environmentally friendly, heterogeneous acid and base catalysis for the methylation of catechol: Chances for the control of chemo-selectivity[J]. Applied Catalysis B: Environmental, 2007, 70 (1-4): 597–605.
    [63] Porchet S, Su S, Doepper R, et al. Heterogeneous catalytic methylation of catechol[J]. Chem. Eng. Technol., 1994, 17(2): 108-111.
    [64] Porchet S, Su S, Doepper R, et al. Methylierung von Brenzcatechin in der Gasphase[J]. Chem. -Ing. -Tech., 1993, 65(2):203-206.
    [65] Porchet S, KIWI-Minsker L, Doepper R, et al. Catalyst development for the selective methylation of catechol[J]. Chem. Eng. Sci., 1996, 51(11): 2993-2938.
    [66] Vishwanathan V, Ndou S, Sikhwivhilu L, et al. Evidence for weak base site participation in the vapour phasemethylation of catechol over solid base catalysts[J]. Chem. Commum., 2001,1(10): 893-894.
    [67] Shigeki N, hiroshi Y, Teruhiko I. Process for prepating monoalkyl ethers of dihydric phenols. US 4025566[P]. 1977-05-24.
    [68] Yasuo N, Takumi M, Shinichi F, et al. Method of producing a monoalkylether of a dihydric phenol compound. EP 0509927 A1[P]. 1992-04-16.
    [69]刘智凌,黄湘云,王晓光,等.间甲酚与甲醇甲基化制备2-3-6-三甲酚[J].精细化工,1995,12(1):36-39.
    [70]姚宪法,韩红,吴西宁.间甲酚催化烷基化合成2-3-6-三甲基苯酚[J].石油化工,2001,30(1):13-16.
    [71]李雪梅,张文祥,潘春柳,等.在Al-P-Ti-Si-O催化剂上由甲醇和邻苯二酚合成愈创木酚的研究[J].高等学校化学学报,2001,22(12):2068-2071.
    [72]李雪梅,朱小梅,张文祥,等.制备条件对AlP1.30Ti0.30Si0.17体系催化剂性能的影响[J].催化学报,2002,23(2):140-144.
    [73]李雪梅,张文祥,朱小梅,等.Al-P-Ti-Si-O体系催化剂上乙醇和邻苯二酚的O-乙基化反应[J].高等学校化学学报,2002,23(8):1552-1555.
    [74]李雪梅,朱小梅,张文祥,等.制备条件对Al-P-Ti-Si-O体系催化剂性能影响的研究[J].燃料化学学报,2001,29(S1):112-115.
    [75] Liu G, Wang Z L, Jia M J, et al. Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol[J]. J. Phys. Chem. B, 2006, 110, 16953-16960.
    [76] Fischer E, Olaf S, Gesine W. Wiss. Z. Uni. Rostock, 1990, 39: 67.
    [77] Yoo J W , Lee C W , Park S, et al. Alkylation of catechol with t-butyl alcohol over acidic zeolites [J] . Appl. Catal. A, 1999, 187(2): 225-232.
    [78] Lorenzo C, Fabrizio C, Tiziana M. Heterogeneous catalysts based on B/P/O forthemonoetherification of 1,2-dihydroxybenzene in thegas phase[J]. Chemistry Comptes Rendus de l'Académie des Sciences - Series IIC– Chemistry, 2000, 3(6): 533-539.
    [79] Bautista F M, Campelo J M, Garcia A, et al. Phenol methylation over CrPO4 and CrPO4?AlPO4 catalysts[J]. React. Kinet. Catal. Lett., 1997, 62(1): 47-54.
    [80] Zhu X M, Li X M, Jia M J, et al. Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts[J]. Appl. Catal. A, 2005, 282(1-2): 155-161.
    [81] Zhu X M, Li X M, Liu G, et al. Vapour-phase O-methylation of Catechol with Methanol on Ti-containing Phosphate Catalysts[J]. Chem. Res. Chinese U., 2006, 22(4):533-536.
    [82]刘钢,李雪梅,朱小梅,等.AlPxO催化剂的制备、表征及其在邻苯二酚O-单醚化反应中的催化性能[J].高等学校化学学报,2005,26(8):1492-1496.
