用户名: 密码: 验证码:
纳米功能材料的可控制备、表面修饰及其荧光标记和细胞毒性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术和纳米材料的迅速发展,量子点、磁性Fe3O4、纳米金、氧化铈、碳纳米管和石墨烯等纳米功能材料在生物医学领域的应用越来越广泛。其中量子点和氧化铈的应用尤为引人关注。论文瞄准这一研究方向,在对当前迅速发展的量子点和纳米氧化铈进行大量文献调研的基础上,以电泳分析技术,MTT法及抗氧化性测试作为主要分析手段,开展了量子点和纳米氧化铈的可控制备、表面修饰及其荧光标记和细胞毒性的研究工作,论文具体章节的内容介绍如下:
     第一章针对量子点荧光标记物高灵敏、原位、实时、动态的前沿和热点,概述了量子点荧光标记物在细胞和组织成像、靶向药物、DNA分子检测方面的研究进展;针对纳米氧化铈独特的储放氧功能和催化/再生的特性,扼要的介绍了纳米氧化铈在自由基清除、抗氧化性、肿瘤标记和靶向药物等生物医学领域的研究热点和进展。基于这两种纳米功能材料在荧光标记和抗氧化性方面的应用,提出了本论文的工作内容和创新点。
     第二章在高温油相、N2保护的条件下,依据“奥斯瓦尔特”熟化原理,利用“反向注入法”合成尺寸可控的CdSe量子点,并在其表面包覆了能级较宽的ZnS,合成了核壳型结构的CdSe@ZnS量子点。为了提高CdSe@ZnS量子点的生物兼容性,我们在其表面修饰了两亲性的高分子材料,将脂溶性量子点转换为水溶性量子点,为量子点进一步的功能组装奠定基础。
     第三章以量子点标记DNA分子为主要研究内容,针对寡核苷酸探针需特异性设计、传统的有机荧光小分子和生物素不稳定和传统的放射性同位素标记有辐射的问题,尝试采用PCR技术获得的DNA与量子点进行荧光标记,以期获得一种廉价、便捷的DNA分子荧光标记的方法。
     第四章以制备超细单分散、水溶性纳米氧化铈的制备为主要研究内容,利用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、X-光电子能谱(XPS)、傅里叶红外变换(FT-IR)、紫外-可见光(UV-vis)和Zeta电位等表征方法,深入细致地分析纳米氧化铈的物相组成、形貌、大小、价态、表面官能团和电荷性质。确立一种行之有效的超细单分散、水溶性纳米氧化铈的合成及表面修饰的方法,为下一步体外细胞测试奠定了基础。
     第五章以超细单分散纳米氧化铈对人体胃癌细胞(BGC-803)的细胞毒性和抗氧化性测试为研究主线,利用MTT, GSH, SOD, FCA, SEM和TEM等检测方法,分析BGC-803细胞与超细单分散纳米氧化铈作用后的细胞形态,抗氧化性能力和细胞摄入情况,探讨纳米氧化铈的化学组成和价态、尺寸和形貌、表面官能团和电荷性质对BGC-803细胞的细胞毒性和抗氧化性的影响规律,为研究纳米氧化铈在抗氧化药物方面的应用提供实验数据,并为内蒙古地区开展轻稀土氧化铈在生物医学领域的应用提供实验和理论依据。
With the rapid development of nanotechnology and wide application of nanomaterials, quantum dots (QDs), magnetic Fe3O4, nano gold, cerium oxide, carbon nanotubes grapheme and so on functional nanomaterials are already widely applied in the biomedical field. Among these functional nanomaterial, quantum dots and cerium oxide are particularly concerned. Just aiming at this important research direction, based on a survey of a large number of documents, by means of electrophoresis analysis techniques, MTT method and anti-oxidation test (SOD and GSH), the controllable synthesis, surface modification of functional nanomaterial (quantum dots and cerium oxide) and their fluorescence labeling and cell cytotoxicity study are carried out. Content of specific sections of the paper are described below.
