用户名: 密码: 验证码:
船舶三维声弹性理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,国内外对船舶结构流固耦合振动和声辐射特性问题开展了许多理论和试验研究。许多研究针对大为简化的平板、加筋平板、加筋圆柱壳等典型结构形式,在无界均匀介质中的振动与声辐射;试验研究亦多为缩尺度模型机理试验。尽管该领域的研究取得了很大的进展,如何科学地反映流体与水中结构在振动与声辐射过程中的耦合作用,分析阐明一艘船舶在不同水深、不同潜深、不同方位和距离上形成辐射声场的分布特征和相互之间的差异,说明振动、船体近旁自噪声和远场辐射噪声之间的传递和演变规律,成为船舶振动噪声领域关注的一个问题。这要求进一步发展一个适于任意形状的、具有复杂内外结构的船舶,能计及自由液面、海底及航速影响,具有可接受的工程计算精度,计算量能为现有船舶研究与设计部门的计算机系统能力承受的船舶三维声弹性计算分析理论和方法。
     本文正是针对该工程背景,在Wu(1984)建立的浮体三维水弹性力学理论的基础上,有所创新和拓展,发展建立了船舶三维声弹性理论及计算方法。具体包含六部分内容。
     第一部分,通过引入计及自由液面效应的理想可压流体Green函数,并基于Price-Wu广义流固界面条件,建立了带航速和考虑自由液面的均匀声介质中的船舶三维声弹性理论。该理论既适用于声辐射问题,也适用于声散射问题。由于在船舶声弹性理论中计入了航速的影响,理论上更加完备。量阶分析和数值计算表明,航速对船舶流固耦合振动及水下声辐射会有影响,但其影响主要限于低频域及近场区。
     第二部分,针对我国近海的实际情况,重点考虑浅海海底与水面的影响,暂不计及海水密度与声速等的变化与分层,将均匀声介质中的船舶三维声弹性理论与海洋声传播理论相结合,引入Pekeris水声波导模型,建立了有限水深海洋声学环境中的船舶三维声弹性理论及分析方法。详细论述了耦合求解三维结构声弹性响应的动力学方程和水声传播方程的方法与步骤,并针对常见浅海的特征,给出了Pekeris波导Green函数的近似级数表达式,有效降低了数值计算的复杂度、减少了计算量。
     第三部分,为提高上述船舶三维声弹性理论及分析方法的工程实用性,建立了三种配套的有助于增加计算效率和解决常用工程问题的专用计算方法:
     其一,船舶声弹性子结构分离与集成方法(SSSI方法)和解析/数值混合子结构方法(MANS方法)。建立了能有效提高计算效率,特别适用于解决船体内部子结构(如横舱壁、铺板、基座等)振动噪声传递效果分析及优化的船舶声弹性子结构分离与集成方法。其主要思想是:将主船体与船内子结构分离,采用模态综合超单元方法形成子结构的输入输出自由度缩聚动刚度矩阵,采用三维声弹性方法实现主船体与水介质的流固耦合求解,通过边界连接条件完成主船体与子结构的综合集成。进而针对潜艇类水下船舶主体结构的特征,采用两端简支单层加肋圆柱壳解析计算模型来描述主船体结构,应用解析方法求解流固耦合作用,建立了解析/数值混合的声弹性子结构方法。该方法可有效提高计算效率和扩展计算频段范围。
     其二,敷设声学覆盖层的船舶三维声弹性分析方法。针对船舶表面敷设声学覆盖层降低声目标强度和水下辐射噪声这一工程问题,进一步建立了敷设声学覆盖层的船舶三维声弹性力学理论和计算方法。通过引入描述声学覆盖层内外表面间声振传递的四端参数法,实现“船体结构‐声学覆盖层‐水介质”的声振耦合求解。
     其三,双流域耦合的三维声弹性分析方法。针对双层壳水下船舶存在舷间水耦合的特点,进一步发展了双流域耦合的船舶三维声弹性计算方法,扩展了工程应用的范围。
     第四部分,针对简单源汇分布法(简称简单源方法)中不规则频率问题,提出了虚拟阻抗封闭曲面法(CVIS方法)。以往在声弹性领域的边界元计算中较多地采用Helmholtz积分方法,先后曾发展了多种应用Helmholtz积分方法时处理不规则频率处解的非唯一性问题的方法。采用简单源汇分布法求解声场时同样存在不规则频率问题。本文根据简单源汇分布法中不规则频率产生的机理,提出了在浮体内部的虚拟流场中引入一个虚拟的阻抗封闭曲面,用于吸收声振能量,抑制内部虚拟流场的共振,有效地消除了声学问题求解时易出现的不规则频率。
     汇聚上述内容,形成了一套较完整的可用于分析复杂船舶结构低中频段振动与声辐射的声弹性理论框架、数值方法和应用工具。在此基础上,编制了数值计算程序,作为一个单独的模块(声学计算模块)并入到大型水弹性计算软件THAFTS中。
     第五部分,本文采用算例与解析解的比对和试验验证的手段,对理论、计算方法和计算程序模块的正确性、实用性进行了考核验证。其中的试验验证包括开阔有限水深环境中小尺度舱段结构的声辐射试验验证和水池内实尺度船体舱段结构振动响应及水中声辐射的试验验证。比对和验证的结果表明,本文所述的理论方法和计算程序能有效应用于复杂船舶结构的声弹性响应分析预报。
     第六部分,围绕在船舶辐射噪声工程领域人们密切关注的问题,利用本文建立的理论、计算方法和软件开展了选取不同采样时段声压信号对船舶声源级评定的影响、不同距离处的声压值对船舶声源级评定的影响、不同水深和潜深环境对船舶辐射噪声的影响以及不同方位的声压特征对船舶声源级评定的影响四方面的应用研究。据于该研究的数例,建议了可操作性较强、能稳定地反映船舶辐射噪声频谱特征及噪声级评定结果的采样和声压信号处理方法;给出了不同水深和潜深环境中船舶近远场辐射声的分布特征、可供参考的初步规律;提出了利用本文的方法和程序计算一艘船在不同水深和潜深环境中的辐射噪声频谱,进而归纳出该船在给定频段内的总声级在不同水深与潜深中换算关系的修正图谱的建议,并给出了两幅可用于把示例船在浅水或小潜深状态下的噪声级采样评定结果修正到其它水深潜深的图谱的例子。最后,给出了应用本文开发的计算软件预报多种机械设备激励引起的实船结构振动和水下辐射噪声的简要示例,与测试结果作了比对,说明了方法与软件的可用性。目前,该计算方法与软件已在多个工程项目中应用。
For many years, theoretical and experimental researches on the fluid-structure coupledvibrations and sound radiations of a ship have been carried out at home and abroad. A varietyof published research works in this field were about the vibrations and sound radiations oftypical simplified structures such as a flat plate, a stiffened plate and a stiffened cylindricalshell etc. in unbounded uniform fluid field. The corresponding experimental studies weremostly conducted for the mechanism investigations based on the tests of small scale models.Although great progress has been made in the past decades in this research field, it still hasbeen a focusing point about how to rationally represent the coupled fluid-structureinteractions in describing the distribution characteristics and clarifying the differences ofmachinery excited radiation sound fields of a ship in different water depth, differentsubmerging depth, different observation distance and direction, as well as in identifying thetransmission and variation behaviors of near field self-noise and far field radiation noise. Thisrequires the further development of a three-dimensional sono-elastic analysis method that isexpected to be suitable for ships with arbitrary shapes and complicated internal and externalstructures, capable to include the influence of free surface and sea bed, the effect of forwardspeed of the ship in the vibration and noise predictions, and also having acceptable numericalaccuracy and adequate computational demand in engineering applications to a full scale ship.