    [83] Li X M, Zhang W X, Liu G, et al. Effect of the P/Al ratio of Al-P-O on the catalytic activity of O-methylation of catechol with methanol[J]. React. Kinet. Catal. Lett., 2003, 79(2): 365-371.
    [84] Shinichi F, Masaoki M, Muneki S et al., Process for catalytically producing monoalkylether of dihydric phenol compound. EU 0420756 A2
    [85]潘春柳,张文祥,李雪梅,等.负载型磷酸催化剂上合成邻羟基苯乙醚[J].石油化工,2002,31(3):198-202.
    [86]潘春柳,李雪梅,张文祥,等.邻苯二酚与乙醇反应合成乙基目酚的研究[C].第十届全国催化学术会议论文集,太原:2000, 329-330.
    [87]潘春柳,张文祥,李雪梅,等.邻苯二酚与乙醇反应合成乙基木酚的研究[C].第八届全国青年催化学术会议论文集,2001, 255.
    [88]潘春柳,张文祥,李雪梅,等.Keggin和Dawson型磷钨酸负载在活性炭上的结构稳定性[C].第十一届全国催化学术会议论文集,2002: 406.
    [89]潘春柳,张文祥,李雪梅,等.煤质炭负载杂多酸催化剂上气-固相合成邻乙氧基苯酚[J].催化学报,2003,24(2):103-106.
    [90] Zhu X M, Li X M, Zou X J, et al. Supported ammonium metatungstate as highlyefficient catalysts for the vapour-phase O-methylation of catechol with methanol[J].Catal. Commu., 2006, 7(8): 579–582.
    [91]朱小梅.张敏,吴淑杰,等.SiO2负载偏钨酸铵催化剂上邻苯二酚单醚化反应性能[C].第十二届全国催化学术会议,北京:2004,166-167.
    [92] Fu ZH, Yu Y, Yin DL et al. Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2 modifiedγ-Al2O3 catalysts[J].J. Mol. Catal. A., 2005, 232(1-2): 69-75.
    [93] Kiwi-Minsker L, Jenzer G, Pliasova L, et al. Selective C-and O-methylation of catechol in gas phase over modifiedγ-aluminas[J]. Stud. Surf. Sci. Catal., 1999, 121: 159-164.
    [94] Bal R, Tope B B, Sivasanker S. Vapour phase O-methylation of dihydroxy benzenes with methanol over cesium-loaded silica, a solid base[J].J. Mol. Catal. A., 2002, 181(1-2): 161-171.
    [95] Vishwanathan V, Balakrishna G, Rajesh B, et al. Alkylation of catechol with methanol to guaiacol over sulphate-modified zirconia xolid acid catalysis[J]. React. Kinet. Catal. Lett., 2007, 92(2):311-317.
    [96] Vishwanathan V, Balakrishna G, Rajesh B, et al. Alkylation of catechol with methanol to give guaiacol over sulphate-modified zirconia solid acid catalysts: The influence of structural modification of zirconia on catalytic performance[J]. Catalysis Communications 2008, 9:2422–2427.
    [97] Nnozaki F, Kimura I. A Study of Catalysis by Metal Phosphates. IV. The Alkylation of Phenol with Methanol over Metal Phosphate Catalysts[J]. Bull. Chem. Soc. Jpn., 1977, 50(3): 614-619.
    [98] Blanco A, Campelo J M, Garcia A et al. Alkylation of toluene with methanol over AlPO4, AlPO4-Al2O3, AlPO4-TiO2, and AlPO4-ZrO2 catalysts[J]. J. Catal., 1992, 137(1): 51-68.
    [99] Hattori H, Shimazu K, Yoshii N, et al. The differences in surface and catalytic properties of two magnesium oxides prepared from the hydroxide and the carbonate hydroxide[J]. Bull. Chem. Soc. Jpn., 1976,49(4): 969-972.
    [100] Velu S, Swamy C S. Effect of substitution of Fe3+/Cr3+ on the alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcite[J]. Appl. Catal. A, 1997, 162(1-2): 81-91.
    [101] Velu S, Swamy C S. Selective C-alkylation of phenol with methanol over catalysts derived from copper-aluminium hydrotalcite-like compounds[J]. Appl. Catal. A, 1996, 145(1-2): 141-153.