     In the first chapter, for the frontier and hot of quantum dots fluorescent labels at highly sensitive, in situ, real-time, dynamic, the paper summarizes the research progress of quantum dot fluorescent labels in the cell and tissue imaging, targeted drug, DNA molecular testing aspects. Considering the nanocerium oxide with the unique feature at storing and releasing oxygen, catalytic/regenerative properties, the article sums up the research progress of nanocerium oxide in the biomedical field at radical scavenging, antioxidant activity, tumor markers and targeted drugs. Based on these two functional nanomaterials in fluorescent markers and antioxidant aspects of the application, the research concent and innovation also is come up with.
     In the second chapter, based on "Oswalt" ripening principle, size-controlled CdSe quantum dots were synthesized by use of "reverse injection method" in the high temperature of the oil phase and N2protection conditions. Then core and shell CdSe@Zns QDs were prepared through coating the wide level nanomaterials ZnS on the surface of CdSe quantum dots. In order to enhance biocompatibility of CdSe@Zns QDs, a kind of two dear of polymer materials was modified on the surface of CdSe@Zns QDs, which make the fat-soluble quantum dots conver to water-soluble quantum dots. The obtained QDs with excellent solubility could be further functional assembled.
     In the third chapter, DNA molecules labeled with quantum dots is the main content. Because the oligonucleotide molecule probe needs special design, its cost is high. While conventional organic fluorescent small molecule and biotin are instability, at the same time, conventional radioisotope labeling has radiation. In order to obtain an inexpensive and convenient method of fluorescently labeled DNA molecules, we try to label DNA molecules obtained by PCR technology by means of quantum dot.
     In the fourth chapter, controllable synthesis and surface modification of nanoceria are the main content. Nanoceria's phase composition, morphology, size, valence, and the charge properties of surface functional groups were analyzed in great detail by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), X-photoelectron spectroscopy (XPS), Fourier transform microscopy infrared spectrometer (FT-IR), UV-vis absorption (UV-vis) and Zeta potential technologies. In this part of work, it corfirms an effective method, which could prepare ultrafine monodisperse and soluble nanoceria modified with functional group. Furthermore these nanoceria particles are completely in conformity with the requirements of biomedical field and established the foundation for the next test in vitro.
     In the fifth chapter, the cell cytotoxicity and antioxidant property of ultrafine monodisperse nanoceria are the main content. Cell morphology, antioxidant property and cell intake are analyzed by use of Scanning electron microscope (SEM), Transmission electron microscopy (TEM), MTT assay, GSH, SOD and Flow Cytometric assay (FCA) after the BGC-803cells and ultrafine monodispersed nano ceria interact. In this work, we explored the relationship between the soluble property, chemical valence, surface functional groups of nanoceria and the cytotoxicity and antioxidant properties of BGC-803cells, which could be benefit for determining the law between the chemical composition and valence state, size and morphology, surface charge and surface coating, agglomeration state of cerium oxide nanoparticles and cytotoxicity of BGC-803cells, revealing the incentive of oxidative stress in BGC-803cells. This work could provide experimental data for the study of cerium oxide nanoparticles in antioxidant drugs and could help to carry out light rare earth cerium oxide's application of the biomedical field in Inner Mongolia region.
引文
[1]Siegel, R. W. H., Evelyn; Roco M.C.; Cox, Donald M.; Goronkin, Herb. Nanostructure Science and Technology. A Worldwide Study [M]. EXECUTIVE OFFICE OF THE PRESIDENT WASHINGTON DC,1999.
    [2]Lee D. C., Pietryga J. M., Robel I., et al. Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals. Journal of the American Chemical Society [J],2009,131:3436-3437.
    [3]Li L., Coates N., Moses D. Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals. Journal of the American Chemical Society [J],2009, 132:22-23.