     It is against to this engineering background, as a creative extension and furtherdevelopment of the existing three-dimensional hydroelasticity theory of Wu (1984), athree-dimensional sono-elasticity theory of floating bodies is presented together with thecorresponding numerical methods in this thesis. The major achievements contained in thisthesis are as follows.
     1. The first, a three-dimensional sono-elasticity theory of a ship advancing in uniformacoustic medium with free surface is established by introducing the Green’s function for theideal compressible fluid and employing the Price-Wu generalized fluid-structure interfaceboundary conditions. This theory is applicable to either the sound radiation problem or thescattering problem. As the result of inclusion of the forward speed effect of the ship, thesono-elastic theory of ships seems theoretically more complete. The order analysis of theformulas and the numerical examples show that the ship speed will influence the coupledvibration and sound radiation. However the influence is only limited to the low frequencyrange and near field.
     2. The second, in view of the actual geographical conditions of shallow China Sea,paying attention to the effects of sea bed and free surface, rather than the influence of waterdensity and sound velocity variations and stratum in depth, a three-dimensionalsono-elasticity theory of a ship in ocean acoustic environment of finite depth and thenumerical methods are established. To achieve this, the three-dimensional sono-elasticitytheory of a ship in uniform acoustic medium is combined with the ocean sound propagationtheory and the Pekeris waveguide model. The methods for solving the coupled dynamicequations of sono-elastic responses of the structure and the waveguide equation for acousticpropagation are presented in detail. An approximate series expansion formula of the Pekeriswaveguide Green’s function is described to greatly reduce the complexity in acoustic fieldcomputations.
     3. The third, three specific techniques are proposed for increasing the computationalefficiency and fulfilling the requirements of practical applications of the three-dimensionalsono-elasticity theories of ships and the corresponding numerical methods:
     (1) A ship sono-elastic sub-structure separation and integration method (SSSI) and amixed analytical-numerical sub-structure method (MANS)
     By separating the ship outer hull and the internal sub-structures (such as the bulkheads,decks, machinery foundations etc.), employing the super-element modal synthesis method toform the dynamic stiffness matrices of condensed input and output degrees of freedom,solving the coupled fluid and outer-hull interaction equations, and finally integrating the mainouter-hull and the internal sub-structures with their conjunction boundary conditions, the SSSImethod is proposed. This method has an intrinsic ability to enhance the calculation efficiencyand is particularly applicable to predict and to optimize the vibration and noise propagationamong ship hull and sub-structures. Further more, for a submerged vessel, a submarine or anAUV for example, the outer main hull can be modeled as a single-hull stiffened cylindricalshell simply supported at both ends, its fluid-structure interaction problem can be analyticallysolved, while the sub-structure inside the vessel can be numerically modeled. The MANSmethod may then be established to predict the sono-elastic responses of the vessel. Thismethod increases the computational efficiency as well as the frequency band of the responsesolution.
     (2) The sono-elastic analysis method for a structure covered with acoustic layers
     Acoustic layers, anechoic tiles so to call, are commonly used to cover on the hull surfaceof a submarine for depressing the deflected acoustic signal and the self radiated noise. Toallow for prediction of the sono-elastic responses of a underwater structure covered with acoustic layer, the three-dimensional sono-elasticity theory and numerical method are furtherextended by introducing a four-terminal parameter method to describe the acoustic wavetransmission behavior between the inside and outside surfaces of the acoustic layer. Thecoupled sono-elastic responses of the “hull structure-acoustic layer-water medium” systemmay then be solved.
     (3) The sono-elastic analysis method for a coupled fluid-structure system withdouble-fluid regions
     In a double-hull underwater vessel, water is filled in broadside space between the outerand inner hulls. The three-dimensional sono-elasicity theory is further modified toaccommodate the coupled response analysis of the system with double-fluid regions.
     4. The fourth, a “Closed Virtual Impedance Surface (CVIS) Method” for depressing the“irregular frequencies” encountered in the numerical solutions based on the sourcedistribution method is proposed. In the past decades the Helmholze integral method werewidely employed in solving the sono-elastic problems. Certain methods were simultaneouslydeveloped to successfully eliminate the problem of non-unique solutions appeared as the“irregular frequencies”. When applying the simple source distribution method instead of theHelmholze method, the problem of irregular frequencies also exists that remains as a difficulttask to deal with. In this thesis it is proposed to introduce a virtual closed surface withprescribed impedance inside the imaginary fluid region occupied by the floating body (theship). This surface absorbs the acoustic energy and suppresses the cavity resonances in theimaginary fluid region, and hence efficiently eliminates the irregular frequencies.