    [102] Velu S, Swamy C S. Alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites[J]. Appl. Catal. A, 1994, 119 (2):241-252.
    [103] Parton R F, Jacobs J M, Ootehem H V, et al. Comparison of the Alkylation of Anisole and Phenol with Methanol on Pentasil and Ultrastable Zeolites[J]. Stud. Surf. Sci. Catal., 1988, 46: 211-221.
    [104] Namba S, Yahima T, Itaba Y, et al. Selective Formation of p-Cresol by Alkylation of Phenol with Methanol Over Y Type Zeolite[J]. Stud. Surf. Sci. Catal., 1980, 5: 105-111.
    [105] Chandra K G, Sharma M M. Alkylation of phenol with MTBE and other tert-butyl ethers: cation exchange resins as catalysts[J]. Catal. Lett., 1993, 19(4): 309-317.
    [106] Benesi H A. Acidity of Catalyst Surfaces. II. Amine Titration Using Hammett Indicators[J]. J. Phys. Chem., 1957, 61(7): 970-973.
    [107] Benesi H A. Acidity of Catalyst Surfaces. I. Acid Strength from Colors of Adsorbed Indicators [J]. J. Am. Chem. Soc., 1956, 78 (21), 5490-5494.
    [108] Pierantozzi R, Nordquist A F. Selective O-alkylation of phenol with methanol[J]. Appl. Catal., 1986, 21(2): 263-271.
    [109] Bautista F M, Campelo J M, Garcia A, et al. Anion treatment (F? or SO42?) of AlPO4-Al2O3 (25 wt.-% Al2O3) catalysts: IV. Catalytic performance in the alkylation of phenol with methanol[J]. Appl. Catal. A, 1993, 99(2): 161-173
    [110] Bautista F M, Campelo J M, Garcia A, et al. Phenol methylation over CrPO4 and CrPO4?AlPO4 catalysts[J]. React. Kinet. Catal. Lett., 1997, 62(1): 47-54.
    [111] Klemm L H, Shabtai J, Taylor D R. Alumina-catalyzed rreactions of hydroxyarenesand hydroaromatic ketones. I. Reactions of 1-naphthol with methanol[J]. J. Org. Chem., 1968, 33 (4), 1480-1488
    [112] Marczewski M, Bobido J P, Perot G et al. Alkylation of aromatics: Part I. Reaction network of the alkylation of phenol by methanol on ushy zeolite[J]. J. Mol. Catal., 1989, 50(2): 211-218.
    [113] Sreekumar K, Sugunan S. A comparison on the catalytic activity of Zn1?xCoxFe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0)-type ferrospinels prepared via. a low temperature route for the alkylation of aniline and phenol using methanol as the alkylating agent[J]. Appl. Catal. A, 2002, 230(1-2): 245-251.
    [114] Tanabe K. Catalysis By Solid Bases And Related Subjects[J]. Studies in Surface Science and Catalysis, 1985, 20: 1-14.
    [115]田部浩三.新固体酸和碱及其催化作用[M].1992年11月第1版.
    [116]曹正白,陈克潜.有机反应中的酸碱催化[M].高等教育出版社,1995.
    [117]密尔顿哈利斯卡尔C.万穆塞.有机反应过程的基本原理[M].上海科学技术出版社,1984.
    [118]黄开辉,万惠霖.催化原理[M].科学出版社,1983.
    [119] Comar A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions[J]. Chem. Rev., 1995, 95(3): 559-614.
    [120] Hattori H. Heterogeneous Basic Catalysis[J]. Chem. Rev., 1995, 95(3): 537-558.
    [121] Tanabe K. Acid-base bifuctional catalysis, in: J. Fraissard, L. Petrakis (Eds.). Acidity and Basicity of Solids[M]. Kluwer Academic Publishers, Dordrecht, 1994, 353.
    [122]王蕾,闫亚鹏,王幸宜.新型催化剂上醇醛缩合的进展[J].化学工业与工程技术,2005,26 (1):34-37.
    [123] Climent M J, Corma A, Fornes V, et al. Aldol Condensations on Solid Catalysts: A Cooperative Effect between Weak Acid and Base Sites[J]. Adv. Synth. Catal., 2002, 344(10): 1090-1096.