    [4]Shiohara A., Hanada S., Prabakar S., et al. Chemical Reactions on Surface Molecules Attached to Silicon Quantum Dots. Journal of the American Chemical Society [J],2009,132:248-253.
    [5]Guo Q., Hillhouse H. W., Agrawal R. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. Journal of the American Chemical Society [J],2009,131:11672-11673.
    [6]Brus L. Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory. The Journal of Physical Chemistry [J],1986,90:2555-2560.
    [7]Nakanishi T., Ohtani B., Uosaki K. Fabrication and Characterization of CdS-Nanoparticle Mono- and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold. The Journal of Physical Chemistry B [J],1998,102:1571-1577.
    [8]Mansur H. S. Quantum Dots and Nanocomposites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology [J],2010,2:113-129.
    [9]Smith A. M., Duan H., Mohs A. M., et al. Bioconjugated Quantum Dots for in vivo Molecular and Cellular Imaging. Advanced Drug Delivery Reviews [J],2008,60:1226-1240.
    [10]Bruchez M., Moronne M., Gin P., et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science [J],1998,281:2013-2016.
    [11]Chan Warren. C. W., Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science [J],1998,281:2016-2018.
    [12]Smith A. M., Nie S. Bright and Compact Alloyed Quantum Dots with Broadly Tunable Near-Infrared Absorption and Fluorescence Spectra through Mercury Cation Exchange. Journal of the American Chemical Society [J],2010,133:24-26.
    [13]Schooss D., Mews A., Eychmuller A., et al. Quantum-dot Quantum Well CdS/HgS/CdS: Theory and Experiment. Physical Review B [J],1994,49:17072-17078.
    [14]Haus J. W., Zhou H. S., Honma I., et al. Quantum Confinement in Semiconductor Heterostructure Nanometer-size Particles. Physical Review B [J],1993,47:1359-1365.
    [15]Chang Y. P., Pinaud F., Antelman J., et al. Tracking Bio-molecules in Live Cells using Quantum Dots. Journal of Biophotonics [J],2008,1:287-298.
    [16]Deng Z., Schulz O., Lin S., et al. Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral-Shaped Nanocrystals with Emission Tunable to Near-Infrared. Journal of the American Chemical Society [J],2010,132:5592-5593.
    [17]He Y., Lu H. T., Sai L. M., et al. Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility. Advanced Materials [J],2008,20:3416-3421.
    [18]Larson D. R., Zipfel W. R., Williams R. M., et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science [J],2003,300:1434-1436.
    [19]Dubertret B., Skourides P., Norris D. J., et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science [J],2002,298:1759-1762.
    [20]Gao X., Chen J., Chen J., et al. Quantum Dots Bearing Lectin-Functionalized Nanoparticles as a Platform for In Vivo Brain Imaging. Bioconjugate Chemistry [J],2008,19:2189-2195.
    [21]Dahan M., Levi S., Luccardini C., et al. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science [J],2003,302:442-445.
    [22]Lidke D. S., Nagy P., Heintzmann R., et al. Quantum Dot Ligands Provide New Insights into erbB/HER Receptor-mediated Signal Transduction. Nature Biotechnology [J],2004,22:198-203.
    [23]Jiang G., Park K., Kim J., et al. Target Specific Intracellular Delivery of siRNA/PEI-HA Complex by Receptor Mediated Endocytosis. Molecular Pharmaceutics [J],2009,6:727-737.
    [24]Kerman M. E., Chan Warren C. W., Laakkonen P., et al. Nanocrystal Targeting in Vivo. Proceedings of the National Academy of Sciences [J],2002,99:12617-12621.
    [25]Gao X. h., Cui Y. y., Levenson Richard M., et al. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnology [J],2004,22:969-976.
    [26]Zhang J., Su J., Liu L., et al. Evaluation of Red CdTe and Near Infrared CdHgTe Quantum Dots by Fluorescent Imaging. Journal of Nanoscience and Nanotechnology [J],2008,8:1155-1159.