     The above results have formed a set of theoretical framework, numerical methods andapplication tools for sono-elastic analysis of the coupled vibration and acoustic radiation of acomplicated ship structure in the low and medium frequency range. The computer programdeveloped in this work has been integrated into the software entitled “Three-dimensionalHydroelastic Analysis of Floating Traveling Structures”(THAFTS) as an individual“Acoustic Module”.
     5. The fifth, for vilification and validation purposes, a number of numerical examples areused to compare the predictions obtained by the present methods and programs with theavailable analytical solutions of typical simple structure, the published data, and theexperimental results. The experimental data used in the comparisons include the structuralvibrations and acoustic pressures measured in the tests of a small scale stiffened cylindricalhull in open water with finite depth, and a two-cabin segment of an full scale old ship in alarge water basin, both were excited by operating machineries. The comparisons show that the present theory, numerical method and the corresponding program can be efficiently applied topredict the sono-elastic responses of a ship.
     6. The sixth, as a part of application examples, the method and program presented in thisthesis are particularly used to investigate and examine the following problem that is of greatinterests in measuring and assessing the noise source level of a submerged ship: thequantitative influences of the sampling duration, the observation distance and direction of thepressure measurement, the water depth and submerging depth of the ship on the assessment ofthe ship’s radiation noise source level. Based on the investigations, the reasonable samplingduration of the pressure measurement and processing method are proposed to providerelatively more stable (consistent) description of radiation noise spectrum and source levelassessment; the distribution characteristics of the near and far field radiation noise in differentwater depth and submerging depth are briefly exhibited; a method is proposed anddemonstrated to obtain an adjustment diagram for converting the resultant radiation noiselevel within a frequency range of a ship from one environment of water depth and submergingdepth to another based on the calculation results of the same ship in different water depth andsubmerging depth. Finally, the applications of the sono-elastic response analysis method andprogram developed in this thesis are briefly exhibited in two examples of machinery excitedvibrations and sound radiations of full scale ships. The comparisons of the predictions and themeasured results again confirm to some extent the applicability of the major achievementssummarized above.
引文
[1] Wu, Y.S., Hydroelasticity of floating bodies[D], Brunel University, U.K.,1984.
    [2] Betts, C.V., Bishop, R.E.D. and Price, W.G., The symmetric generalized fluid forces applied to aship in a seaway[J], Trans. RINA,199,265-278,1977.
    [3] Bishop, R.E.D. and Price, W.G., The generalized antisymmetric fluid forces applied to a ship in aseaway[J], International Shipbuilding Progress,24,3-14,1977.
    [4] Salvesen, N., Tuck, E.O. and Faltinsen, O., Ship motions and sealoads[J], Transaction of the Societyof Naval Architecture and Marine Engineers,78,250-287,1970.
    [5] Newman, J.N., The theory of ship motions[J], Advances in Applied Mechanics,18,221-285,1978.
    [6] Temarel, P., Unified dynamic analysis of antisymmetric response of ship s to waves[D], Universityof London, U.K.,1980.
    [7] Wu, Y.S., Xia, J.Z. and Du, S.X, Two engineering approaches to hydroelastic analysis of slenderships[M], Dynamics of Marine Vehicles and Structures in Waves, Elsevier Science Publishers,157-165,1991.
    [8] Wu, Y.S., A modified Hydroelasticity theory and its application to long multi-body structures[R],CSSRC Reports,1991.
    [9] Wang, M.L., Du, S.X, Ertekin, R.C., Hydroelastic reponse and fatigue analysis of a multi-modulevery large floating structure[C], International Symposium on Fatigue and Fracture in Steel andConcrete Structures, Madras, India,1991.
    [10] Che, X.L., Riggs, H.R., Ertekin, R.C., Wu, Y.S. and Wang, M.L., Two-dimensional analysis ofprying response of twin-hull floating structures[C], Proceeding of Second International Offshore&Polar Engineering Conference, ISOPE’92,1992.
    [11]夏锦祝,细长浮体的水弹性力学理论[D],中国船舶科学研究中心博士学位论文,1994.
    [12] Hermundstad, O.A., Wu, M.K.&Moan, T., Hydroelastic response analysis of a high speedmonohull[C], Hydroelasticity in Marine Technology,1994.
    [13] Hermundstad, O.A., Aarsns, J.V. and Moan, T., Linear hydroelastic analysis of high-speedcatamarans and monohulls[J], Journal of Ship Research,43(1),48-63,1999.
    [14] Bishop, R.E.D., Price, W.G. and Tam, P.K.Y., On the dynamics of slamming[J], Trans. RINA,120,259-280,1978.
    [15] Belik, O., Bishop, R.E.D. and Price, W.D., On the slamming response of ships to regular headwaves[J], Trans. RINA,122,325-337,1980.
    [16] Bishop, R.E.D., Price, W.G. and Temarel, P., A unified dynamic analysis of antisymmetric shipresponse to waves[J], Suppl. Papers RINA,122,349-365,1980.
    [17] Price, W.G. and Temarel, P., The influence of hull flexibility in the anti-symmetric dynamicbehaviour of ships in waves[M], International Shipbuilding Progress, U.K.,1982.
    [18]董艳秋,林维学,朱建国,浅吃水肥大船波激振动研究[J],中国造船,(1),76-83,1989.
    [19] Bishop, R.E.D., Price, W.G. and Temarel, P., A theory on the loss of the MV Derbyshire[J], Trans.RINA,133,389-453,1991.
    [20]林吉如,超大型油船波激振动研究[J],船舶工程,(2),4-9,1995.
    [21]王振鸿,吴文伟,徐敏,席亦农,船舶在波浪中的水平弯曲—扭转耦合响应水弹性分析[J],中国造船,40(145),42-47,1999.
    [22] Price, W.G. and Wu, Y.S., Structural responses of a SWATH of multi-hulled vessel travelling inwaves[C], Int. Conf. On SWATH ships and Advanced Multi-hulled Vessels, RINA, London,1985.
    [23] Price, W.G. and Wu, Y.S., The influence of non-linear fluid forces in the time domain responses offlexible SWATH ships excited by a seaway[C], OMAE’89,2,125-135,1989.
    [24]杜双兴,海洋浮体结构的直接分析方法—三维线性水弹性随机分析理论及应用[D],中国船舶科学研究中心硕士学位论文,1990.