    [124] Tichit D, Lutic D, Coq B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts[J]. J. Catal., 2003, 219(1): 167-175.
    [125] Dumitriu E, Azzouz A, Hulea V, et al. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent[J]. Micro Mater., 1997, 10(1-3): 1-12.
    [126] Oku T, Ikariya T. Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid-Base Catalysts with Supercritical Methanol[J]. Angew. Chem. Int. Ed., 2002, 41(18): 3476-3479.
    [127] Manivannan R, Pandurangan A. Vapor-Phase Alkylation of Toluene with Isopropanol over Mg/Al, Ni/Al and Cu/Al Hydrotalcites (Layered Double Hydroxide)[J]. Catal Lett., 2002, 81(1-2): 119-124.
    [128] Cutrufeello M G, Ferino I, Monaci R, et al. CeO2–La2O3 catalytic system. Part II. Acid–base properties and catalytic activity for 4-methylpentan-2-ol dehydration[J]. Phys. Chem. Chem. Phys., 2001, 3(14): 2928-2934.
    [129] Bautista F M, Campelo J M, Carcia A, et al. Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids[J]. 2003, 243(1): 93-107
    [130] Fung J, Wang I. The Reaction Mechanism of C6 Hydrocarbons over Acid–Base Bifunctional Catalysts, TiO2–ZrO2[J]. J. Catal., 1996, 164(1), 166-172.
    [131] Misono M, Nojiri N. Recent progress in catalytic technology in japan[J]. Appl. Catal., 1990, 64: 1-30.
    [132] Holderich W F. New Reactions in Various Fields and Production of Specialty Chemicals[J]. Stud. Surf. Sci. Catal., 1993, 75(1): 127-163.
    [133] Aramendia M A, Borau V, Jimenez C, et al. Synthesis and characterization of ZrO2 as an acid–base catalyst Dehydration–dehydrogenation of propan-2-ol[J]. J. Chem. Soc., Faraday Trans., 1997, 93(7): 1431-1438.
    [134] Tomishige K, Ikeda Y, Sakaihori T, et al. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. J. Catal., 2000, 192(2): 355-362.
    [135] Yokoyama T, Setoyama T, Fujita N, et al. Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst[J].Appl. Catal. A, 1992, 88(2): 149-161.
    [136] Tsuneki H. Acid–base catalysis: on the example of ethylenimine production[J]. Appl. Catal. A, 2001, 221(1-2): 209-217.
    [137] Oku T, Arita Y, Tsuneki H, Ikariya Takao. Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid?Base Bifunctional Catalysts[J]. J. Am. Chem. Soc., 2004, 126 (23), 7368-7377.
    [138] Ma X B, Wang S P, Gong J L et al. A comparative study of supported TiO2 catalysts and activity in ester exchange between dimethyl oxalate and phenol[J]. J. Mol. Catal. A, 2004, 222(1-2): 183-187.
    [139]朱洪法.催化剂成型[M].中国石化出版社,1992.
    [140]赵琰.氧化铝(拟薄水铝石)的孔结构研究[J].工业催化, 2002, 10(1): 55-63.
    [141] Choca M E, Feistel G R. Process for preparing phosphorous-alumina catalysts using polycarboxylic acids as extrusion aids[P]. US 05/840,076, 1977-10-6.
    [142]赵罗生.钛硅沸石分子筛成型方法研究[J].舰船防化,2004(3):12-15.
    [143]成卫国,王祥生,李钢,等.钛硅分子筛挤条成型催化剂热稳定性能的研究[J].分子催化,2004,18(4):241-247.
    [144]余海清,李建伟,孙晓岩,等.硝酸胶溶剂对MCM-22分子筛催化剂性能的影响[J].北京化工大学学报,2008,35(4):24-28.
    [145]周成光,白雪峰,李占双,等.Hβ型分子筛挤出成型条件对其强度的影响[J].化学与粘合,2001 (6):252-253.
    [1] Costa M C C, Johnstone R A W, Whittaker D. Catalysis of terpene rearrangements by zirconium phosphates and zirconium organo-substituted phosphonates[J]. J. MolCatal. A, 1998, 129(1-2): 79-89.