    [27]Chen C., He X., Gao L., et al. Cation Exchange-Based Facile Aqueous Synthesis of Small, Stable, and Nontoxic Near-Infrared Ag2Te/ZnS Core/Shell Quantum Dots Emitting in the Second Biological Window. ACS Applied Materials & Interfaces [J],2013,5:1149-1155.
    [28]Mahtab R., Harden H. H., Murphy C. J. Temperature- and Salt-Dependent Binding of Long DNA to Protein-sized Quantum Dots:Thermodynamics of "Inorganic Protein"-DNA Interactions. Journal of the American Chemical Society [J],1999,122:14-17.
    [29]Han M. Y, Gao X. H., Su Jack Z., et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology [J],2001,19:631-635.
    [30]Ebenstein Y., Gassman N., Kim S., et al. Lighting Up Individual DNA Binding Proteins with Quantum Dots. Nano Letters [J],2009,9:1598-1603.
    [31]Weng K. C., Noble C. O., Papahadjopoulos-Sternberg B., et al. Targeted Tumor Cell Internalization and Imaging of Multifunctional Quantum Dot-Conjugated Immunoliposomes in Vitro and in Vivo. Nano Letters [J],2008,8:2851-2857.
    [32]Bhirde A. A., Patel V, Gavard J., et al. Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS Nano [J],2009,3:307-316.
    [33]Deshpande S., Patil S., Kuchibhatla S. V, et al. Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide. Applied Physics Letters [J],2005,87: 2715-2719.
    [34]Shoko E., Smith M. F., Ross H. M. Charge Distribution Near Bulk Oxygen Vacancies in Cerium Oxides. Journal of Physics: Condensed Matter [J],2010,22:223201.
    [35]Park J. B., Graciani J., Evans J., et al. Gold, Copper, and Platinum Nanoparticles Dispersed on CeOx/TiO2(110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. Journal of the American Chemical Society [J],2010,132:356-363.
    [36]Pelisser F., Steiner L. R., Bernardin A. M. Recycling of Porcelain Tile Polishing Residue in Portland Cement: Hydration Efficiency. Environmental Science & Technology [J],2012,46: 2368-2374.
    [37]Gong Y, Palacio D., Song X., et al. Stabilizing Nanostructured Solid Oxide Fuel Cell Cathode with Atomic Layer Deposition. Nano Letters [J],2013,13:4340-4345.
    [38]Xu X., Zhou W., Zhu Z. Samaria-Doped Ceria Electrolyte Supported Direct Carbon Fuel Cell with Molten Antimony as the Anode. Industrial & Engineering Chemistry Research [J],2013,52: 17927-17933.
    [39]Adams T. A., Nease J., Tucker D., et al. Energy Conversion with Solid Oxide Fuel Cell Systems: A Review of Concepts and Outlooks for the Short-and Long-Term. Industrial & Engineering Chemistry Research [J],2013,52:3089-3111.
    [40]Kim M. J., Park J. H., Lee K. Y., et al. Cerium-Doped Yttrium Aluminum Garnet Hollow Shell Phosphors Synthesized via the Kirkendall Effect. ACS Applied Materials & Interfaces [J],2014,6: 1145-1151.
    [41]Heckert E. G, Karakoti A. S., Seal S., et al. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials [J],2008,29:2705-2709.
    [42]Babu S., Velez A., Wozniak K., et al. Electron Paramagnetic Study on Radical Scavenging Properties of Ceria Nanoparticles. Chemical Physics Letters [J],2007,442:405-408.
    [43]Heckman K. L., Decoteau W., Estevez A., et al. Custom Cerium Oxide Nanoparticles Protect against a Free Radical Mediated Autoimmune Degenerative Disease in the Brain. ACS Nano [J], 2013,7:10582-10596.