    [25] Wu, Y.S., Wang, D.Y., Riggs, H.R. and Ertekin, R.C., Composite singularity distribution methodwith application to hydroelasticity[C], Proceedings of the First International Workshop on VeryLarge Floating Structures, Honolulu, Hawaii, USA, also Marine Structure,6(2~3),143-163,1991.
    [26] Wang, M.L., Du, S.X, Ertekin, R.C., Hydroelastic reponse and fatigue analysis of a multi-modulevery large floating structure[C], International Symposium on Fatigue and Fracture in Steel andConcrete Structures, Madras, India,1991.
    [27] Du, S.X. and Ertekin, R.C., Dynamic response analysis of a flexibly joined Multimodule very largefloating structure[C], OCEANS’91, USA,1991.
    [28]王志军,箱式超大型浮体结构的水弹性响应研究[D],上海交通大学博士学位论文,2001.
    [29]夏锦祝,吴有生,流固耦合问题的一个一般交界面条件[J],舰船性能研究,(2),15-22,1993.
    [30]杜双兴,完善的三维航行船体线性水弹性力学频域分析方法[D],中国船舶科学研究中心博士学位论文,1996.
    [31] Lundgren, J., Price, W.G. and Wu, Y.S., A hydroelastic investigation into the behaviour of a floating‘dry’ dock in waves[C], Spring Meeting, RINA, London,1988.
    [32]杜双兴,林吉如,李琪华,吴有生,25000G/T浮动船坞拖航中运动和结构动应力的水弹性分析[J],舰船性能研究,(4),1-16,1993.
    [33]吴有生,杜双兴,海洋浮体结构的直接分析方法—三维线性水弹性随机分析理论及应用[J],舰船性能研究,(4),1990.
    [34] Price, W.G. and Wu, Y.S., Structural responses of a SWATH of multi-hulled vessel travelling inwaves[C], Int. Conf. On SWATH ships and Advanced Multi-hulled Vessels, RINA, London,1985.
    [35] Kean, A.J., Temarel, P., Wu, X.J. and Wu, Y.S., Hydroelasticity of nonbeamlike ships in waves[J],The Dynamics of Ships, The Royal Soc. London,153,1991.
    [36]叶永林,吴有生,尤国红,小水线面双体船波浪外载荷分析[C],北京造船工程学会学术交流论文集,53-60,2010.
    [37] Riggs, H.R. and Ertekin, R.C., Approximate methods for dynamic response of multi-modulefloating structures[C], Proceedings of1st International Workshop on Very Large Floating Structures,VLFS’91,1991.
    [38] Wu, Y.S., Du, S.X., Riggs, H.R. and Ertekin, R.C., Fluid-structure interaction analysis of very largefloating structures[M], Aero-Hydroelasticity Developments and Applications, Seismological Press,1993.
    [39] Liu, Y.H., Kim, C.H. and Kim, M.H., The computation of mean drift forces and wave run-up byhigher-order boundary element method[J], International Journal of Offshore and Polar Engineering,1(1),1993.
    [40] Hamamoto, T., Hayashi, T., et al.,3D BEM-FEM coupled hydroelastic analysis of irregular shaped,module linked large floating structures[C],6th International Offshore&Polar EngineeringConference,26-31May, Los Angeles, USA,1996.
    [41]吴梵,崔汉国,郭日修,舰船尾部振动水弹性分析软件系统HDSS[J],计算力学学报,17(1),109-113,2000.
    [42]谢永和,李润培,杨建民,水深对超大型FPSO水弹性响应的影响[J],上海交通大学学报,40(6),993-996,2006.
    [43] Xie, Y.H. and Li, R.P., The effects of water depth on wave-induced loads of a very large FPSO by3D hydroelastic theory[C], Proc.4th International Conference on Hydroelasticity in MarineTechnology, Wuxi, China,35-40,2006.
    [44]叶永林,波浪中航行船体结构振动与噪声的水弹性分析[D],中国船舶科学研究中心博士学位论文,2012.
    [45]王大云,三维船舶水弹性力学的时域分析方法[D],中国船舶科学研究中心博士学位论文,1996.
    [46] Wang, D.Y. and Wu, Y.S., Three dimensional hydroelastic analysis in time domain with applicationto an elastic ship model[J], Journal of Hydrodynamics,10(4),54-61,1998.
    [47] Kim, K.H. and Kim, Y., Numerical analysis on ship hydroelasticity by using3D rankine panelmethod and3D finite element method[C], Proc.6th International Conference on Hydroelasticity inMarine Technology, Tokyo, Japan,63-74,2012.
    [48] Yamamoto, Y., Fujino, M., Fukasawa, T. and Ohtsubo, H., Slamming and whipping of ship amongrough seas[C], Symp. Numerical Analysis of the Dynamics of Ship Structures, AssociationTechnique Maritime at Aeronautique,1978.
    [49]夏锦祝,波浪中弹性船舶对称响应的时域分析[J],舰船性能研究,(2),1987.
    [50] Gu, M.X., Wu, Y.S. and Xia, J.Z., Time domain analysis of non-linear hydroelastic response ofships[C], Fourth PRADS, Varna, Bulgaria,1989.
    [51]吴有生,夏锦祝,王朝晖,刘应中,船舶波浪砰击的二维非线性水弹性力学分析[R],中国船舶科学研究中心技术报告,1994.
    [52]宋竞正,任慧龙,戴仰山,船体非线性波激载荷的水弹性分析[J],中国造船,(2),22-31,1995.
    [53]徐向东,舰船结构冲击屈曲破损机理[D],中国船舶科学研究中心硕士学位论文,1996.
    [54] Wu, M.K. and Moan, T., Linear and nonlinear hydroelastic analysis of high speed vessels[J], Journalof Ship Research,40(2),149-163,1996.
    [55] Xia, J., Wang, Z. and Jensen, J.J., Non-linear wave loads and ship responses by a time-domain striptheory[J], Marine Structures,11(3),101-123,1998.
    [56]夏锦祝,林吉如,王朝晖,吴有生,时域非线性水弹性力学分析与弹性船模试验的比较研究[J],舰船性能研究,(4),1994.
    [57]朱克强,郑道昌,周江华,等,典型高速船的非线性水弹性响应[J],宁波大学学报(理工版),18(4),458-462,2005.