    [2] Johnstone A, Middleton P J, Wasson R C, et al. in: D. H. R. Barton, et al. (Eds.), Plenum Press, New York, 1993, p. 45.
    [3] Costa M C C, Hodson F, Johnstone R A W et al. The mechanism of gas-phase dehydration of cyclohexanol and the methylcyclohexanols catalysed by zirconium phosphate and zirconium phosphate[J]. J. Mol. Catal. A, 1999, 142(3): 349-360.
    [4] Ginestra A L, Patrono P, Berardelli M L, et al. Catalytic activity of zirconium phosphate and some derived phases in the dehydration of alcohols and isomerization of butanes[J]. J. Catal., 1987, 103(2): 346-356.
    [5] Bautista F M, Campelo J M, Garcia A, et al. Structure, texture, acidity and catalytic performance of AlPO4-caesium oxide catalysts in 2-methyl-3-butyn -2-ol conversion[J]. J. Mater. Chem., 1999, 9(3): 827-835.
    [6] Mishra T, Parida K M, Rao S B. Transition metal promoted AlPO4 catalyst2. The catalytic activity of M0.05Al0.95PO4 for alcohol conversion and cumene cracking/dehydrogenation reactions[J]. Appl. Catal. A, 1998, 166(1-2): 115-122.
    [7] Lindblad T, Rebenstorl B, YanZ G, et al. Characterization of vanadia supported on amorphous AlPO4 and its properties for oxidative dehydrogenation of propane [J]. Appl. Catal. A, 1994, 112(2): 187-208.
    [8]BautistaF M,Campelo J M, Garcia A, et al. Influence of acid-base properties of catalysts in the gas-phase dehydration-dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids[J]. Appl. Catal. A, 2003, 243(1): 93-107.
    [9] Zhu X M, Li X M, Jia M J, et al. Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts[J]. Appl. Catal. A, 2005, 282(1-2): 155-161.
    [10] Nozaki F, Kimura I. A Study of Catalysis by Metal Phosphates. IV. The Alkylation of Phenol with Methanol over Metal Phosphate Catalysts[J]. Bull. Chem. Soc. Jpn., 1977, 50(3): 614-619.
    [11]刘钢,李雪梅,朱小梅,等.AlPxO催化剂的制备、表征及其在邻苯二酚O-单醚化反应中的催化性能[J].高等学校化学学报,2005,26(8):1492-1496.
    [12] Li X M, Zhang W X, Liu G, et al. Effect of the P/Al ratio of Al-P-O on the catalytic activity of O-methylation of catechol with methanol[J]. React. Kinet. Catal. Lett., 2003, 79(2): 365-371.
    [13]李雪梅,张文祥,潘春柳等.在Al-P-Ti-Si-O催化剂上由甲醇和邻苯二酚合成愈创木酚的研究[J].高等学校化学学报,2001,22(12):2068-2071.
    [14] Pan C L, Zhang W X, Li X M, et al. Characterization and Catalytic Activity of Titanium-containing Aluminum Phosphate Prepared by Sol-gel and Nonuniform Precipitation for O-Alkylation of Catechol with Ethanol[J]. Chem. Res. Chinese U., 2003, 19(3): 330-334.
    [15] Shinichi F, Masaoki M, Muneki S et al., Process for catalytically producing monoalkylether of dihydric phenol compound[P]. EU 0420756 A2.
    [16]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京,科学技术出版社,1994.
    [17] Peri J B. Surface chemistry of AlPO4-a mixed oxide of Al and P[J]. Discuss. Faraday Soc., 1971, 52, 55-65.
    [18] Campelo J M, Garcia A, Luna D, et al. Influence of the starting aluminum salt on the surface and acid properties of AlPO4 catalysts precipitated with ammonium hydroxide[J]. J. Catal., 1988, 111(1): 106-119.
    [19] Campelo J M, Garcia A, Luna D, et al. Textural properties, surface chemistry and cyclohexene conversion of AlPO4-Al2O3 catalysts[J]. Mater. Chem. Phys., 1989, 21(4): 409-426.
    [20] Campelo J M, Marinas J M, Mendioroz S, et al. Texture and surface chemistry of aluminum phosphates[J]. J. Catal., 1986, 101(2): 484-495.