    [44]Celardo I., De Nicola M., Mandoli C., et al. Ce3+ Ions Determine Redox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles. ACS Nano [J],2011,5:4537-4549.
    [45]Tarnuzzer R. W., Colon J., Patil S., et al. Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters [J],2005,5:2573-2577.
    [46]Asati A., Kaittanis C., Santra S., et al. pH-Tunable Oxidase-Like Activity of Cerium Oxide Nanoparticles Achieving Sensitive Fluorigenic Detection of Cancer Biomarkers at Neutral pH. Analytical Chemistry [J],2011,83:2547-2553.
    [47]Chen R., Huo L., Shi X., et al. Endoplasmic Reticulum Stress Induced by Zinc Oxide Nanoparticles Is an Earlier Biomarker for Nanotoxicological Evaluation. ACS Nano [J],2014,8: 2562-2574.
    [48]Chaudhury K., Babu K. N., Singh A. K., et al. Mitigation of Endometriosis using Regenerative Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine [J],2013,9: 439-448.
    [49]Perez J. M., Asati A., Nath S., et al. Synthesis of Biocompatible Dextran-Coated Nanoceria with pH-Dependent Antioxidant Properties. Small [J],2008,4:552-556.
    [50]Pagliari F., Mandoli C., Forte G., et al. Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano [J],2012,6:3767-3775.
    [51]Lee S. S., Song W., Cho M., et al. Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano [J],2013,7:9693-9703.
    [52]Sardesai N. P., Andreescu D., Andreescu S. Electroanalytical Evaluation of Antioxidant Activity of Cerium Oxide Nanoparticles by Nanoparticle Collisions at Microelectrodes. Journal of the American Chemical Society [J],2013,135:16770-16773.
    [53]Hirst S. M., Karakoti A. S., Tyler R. D., et al. Anti-inflammatory Properties of Cerium Oxide Nanoparticles. Small [J],2009,5:2848-2856.
    [54]Soh N. Recent Advances in Fluorescent Probes for the Detection of Reactive Oxygen Species. Analytical and Bioanalytical Chemistry [J],2006,386:532-543.
    [55]Thannickal V. J., Fanburg B. L. Reactive Oxygen Species in Cell Signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology [J],2000,279:L1005-L1028.
    [56]Singh S., Dosani T., Karakoti A. S., et al. A Phosphate-dependent Shift in Redox State of Cerium Oxide Nanoparticles and its Effects on Catalytic Properties. Biomaterials [J],2011,32: 6745-6753.
    [57]Colon J., Herrera L., Smith J., et al. Protection from Radiation-induced Pneumonitis using Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine [J],2009,5: 225-231.
    [58]Colon J., Hsieh N., Ferguson A., et al. Cerium Oxide Nanoparticles Protect Gastrointestinal Epithelium from Radiation-induced Damage by Reduction of Reactive Oxygen Species and Upregulation of Superoxide Dismutase 2. Nanomedicine: Nanotechnology, Biology and Medicine [J],2010,6:698-705.
    [59]Pierscionek B. K., Li Y, Schachar R. A., et al. The Effect of High Concentration and Exposure Duration of Nanoceria on Human Lens Epithelial Cells. Nanomedicine:Nanotechnology, Biology and Medicine [J],2012,8:383-390.
    [60]Kim C. K., Kim T., Choi I. Y., et al. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angewandte Chemie International Edition [J],2012,51:11039-11043.
    [61]Niu J., Azfer A., Rogers L. M., et al. Cardioprotective Effects of Cerium Oxide Nanoparticles in a Transgenic Murine Model of Cardiomyopathy. Cardiovascular Research [J],2007,73: 549-559.
    [62]Wang J. H., Liu M., Lin M. C. Oxygen Reduction Reactions in the SOFC Cathode of Ag/CeO2. Solid State Ionics [J],2006,177:939-947.