    [58] Wu, Y.S., Maeda, H. and Kinoshita, T., The Second Order Hydrodynamic Actions on a FlexibleBody[J], SEISAN-KENKYU, Institute of Industrial Science of Univ. of Tokyo,49(4),8-19,1997.
    [59]陈徐均,浮体二阶非线性水弹性力学分析方法[D],中国船舶科学研究中心博士学位论文,2001.
    [60] Chen, X.J., Wu Y.S., Cui, W.C. and Tang, X.F., Nonlinear hydroelastic analysis of a moored floatingbody[J], Ocean Engineering,30(8),965-1003,2003.
    [61]田超,航行船舶的非线性水弹性理论与应用研究[D],上海交通大学博士学位论文,2007.
    [62] Wu, Y.S., Ni, Q.J., Xie, W., Zhou, S.Y., Tian, C., Zhang, Y. and Wu, Q., Hydrodynamic performanceand structural design of a SWATH ship[C], Proceedings of International Conference on PracticalDesign of Ships and Other Floating Structures, Huston, USA,2007.
    [63] Tian, C. and Wu, Y.S., The second-order hydroelastic analysis of a SWATH ship moving inlarge-amplitude waves[J], Journal of Hydrodynamics, Ser. B.,18(6),631-639,2006.
    [64] Tian, C., Wu, Y.S. and Chen, Y.Q., Numerical predictions on the hydroelastic responses of a largebulker in waves[C], Proceedings of the5th International Conference on Hydroelasticity in MarineTechnology, Southampton, UK,2009.
    [65] HU, J.J., Wu, Y.S., Tian, C., Wang, X.L. and Zhang, F., Hydroelastic analysis and model test ofstructural responses and fatigue behaviors of an ultra large ore carrier in waves[J], J. of Eng. for theMaritime Environment,226(2),135-155,2012.
    [66] Junger, M.C. and Feit, D., Sound, structures, and their interaction[M], Second Edition, The MITPress, Cambridge, Massachusetts,1986.
    [67] Skelton, E.A. and James, J.H., Theoretical acoustics of underwater structures[M], Imperial CollegePress, London,1997.
    [68] Fahy, F. and Gardonio, P., Sound and structural vibration—Radiation, Transmission andResponse[M], Second Edition, Academic Press in an imprint of Elsevier, Oxford,2007.
    [69]何祚镛,结构振动与声辐射[M],哈尔滨:哈尔滨工程大学出版社,2001.
    [70] Burroughs, C.B., Acoustics radiation from fluid loaded infinite circular cylinders with doublyperiodic ring supports[J], J. Acoust. Soc. Am.,75(3),715-722,1984.
    [71]吴文伟,等,双层加肋圆柱壳振动和声辐射研究[J],船舶力学,6(1),44-51,2002.
    [72]曾革委,无限长双层加肋圆柱壳水下声辐射解析计算[J],振动工程学报,17(S),1010-1013,2004.
    [73]汤渭霖,何兵蓉,水中有限长加肋圆柱壳体振动和声辐射近似解析解[J],声学学报,26(1),1-5,2001.
    [74]陈越澎,加筋柱壳的声学设计方法研究[J],华中理工大学博士学位论文,1999.
    [75]刘涛,水中复杂壳体的声—振特性研究[D],上海交通大学博士学位论文,2002.
    [76]陈美霞,骆东平,等,有限长双层壳体声辐射理论及数值分析[J],中国造船,44(4),59-67,2003.
    [77]姚熊亮,计方,等,壳间连接介质对双层壳声辐射性能的影响[J],声学技术,28(3),312-317,2009.
    [78] Bjarnason, J., Igusa, T., etal, The effect of substructures on the acoustic radiation fromaxisymmetric shells of finite length[J], J. Acoust. Soc. Am.,96(1),246-255,1994.
    [79] Choi, S.H., Igusa, T. and Achenbach, J.D., Nonaxisymmetric vibration and acoustic radiation ofsubmerged cylindrical shell of finite length containing internal substructures[J], J. Acoust. Soc. Am.,98(1),353-362,1995.
    [80] Guo, Y.P., Acoustic radiation from cylindrical shells due to internal forcing[J], J. Acoust. Soc. Am.,99(3),1495-1505,1996.
    [81]骆东平,肖邵予,等,甲板刚度和垂向位置对环肋圆柱壳声辐射性能的影响[J],哈尔滨工程大学学报,25(5),605-609,2004.
    [82]陈海坤,陈美霞,等,舱壁与压载对流场中有限长圆柱壳声辐射影响[J],舰船科学技术,32(11),21-25,2010.
    [83] Maidanik, G. and Biancardi, R., Use decoupling to reduce the radiated noise generated by panels[J],J. Sound and Vibration,81(2),165-185,1982.
    [84] Lanlagnet, B. and Guyader, J.L., Sound radiation from a finite cylindrical shell covered with acompliant layer[J], J. Vibration and Acoustics,113,267-272,1991.
    [85] Lanlagnet, B. and Guyader, J.L., Sound radiation from finite cylindrical coated shells by means ofasymptotic expansion of three-dimension equation for coating[J], J. Acoust. Soc. Am.,96(1),277-286,1994.
    [86]彭旭,敷设阻尼层潜艇舱段结构声辐射性能分析[D],华中科技大学硕士学位论文,2004.
    [87]田宝晶,敷设阻尼层的加肋圆柱壳辐射性能及噪声特性分析[D],哈尔滨工程大学博士学位论文,2006.
    [88]殷学文,敷设消声瓦的双层加筋圆柱壳结构的振动和声辐射研究[D],中国船舶科学研究中心硕士学位论文,2001.
    [89]白振国,俞孟萨,多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究[J],船舶力学,11(5),788-797,2007.
    [90] James, J. and Faran, J.R., Sound scattering by solid cylinders and spheres[J], J. Acoust. Soc. Am.,23(4),405-418,1951.
    [91] Junger, M.C., Sound scattering by thin elastic shells[J], J. Acoust. Soc. Am.,24(4),366-373,1952.
    [92]刘国利,汤渭霖,平面波斜入射到水中无限圆柱的纯弹性共振散射[J],声学学报,21(4),506-516,1996.