    [21]刘云凌,王兴东,庞文琴.SAPO-34和SAPO-44分子筛膜的制备与表征[J].高等学校化学学报, 2000, 21(10): 1451-1454.
    [22]魏波,于吉红,于红,等.正交相AlPO4-5相转变的红外光谱研究[J].高等学校化学学报,2000,21(6): 849-851.
    [23] Busca G, Lorenzelli V, Galli P, et al. A fourier-transform infrared and catalytic study of the evolution of the surface acidity of zirconium phosphate following heat treatment[J]. J. Chem. Soc., Faraday Trans., 1987, 83(3): 853-864.
    [24] Busca G, Centi G, Trifiro F, et al. Surface acidity of vanadyl pyrophosphate, active phase in n-butane selective oxidation[J]. J. Phys. Chem., 1986, 90(7): 1337-1344.
    [25] Moussa S B, Sobrados I, Iglesias J E, et al. Synthesis and characterization of the hydrated rare-earth acid diphosphates LnHP2O7·3.5H2O (Ln = rare-earth elements)[J]. J. Mater. Chem., 2000, 10(8), 1973-1978.
    [26]田部浩三,小野嘉夫,御圆生诚,等.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1989.
    [27]朱洪法.催化剂成型[M].中国石化出版社,1992.
    [28]黄顺贤,林民,朱斌,等.HTS分子筛催化丙烯环氧化反应的研究[J].石油炼制与化工,2007,38(12):6-10.
    [29]赵罗生.钛硅沸石分子筛成型方法研究[J].舰船防化,2004(3):12-15.
    [30]成卫国,王祥生,李钢,等.钛硅分子筛挤条成型催化剂热稳定性能的研究[J].分子催化,2004,18(4):241-247.
    [31]余海清,李建伟,孙晓岩,等.硝酸胶溶剂对MCM-22分子筛催化剂性能的影响[J].北京化工大学学报,2008,35(4):24-28.
    [32]周成光,白雪峰,李占双,等.Hβ型分子筛挤出成型条件对其强度的影响[J].化学与粘合,2001 (6):252-253.
    [33]佘励勤,李宣文.固体催化剂的研究方法[J].石油化工,2000,29(8):621-635.
    [34]李雪梅,张文祥,朱小梅,等.邻苯二酚与乙醇单醚化反应用固体酸催化剂表面上的积炭行为[J].催化学报,2003, 24(5): 364-368.
    [35] Magnous P, Cartraud P, Mignard S, et al. Coking, aging, and regeneration of zeolites: II. Deactivation of HY zeolite during n-heptane cracking[J]. J. Catal., 1987, 106(1): 235-241.
    [36]王晓光,刘智凌,阳文,等.苯酚甲基化钒-铁催化剂失活和再生的研究[J].湖南化工,1997,27(2):23-26.
    [1] Dorothea G. in phenol derivatives[M], Ullman Encyclopedia of Industreal Chemistry, ed. Barabara E, Stephen H and Gail S, VCH Verlagsgerellschaft, Weinhein,1991.
    [2]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998.
    [3]章思规.精细有机化学品手册,下册[M].北京:北京科学技术出版社,1991:956.
    [4]韩金勇,段辉,王锁.邻羟基苯乙醚的制备及其前景分析[J].化工科技市场,2000 (5):12-14.
    [5]俞志明.中国化工产品大全[M].北京:中国物资出版社.1996.
    [6] Liu G, Wang Z L, Jia M J, et al. Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol[J]. J. Phys. Chem. B, 2006, 110, 16953-16960.
    [7] Carati A, Ferraris G, Guidotti M, et al. Preparation and characterisation of mesoporous silica–alumina and silica–titania with a narrow pore size distribution[J].Catal. Today, 2003, 77(4), 315-323.
    [8] Tanev P T, Pinnavaia T J. Mesoporous Silica Molecular Sieves Prepared by Ionic and Neutral Surfactant Templating: A Comparison of Physical Properties[J]. Chem.Mater. 1996, 8(8), 2068-2079.
    [9] Brutchey R L, Goldberger J E, Koffas T S, et al. Nonaqueous, Molecular Precursor Route to Hybrid Inorganic/Organic Zirconia-Silica Materials Containing Covalently Linked Organic Bridges[J]. Chem. Mater. 2003, 15(5), 1040-1046.