    [63]Das M., Patil S., Bhargava N., et al. Auto-catalytic Ceria Nanoparticles Offer Neuroprotection to Adult rat Spinal Cord Neurons. Biomaterials [J],2007,28:1918-1925.
    [64]Chen J., Patil S., Seal S., et al. Rare Earth Nanoparticles Prevent Retinal Degeneration Induced by Intracellular Peroxides. Nature Nanotechnology [J],2006,1:142-150.
    [65]Korsvik C., Patil S., Seal S., et al. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles. Chemical Communications [J],2007,42:1056-1058.
    [66]Xue Y., Luan Q., Yang D., et al. Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles. The Journal of Physical Chemistry C [J],2011,115:4433-4438.
    [67]Niu J., Wang K., Kolattukudy P. E. Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-KB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract. Journal of Pharmacology and Experimental Therapeutics [J],2011,338:53-61.
    [68]Devadasu V. R., Bhardwaj V., Kumar M. N. V. R. Can Controversial Nanotechnology Promise Drug Delivery? Chemical Reviews [J],2012,113:1686-1735.
    [69]Patil S., Reshetnikov S., Haldar M. K., et al. Surface-Derivatized Nanoceria with Human Carbonic Anhydrase Ⅱ Inhibitors and Fluorophores:A Potential Drug Delivery Device. The Journal of Physical Chemistry C [J],2007,111:8437-8442.
    [70]Babu S., Cho J. H., Dowding J. M., et al. Multicolored Redox Active Upconverter Cerium Oxide Nanoparticle for Bio-imaging and Therapeutics. Chemical Communications [J],2010,46: 6915-6917.
    [71]Mandoli C., Pagliari F., Pagliari S., et al. Stem Cell Aligned Growth Induced by CeO2 Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Advanced Functional Materials [J],2010,20:1617-1624.
    [72]Pierscionek B. K., Li Y, Yasseen A. A., et al. Nanoceria Have no Genotoxic Effect on Human Lens Epithelial Cells. Nanotechnology [J],2010,21:1-8.
    [73]Xu C., Lin Y, Wang J., et al. Nanoceria-triggered Synergetic Drug Release Based on CeO2-capped Mesoporous Silica host-guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Advance Healthcare Material [J],2013,2:1591-1599.
    [74]Li M., Shi P., Xu C., et al. Cerium Oxide Caged Metal Chelator: Anti-aggregation and Anti-oxidation Integrated H2O2-responsive Controlled Drug Release for Potential Alzheimer's Disease Treatment. Chemical Science [J],2013,4:2536-2542.
    [75]Emerit J., Edeas M., Bricaire, F. Neurodegenerative Diseases and Oxidative Stress. Biomedicine Pharmacother [J],2004,58:39-46.
    [76]Lin Y. H., Ren J. S., Qu X. G. Catalytically Active Nanomaterials:A Promising Candidate for Artificial Enzymes. Accounts of Chemical Research [J],2014 (As soon as published)
    [77]Liu L., Zhang J., Su X., et al. Assessment of CdTe and CdHgTe Toxicity and Clearance. Journal of Biomedical Nanotechnology [J],2008,4:524-528.
    [78]李鸿程,周群芳,刘伟,等.量子点毒性效应的研究进展.中国科学B辑[J],2008,38:396-403.
    [79]Jiang X., Ahmed M., Deng Z., et al. Biotinylated Glyco-Functionalized Quantum Dots: Synthesis, Characterization, and Cytotoxicity Studies. Bioconjugate Chemistry [J],2009,20: 994-1001.
    [80]Bradburne C. E., Delehanty J. B., Boeneman Gemmill K., et al. Cytotoxicity of Quantum Dots Used for In Vitro Cellular Labeling: Role of QD Surface Ligand, Delivery Modality, Cell Type, and Direct Comparison to Organic Fluorophores. Bioconjugate Chemistry [J],2013,24:1570-1583.