    [93]汤渭霖,范军,水中双层弹性球壳的回声特性[J],声学学报,24(2),174-182,1999.
    [94]范军,刘涛,汤渭霖,水中双层无限长圆柱壳体声散射[J],声学学报,28(4),345-350,2003.
    [95] Hunt, J.T., Knittel, M.R. and Barach, D., Finite element approach to acoustic radiation from elasticstructures[J], J. Acoust. Soc. Am.,55,269-280,1974.
    [96] Hunt, J.T., Knittel, M.R. and Barach, D., Finite element approach to acoustic scattering from elasticstructures[J], J. Acoust. Soc. Am.,57,287-299,1975.
    [97] Kallivokas, L.F. and Bielak, J., Time-domain analysis of transient structural acoustics problemsbased on the finite element method and a novel absorbing boundary element[J], J. Acoust. Soc. Am.,94,3480-3492,1993.
    [98]徐张明,汪玉,等,船舶结构的建模及水下振动和辐射噪声的FEM/BEM计算[J],船舶力学,6(4),89-96,2002.
    [99] Chen, L.H. and Schweikert, D.G., Sound radiation from an arbitary body[J], J. Acoust. Soc. Am.,35,1626-1632,1963.
    [100] Mocormick, J.M. and Baron, M.L., Sound radiation from submerged cylindrical shells of finitelength[J], ASME Trns., Ser.B.,87,393-405,1965.
    [101] Everstine, G.C. and Henderson, F.M., Goupled finite element/boundary element approach forfluid-structure interaction[J], J. Acoust. Soc. Am.,87(5),1938-1947,1990.
    [102] Giordano, J.A. and Koopmann, G.H., State space boundary element-finite element coupling forfluid-structure interaction analysis[J], J. Acoust. Soc. Am.,98(1),363-372,1995.
    [103] Zhu, X.Q., Sound generation from a moving shell[C], Proc. and Int. Symp. on Shipboard Acoustic,Holland,1986.
    [104] Zhang, J.T. and He, Z.Y., Study of sound radiation of arbitrary revolution elastic shells densemedium excited by force[C],4th, Int. cong. of Int. Maritime Association of East in Mediterrenean,Varna, Bulgarian,1987.
    [105]张敬东,何祚镛,有限元+边界元——修正的模态分解法预报水下旋转薄壳的振动和声辐射[J],声学学报,1990,15(1),12-19.
    [106]崔宏武,赵德有,等,结构振动的水中声辐射计算[J],中国造船,1990,31(4),49-54.
    [107]沈顺根,李琪华,王大云,程贯一,加肋旋转壳结构噪声声辐射水弹性研究[J],中国造船,117(2),53-62,1992.
    [108]谭林森,骆东平,吴崇健,等,潜水器动力舱振动与声辐射[J],华中理工大学学报,27(11),7-9,1999.
    [109]商德江,复杂弹性壳体水下结构振动和声辐射特性研究[D],哈尔滨工程大学博士学位论文,2000.
    [110]邹春平,船舶水下辐射噪声特性研究[J],船舶力学,8(1),113-124,2004.
    [111]邹元杰,水中阻尼复合壳体结构声振特性的数值分析[D],大连理工大学博士学位论文,2004.
    [112]王旌生,粘弹性复合材料结构水中振动和声辐射特性研究[D],上海交通大学博士学位论文,2007.
    [113] Seybert, A.F., Soenarko, B., Rizzo, F.J. and Shippy, D.J., Application of the BIE method to soundradiation problems using an isoparametric element[J], ASME Transactions, J. Vib. Acoust. StressRel. Dsgn.,106,414-420,1984.
    [114]嵇醒,臧跃龙,程玉民,边界元法进展及通用程序[M],上海:同济大学出版社,1997.
    [115]黎胜,赵德有,用边界元法计算结构振动辐射声场[J],大连理工大学学报,40(4),391-394,2000.
    [116]李小瑜,傅志方,结构振动辐射声场的预估—边界积分方程中奇异积分的间接处理[J],振动工程学报,2(1),59-65,1989.
    [117]赵键,汪鸿振,朱物华,边界元法计算已知振速封闭面的声辐射[J],声学学报,14(4),250-257,1989.
    [118] Hui, C.Y. and Shia, D., Evaluations of hypersingular integrals using Gaussian quadrature[J], Int. J.Num. Meth. Eng.,44,205-214,1999.
    [119] Schenck, H.A., Improved integral formulation for acoustic radiation problems[J], J. Acoust. Soc.Am.,44(1),41-58,1968.
    [120] Burton, A.J. and Miller, G.F., The application of the integral equation method to the numericalsolution of some exterior boundary value problems[J], Proc. R. Soc. Lond. A.,323,201-210,1971.
    [121] Achenbach, J.D., Kechter, J.D. and Xu, Y.L., Off boundary approach to the boundary elementmethod[J], Comput. Mech. Appl. Mech. Engng.,70,191-201,1988.
    [122] Koopmann, G.H., Song, L. and Fahnline, J.B., A method for computing acoustic fields based on theprinciple of wave superposition[J], J. Acoust. Soc. Am.,88,2433-2438,1989.
    [123] Wu, T.W. and Seybert, A.F., A weighted residual formulation for the CHIEF method in acoustics[J],J. Acoust. Soc. Am.,90(3),1608-1614,1991.
    [124] Epton, M. and Dembart, B., Multipole translation theory for the three dimensional Laplace andHelmholtz equations[J], SIAM Journal scientific Computing,16(4),865-897,1995.
    [125] Gumerov, N.A. and Duraiswami, R., A broadband fast multipole accelerated boundary elementmethod for the three dimensional Helmholtz equation[J],125(1),191-205,2009.
    [126] Wang, X.R. and Ji, Z.L., Application of FMBEM to predict silencer acoustic performance[J],Journal of University of Science and Technology of China,38(2),207-217,2008.
    [127]李善德,黄其柏,张潜,快速多极边界元方法在大规模声学问题中的应用[J],机械工程学报,47(7),82-89,2011.
    [128]张健飞,姜弘道,大型边界元方程组得并行直接分块求解算法[J],应用力学学报,20(4),129-133,2003.