    [10] Campelo J M, Jaraba M, Luna D, et al. Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous Route to Hybrid Inorganic/Organic Zirconia-Silica Materials Containing Covalently Linked Organic Bridges[J]. Chem. Mater. 2003, 15(5), 1040-1046.
    [10] Campelo J M, Jaraba M, Luna D, et al. Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous AlPO4 Materials[J]. Chem. Mater., 2003, 15(17), 3352-3364.
    [11] Bautista F M, Campelo J M,Garcia A, et al. Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO4–ZrO2(5–50 wt% ZrO2) Catalysts Prepared by a Sol–Gel Procedure[J]. J. Catal. 1998, 179(2), 483-494.
    [12] Zhao J, Tian B, Yue Y, et al. New catalysts for dichlorodifluoromethane hydrolysis: Mesostructured titanium and aluminum phosphates[J]. J. Mol. Catal. A 2005, 242(1-2), 218-223.
    [13] Zhu X M, Li X M, Jia M J, et al. Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts[J]. Appl. Catal. A, 2005, 282(1-2): 155-161.
    [14] Zhu X M, Li X M, Liu G, et al. Vapour-phase O-methylation of Catechol withMethanol on Ti-containing Phosphate Catalysts[J]. Chem. Res. Chinese U., 2006, 22(4):533-536.
    [15]田部浩三,小野嘉夫,御圆生诚,等.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1989.
    [16]佘励勤,李宣文.固体催化剂的研究方法[J].石油化工,2000,29(8):621-635.
    [17]李雪梅,张文祥,朱小梅,等.邻苯二酚与乙醇单醚化反应用固体酸催化剂表面上的积炭行为[J].催化学报,2003, 24(5): 364-368.
    [1] Wilson ST, Lok BM, Messina CA, et al. Aluminophosphate m lecular sieves: a new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc., 1982, 104: 1146-1147.
    [2] Lok B M, Messina C A, Patton R L, et al. Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc., 1984, 106: 6092-6093.
    [3] Flanigen EM, Lok B M, Patton RL, et al. In New Developments in Zeolite Science and Technology[M]; Murakemi Y, Iijima A, Ward JW, Eds. Elsevier: Amsterdam, 1986; p 103.
    [4] Hartmann M, Kevan L. Transition-metal ions in aluminophosphate andsilicoaluminophosphate molecular sieves: Location, interaction with adsorbates and catalytic properties[J]. Chem. Rev, 1999, 99: 635-663.
    [5] Miller S J. New molecular sieve process for lube dewaxing by wax isomerization[J]. Microporous Mater.,1994, 2: 439-449.
    [6] Stoker M. Methanol-to-hydrocarbons: catalytic materials and their behavior[J]. Microporous and Mesoporous Mater., 1999, 29: 3-48.
    [7] Raja R, Sankar G, Thomas J M. New catalysts for the aerobic selective oxidation of hydrocarbons: Mn(III)- and Co(III)-containing molecular sieves for the epoxidation of alkenes[J]. Chem. Commum., 1999: 829-830.
    [8] Thomas JM, Raja R, Sankar G, et al. Molecular sieve catalysts for the regioselective and shape-selective oxyfunctionalization of alkanes in air[J].Accounts of Chemical Research, 2001, 34: 191-200.
    [9] Bellussi G, Pollesel P. In Molecular Sieves: from Basic Research to Industrial Applications[M], Pts a and B. Elsevier Science: Amsterdam, 2005, 158: 1201.
    [10] Feng S H, Xu R R. New materials in hydrothermal synthesis[J]. Accounts of Chemical Research, 2001, 34: 239-247.
    [11] Wei B, Zhu G, Yu J, et al. Solvothermal Synthesis and Characterization of a New 3-D Open Framework Aluminophosphate [Al2P3O12][C4N3H16][J]. Chem. Mater., 1999, 11: 3417-3419.
    [12] Han L J, Wang Y B, Li C X, et al. Simple and safe synthesis of microporous aluminophosphate molecular sieves by inothermal approach[J]. Aiche Journal 2008, 54: 280-288.