    [81]Chen S., Hou Y., Cheng G, et al. Cerium Oxide Nanoparticles Protect Endothelial Cells from Apoptosis Induced by Oxidative Stress. Biological Trace Element Research [J],2013,154:156-166.
    [82]Xu C., Qu X. G Cerium Oxide Nanoparticle: a Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Materials [J],2014,6:e90
    [1]Brus L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. The Journal of Physical Chemistry [J],1986,90:2555-2560.
    [2]Hambrock J., Birkner A., Fischer R. A. Synthesis of CdSe Nanoparticles using Various Organometallic Cadmium Precursors. Journal of Materials Chemistry [J],2001,11:3197-3201.
    [3]Murray C. B., Norris D. J., Bawendi M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E= sulfur, selenium, tellurium) Semiconductor Nanocrystallites. Journal of the American Chemical Society [J],1993,115:8706-8715.
    [4]Steigerwald M. L., Alivisatos A. P., Gibson J. M., et al. Surface Derivatization and Isolation of Semiconductor Cluster Molecules. Journal of the American Chemical Society [J],1988,110: 3046-3050.
    [5]Yu W. W., Peng X. Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers. Angewandte Chemie International Edition [J],2002,41:2368-2371.
    [6]Qu L., Peng Z. A., Peng X. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Letters [1],2001,1:333-337.
    [7]Nair P. S., Fritz K. P., Scholes G. D. A Multiple Injection Method for Exerting Kinetic Control in the Synthesis of CdSe Nanorods. Chemical Communications [J],2004,39:2084-2085.
    [8]Bullen C. R., Mulvaney P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Letters [J],2004,4:2303-2307.
    [9]Peng Z. A., Peng X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. Journal of the American Chemical Society [J],2000,123:183-184.
    [10]Crouch D. J., O'brien P., Malik M. A., et al. A One-step Synthesis of Cadmium Selenide Quantum Dots from a Novel Single Source Precursor. Chemical Communications [J],2003,38: 1454-1455.
    [11]Cumberland S. L., Hanif K. M., Javier A., et al. Inorganic Clusters as Single-Source Precursors for Preparation of CdSe, ZnSe, and CdSe/ZnS Nanomaterials. Chemistry of Materials [J],2002,14: 1576-1584.
    [12]Green M., O'brien P. Recent Advances in the Preparation of Semiconductors as Isolated Nanometric Particles:New Routes to Quantum Dots. Chemical Communications [J],1999,35: 2235-2241.
    [13]Wang Q., Seo, D. K. Synthesis of Deep-Red-Emitting CdSe Quantum Dots and General Non-Inverse-Square Behavior of Quantum Confinement in CdSe Quantum Dots. Chemistry of Materials [J],2006,18:5764-5767.
    [14]Zhu J., Palchik O., Chen S., et al. Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. The Journal of Physical Chemistry B [J],2000,104:7344-7347.
    [15]Qu L., Peng X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. Journal of the American Chemical Society [J],2002,124:2049-2055.
    [16]刘剑波.量子点的制备、成像及其在化学生物分析中的应用研究.湖南大学博士论文[D],2011.
    [17]Cheng Y., Wang Y., Bao F., et al. Shape Control of Monodisperse CdS Nanocrystals:Hexagon and Pyramid. The Journal of Physical Chemistry B [J],2006,110:9448-9451.
    [18]Cozzoli P. D., Manna L., Curri M. L., et al. Shape and Phase Control of Colloidal ZnSe Nanocrystals. Chemistry of Materials [J],2005,17:1296-1306.
    [19]Joo J., Na H. B., Yu T., et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. Journal of the American Chemical Society [J],2003,125:11100-11105.
    [20]Li L. S., Pradhan N., Wang Y., et al. High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors. Nano Letters [J],2004,4:2261-2264.
    [21]Warner J. H., Tilley R. D. Synthesis and Self-Assembly of Triangular and Hexagonal CdS Nanocrystals. Advanced Materials [J],2005,17:2997-3001.