    [129] Takahashi, T. and Hamada, T., GPU-accelerated boundary element method for Helmholtz equationin three dimensions[J], Int. J. Numer. Meth. Engng.,80,1295-1321,2009.
    [130] Astley, R.J. and Macaulay, G.J., Mapped wave envelope element for acoustic radiation andscattering[J], J. of Sound and Vibration,170(1),97-117,1994.
    [131] Burnett, D.S and Holford, Prolate and oblate spheroidal acoustic infinite element[J], Comput.Methods Appl. Mech. Eng.,158,117-141,1998.
    [132] Langley, R.S. and Bremner, P., A hybrid method for the vibration analysis of complexstructural-acoustic systems[J], J. Acoust. Soc. Am.,105(3),1657-1671,1999.
    [133] Shorter, P.J. and Langley, R.S., Vibro-acoustic analysis of complex systems[J], Journal of Soundand Vibration,288(3),669-699,2005.
    [134]陈书明,王登峰,等,车内噪声FE-SEA混合建模及分析方法[J],振动工程学报,23(2),140-144,2010.
    [135]姚熊亮,王献忠,等,复杂结构中频声振问题的方法研究[J],振动工程学报,24(4),444-449,2011.
    [136]张瑾,马兴瑞,等,中频力学环境预示的FE-SEA混合方法研究[J],振动工程学报,25(2),206-214,2012.
    [137] Choi, S.B., Pierre, C. and Castanier, M.P., Statistical energy methods for mid-frequency vibrationanalysis[C], Proceeding1997SAE noise and Vibration Conference and Exposition, Traverse City,MI, USA,1997.
    [138] Maxit, L. and Guyader, J.L., Extension of SEA model to subsystems with non-uniform modalenergy distribution[J], Journal of Sound and Vibration,265,337-358,2003.
    [139] Fredo, C.R., A SEA-like approach for the derivation of energy flow coefficients with a finiteelement model[J], Journal of Sound and Vibration,199(4),645-666,1997.
    [140] Hurty, W.C., Vibration of structure systems by component mode synthesis[J], Jour. Engr. Mech.Div., ASCE,86,51-59,1960.
    [141] Gladwell, G.M.L., Branch mode analysis of vibrating systems[J], Journal of Sound and Vibration,1,41-59,1964.
    [142]殷学纲,陈淮,等,结构振动分析的子结构方法[M],北京:中国铁道出版社,1991.
    [143]丁渭平,车身乘坐室声振耦合的动态子结构修改方法[J],噪声与振动控制,(2),17-19,2002.
    [144]向树红,邱吉宝,王大钧,模态分析与动态子结构方法新进展[J],力学进展,34(3),289-303,2004.
    [145] Wohlever, J.C. and Bernhard, R.J., Mechanical energy flow models of rods and beams[J], Journal ofSound and Vibration,153(1),1-19,1990.
    [146] Bouthier, O.M. and Bernhard, R.J., Simple models of the energetics of transversely vibratingplates[J], Journal of Sound and Vibration,182(1),149-1666,1995.
    [147] Cabos, C. and Jokat, J., Computation of structure-borne noise propagation in ship structures usingnoise-FEM[C], Proceedings PRADS98, Osterveld and Tan eds. Elsevier,927-934,1998.
    [148] Borlase G.A. and Vlahopoulos, N., An energy finite element optimization process for reducinghigh-frequency vibration in large-scale structures[J], Finite Element in Analysis and Design,36(1),51-67,2000.
    [149]孙丽萍,能量有限元法研究及其应用[D],哈尔滨工程大学博士学位论文,2004.
    [150]吴铁钢,零阶能量有限元法及其在船舶结构声辐射中的应用研究[D],武汉理工大学博士学位论文,2008.
    [151] Soize, C., A model and numerical method in the medium frequency range for vibroacousticpredicitions using the theory of structural fuzzy[J], J. Acoust. Soc. Am.,94(2),849-965,1993.
    [152] Strasberg, M. and Feit, D., Vibration damping of large structures induced by attached smallresonant structures[J], J. Acoust. Soc. Am.,99(1),335-344,1996.
    [153]刘涛,汤渭霖,何世平,数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J],船舶力学,7(4),99-104,2003.
    [154]姚熊亮,钱德进,等,内部含基座的加筋双层壳振动与声辐射计算[J],中国舰船研究,3(1),31-36,2008.
    [155] Hynna, P., Klinge, P. and Vuoksinen, J., Prediction of structure-borne sound transmission in largewelded ship structures using statistical energy analysis[J], Journal of Sound and Vibration,180(4),583-607,1995.
    [156]俞孟萨,舰船随机声弹性理论及声纳罩声学设计研究[D],中国船舶科学研究中心博士学位论文,2007.
    [157]丁宏,陈美霞,基于统计能量法的双层圆柱壳振动与声性能分析[C],第十三届船舶水下噪声学术讨论会论文集,138-146,2011.
    [158] Dowell, E.H. and Kubota, Y., Asymptotic modal and statistical energy analysis of dynamicalsystems[J], J. Applied Mech.,52,949-957,1985.
    [159] Lase, Y., Ichchou, M.N. and Jezequel, L., Energy flow analysis of bars and beams: theoreticalformulations[J], Journal of Sound and Vibration,192(1),281-308,1996.
    [160]吴文伟,沈荣瀛,沈顺根,设备基座输入机械阻抗工程估算方法[J],振动工程学报,17(S),694-697,2004.
    [161]邹明松,吴有生,沈顺根,吴文伟,考虑航速及自由液面影响的声介质中三维结构水弹性力学研究[J],船舶力学,14(11),1304-1311,2010.
    [162] Zou, M.S., Wu, Y.S. and Ye, Y.L., Three-dimensional hydroelasticity analysis of acoustic responsesof ship structures[C],9th International Conference on Hydrodynamics, ShangHai, CHINA,844-851,2010.
    [163]布列霍夫斯基赫,海洋声学[M],北京:科学出版社,1983.
    [164]杨士莪,水声传播原理[M],哈尔滨:哈尔滨工程大学出版社,1994.
    [165] Porter, M.B., The KRAKEN normal mode program[M], SACLANT Undersea Research Center,2001.
    [166] Jensen, F.B., Kuperman, W.A., Porter, M.B. and Schmidt, H., Computational ocean acoustics[M],Second Edition, Springer,2011.