    [13] Parnham E R, Morris R E. 1-alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves[J]. Chem. Mater., 2006, 18: 4882-4887.
    [14] Davies A T, Sankar G, Catlow C R, et al. Following the Crystallization of Microporous Solids Using EDXRD Techniques[J]. J. Phys. Chem. B., 1997, 101: 10115-10120.
    [15] Dumitriu E, Azzouz A, Hulea V, et al. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent[J]. Microporous Mater.,1997, 10: 1-12.
    [16] Maeda K, Tuel A, Baerlocher C. Synthesis and characterization of a new layered aluminophosphate templated with 1,3-diaminopropane. Journal of the Chemical Society-Dalton Transactions, 2000: 2457-2462.
    [17] Liu G Y, Tian P, Li J Z, et al. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template[J]. Microporous and Mesoporous Mater., 2008, 111: 143-149.
    [18] Fan W B, Li R F, Dou T, et al. Solvent effects in the synthesis of CoAPO-5,-11 and-34 molecular sieves[J]. Microporous and Mesoporous Mater.,2005, 84: 116-126.
    [19] Wei B, Wang Y, Xin M H, et al. Phenol solvothermal synthesis of JBW-type zeolites[J]. Chemical Research in Chinese Universities, 2007, 23: 511-513.
    [20]李牛.新分子筛合成与合成分子筛新路径研究[D].南京:南开大学,2002.
    [21] Christensen A N, Jensen T R, Norby P, et al. In Situ Synchrotron X-ray Powder Diffraction Studies of Crystallization of Microporous Aluminophosphates and Me2+-Substituted Aluminophosphates[J]. Chem. Mater., 1998, 10: 1688-1693.
    [22] Frunza L, Pelgrims J, Leeman H, et al. Incorporation of transition metal ions in aluminophosphate molecular sieves with AST structure[J]. J. Phys. Chem. B., 2001, 105: 2677-2686.
    [23] Mart P J P, Leo J M, Jan W H, et al. A Combined NMR and XRD Study of AFI and AEL Type Molecular Sieves[J]. J. Phys. Chem., 1993, 97, 8254-8260.
    [24] Huo Q S, Xu R R, Li S G, et al. A new route for the synthesis of molecular-sieves-crystallization of APO-5 at high-temperature. [J]. J.Chem.Soc., Chem.Commun.,1992, 2:168-169.
    [1] Zhu X M, Li X M, Zou X J, et al. Supported ammonium metatungstate as highly efficient catalysts for the vapour-phase O-methylation of catechol with methanol[J]. Catal. Commun., 2006, 7(8): 579–582.
    [2] Liu G, Liu Y, Wang Z L, et al. Direct synthesis of porous carbon via carbonizing precursors of aluminum acid[J]. Micropor. Mesopor. Mater., 2008. 116(1-3): 439-444.
    [3] Zhu X M, Li X M, Jia M J, et al. Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts[J]. Appl. Catal. A, 2005, 282(1-2): 155-161.
    [4] Bal R, Tope B B, Sivasanker S. Vapour phase O-methylation of dihydroxy benzenes with methanol over cesium-loaded silica, a solid base[J].J. Mol. Catal. A.,2002, 181(1-2): 161-171.
    [5] Fu ZH, Yu Y, Yin DL et al. Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2 modifiedγ-Al2O3 catalysts[J].J. Mol. Catal. A., 2005, 232(1-2): 69-75
    [6]李雪梅,张文祥,朱小梅,等.邻苯二酚与乙醇单醚化反应用固体酸催化剂表面上的积炭行为[J].催化学报,2003, 24(5): 364-368.
    [7] Magnous P, Cartraud P, Mignard S, et al. Coking, aging, and regeneration of zeolites: II. Deactivation of HY zeolite during n-heptane cracking[J]. J. Catal., 1987, 106(1): 235-241
    [8] Liu G, LiuY, Yang G, et al.Preparation of Titania-Silica Mixed Oxides by Sol-Gel Route in the Presence of Citric Acid[J]. J. Phys. Chem. B., in press.
    [9]田部浩三,小野嘉夫,御圆生诚,等.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1989.
    [10]佘励勤,李宣文.固体催化剂的研究方法[J].石油化工,2000,29(8):621-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700