    [167] Seybert, A.F. and Soenarko, B., Radiation and scattering of acoustic waves from bodies of arbitraryshape in a three-dimensional half space[J], ASME Transactions, J. Vib. Acoust. Stress Rel. Dsgn.,110,112-117,1988.
    [168] Li, W.L., Wu, T.W. and Seybert, A.F., A half-space boundary element method for acousticproblems with a reflecting plane of arbitrary impedance[J], Journal of Sound and Vibration,171(2),173-184,1994.
    [169]黎胜,水下结构声辐射和声传输的数值分析及主动控制模拟研究[D],大连理工大学博士学位论文,2001.
    [170]邹元杰,赵德有,结构在浅水中的振动和声辐射特性研究[J],振动工程学报,17(3),269-274,2004.
    [171] Schmidt, H., Virtual source approach to scattering from partially buried elastic targets[C], In Porter,M.B., Siderius, M. and Kuperman, W.A., editors, American Institute of Physics Conference Series,728,456-463,2004.
    [172] Lucifredi, I. and Schmidt, H., Subcritical scattering from buried elastic shells[J], J. Acoust. Soc.Am.,120(6),3566-3583,2006.
    [173] Abawi, A.T. and Porter, M.B., Propagation in an elastic wedge using the virtual source technique[J],J. Acoust. Soc. Am.,121(3),1374-1382,2007.
    [174]汤渭霖,用物理声学方法计算界面附近目标的回波[J],声学学报,24(1),1-5,1999.
    [175]范军,水中复杂目标回声特性研究[D],上海交通大学博士学位论文,2001.
    [176]王桂波,彭临慧,浅海波导中刚性球声散射特性研究[J],中国海洋大学学报,35(3),515-520,2005.
    [177]尤云祥,潘文峰,缪国平,三维海洋波导中Helmholtz方程外问题的数值解[J],41(5),830-834,2007.
    [178]姜琳,赵德有,浅海波导中椭球体声散射特性研究[J],大连理工大学学报,48(4),528-532,2008.
    [179]姜琳,洪明,海底阻抗对浅海波导中椭球体的声散射研究[J],船舶力学,13(6),1013-1021,2009.
    [180]陈燕,汤渭霖,范军,浅海波导中目标回声计算的射线声学方法[J],声学学报,35(3),335-342,2010.
    [181]刘兴章,美国潜艇水声试验场现状及启示[J],舰船科学技术,33(2),140-143,2011.
    [182]刘兴章,陈涛,挪威海格纳斯潜艇水声试验场测量设施分析[J],噪声与振动控制,(5),161-164,2011.
    [183]沈杰罗夫著,何祚镛,赵晋英译,水声学波动问题[M],北京:国防工业出版社,1983.
    [184]陆鑫森,高等结构动力学[M],上海:上海交通大学出版社,1992.
    [185]庄礼贤,尹协远,等,流体力学[M],合肥:中国科学技术大学出版社,1991.
    [186]马大猷,现代声学理论基础[M],北京:科学出版社,2004.
    [187]邹明松,沈顺根,舱段结构动态特性和水下辐射噪声研究[R],中国船舶科学研究中心技术报告,2009.
    [188]尼基福罗夫著,谢信,王轲译校,船体结构声学设计[M],北京:国防工业出版社,1998.
    [189]布列霍夫斯基赫著,杨训仁译,分层介质中的波[M],第二版,北京:科学出版社,1985.
    [190]恽伟君,段根宝,胡仲根,模态综合超单元法及其在船舶动态计算中的应用[J],上海力学,(4),8-18,1982.
    [191]沈顺根,吴文伟,结构振动引起水下噪声物理数学模型及工程近似估算公式[R],中国船舶科学研究中心技术报告,1996.
    [192]曹志远,板壳振动理论[M],北京:中国铁道出版社,1989.
    [193]汤渭霖,水下噪声学原理[M],上海:上海交通大学出版社,2004.
    [194]胡碰,静水压力下声学覆盖层声学性能模块化方法研究[D],上海交通大学博士学位论文,2008.
    [195]郑明军,王文静,等,橡胶Mooney-Rivlin模型力学性能常数的确定[J],橡胶工业,50(8),462-465,2003.
    [196]王伟,邓涛,等,橡胶Mooney-Rivlin模型中材料常数的确定[J],特种橡胶制品,25(4),8-10,2004.
    [197]刘伯胜,雷家煜,水声学原理[M],第二版,哈尔滨:哈尔滨工程大学出版社,2010.
    [198] Chiang, C.M., Numerical methods in water-wave diffraction and radiation[J], Ann. Rev. FluidMech.,10,393-416,1978.
    [199]邹明松,刘艳敏,祁立波,舷间充水双层弹性薄球壳结构声辐射研究[J],船舶力学,17(1-2),155-163,2013.
    [200] Korotkin, A.I., Added masses of ship structures[M], Springer,2009.
    [201]余晓丽,声学覆盖层声阻抗测量方法及复合结构声反射预报研究[D],哈尔滨工程大学硕士学位论文,2006.
    [202]邹明松,沈顺根,声学覆盖层声振特性研究[R],中国船舶科学研究中心技术报告,2011.
    [203] Zou, M.S., Wu, Y.S., Wu, W.W., Ye, Y.L. and Tian, C., The three-dimensional hydroelasticitytheory of ship structures in acoustic fluid of shallow sea[C], Proceedings of the6th InternationalConference on Hydroelasticity in Marine Technology, Tokyo, JAPAN,125-134,2012.
    [204]谢基榕,推进器激励下的艇体声辐射及其控制技术研究[D],中国船舶科学研究中心博士学位论文,2011.
    [205]祁立波,邹明松,水下加肋圆柱体低频辐射声计算与分析[C],第十三届船舶水下噪声学术讨论会论文集,158-165,2011.
    [206] D.罗斯,水下噪声原理[M],北京:海洋出版社,1983.
    [207]任群言,浅海环境下海底声参数获取技术研究[D],哈尔滨工程大学硕士学位论文,2009.
    [208]朱明武,李永新,动态测量原理[M],北京:北京理工大学出版社,1993.
    [209]舰船设备噪声、振动测量方法[S], GJB4058-2000,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700