    [22]Deng Z., Cao L., Tang F., et al. A New Route to Zinc-Blende CdSe Nanocrystals:Mechanism and Synthesis. The Journal of Physical Chemistry B [J],2005,109:16671-16675.
    [23]Miao S., Hickey S. G., Rellinghaus B., et al. Synthesis and Characterization of Cadmium Phosphide Quantum Dots Emitting in the Visible Red to Near-Infrared. Journal of the American Chemical Society [J],2010,132:5613-5615.
    [24]Li X., Shen H., Li S., et al. Investigation on Type-Ⅱ Cu2S-CdS Core/Shell Nanocrystals: Synthesis and Characterization. Journal of Materials Chemistry [J],2010,20:923-928.
    [25]Zhou C., Shen H., Guo Y., et al. A Versatile Method for the Preparation of Water-soluble Amphiphilic Oligomer-coated Semiconductor Quantum Dots with High Fluorescence and Stability. Journal of Colloid and Interface Science [J],2010,344:279-285.
    [26]Niu J. Z., Shen H., Wang H., et al. Investigation on the Phosphine-free Synthesis of CdSe Nanocrystals by Cadmium Precursor Injection. New Journal of Chemistry [J],2009,33:2114-2119.
    [27]Shen H., Wang H., Tang Z., et al. High Quality Synthesis of Monodisperse Zinc-blende CdSe and CdSe/ZnS Nanocrystals with a Phosphine-free Method. Crystal Engineering Communication [J],2009,11:1733-1738.
    [28]Jasieniak J., Bullen C., Van Embden J., et al. Phosphine-Free Synthesis of CdSe Nanocrystals. The Journal of Physical Chemistry B [J],2005,109:20665-20668.
    [29]牛金钟.Ⅱ-Ⅵ族半导体纳米晶的合成及性质研究.河南大学博士论文[D],2010.
    [30]Choi Y., Kim H. P., Hong S. M., et al. In Situ Visualization of Gene Expression Using Polymer-Coated Quantum-Dot-DNA Conjugates. Small [J],2009,5:2085-2091.
    [31]Sreeremya T. S., Thulasi K. M., Krishnan A., et al. A Novel Aqueous Route To Fabricate Ultrasmall Monodisperse Lipophilic Cerium Oxide Nanoparticles. Industrial & Engineering Chemistry Research [J],2011,51:318-326.
    [32]Guo Y., Wu P. FTIR Spectroscopic Study of the Acrylamide States in AOT Reversed Micelles. Journal of Molecular Structure [J],2008,883-884:31-37.
    [33]Alekseev S. A., Zaitsev V. N., Botsoa J., et al. Fourier Transform Infrared Spectroscopy and Temperature-Programmed Desorption Mass Spectrometry Study of Surface Chemistry of Porous 6H-SiC. Chemistry of Materials [J],2007,19:2189-2194.
    [34]赵斌,蔡燕飞,彭维,等.聚丙烯酸修饰核壳结构水溶性量子点的制备及表征.光谱学与光谱分析[J],2011 31:3362-3365
    [35]张庆彬,孔祥贵,曾庆辉,等.CdSe/ZnSe量子点在油水两相体系下的聚合物包覆相转移及其光谱表征.光谱学与光谱分析[J],2010,30:435-439.
    [36]Huang M., Khor E., Lim L. Y. Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles:Effects of Molecular Weight and Degree of Deacetylation. Pharm Res [J],2004,21: 344-353.
    [37]Yamazoe S., Okumura T., Hitomi Y., et al. Mechanism of Photo-Oxidation of NH3 over TiO2: Fourier Transform Infrared Study of the Intermediate Species. The Journal of Physical Chemistry C [J],2007,111:11077-11085.
    [38]邢滨,李万万,孙康.有机体系中II-Ⅵ族量子点的制备及其合成机理.化学进展[J],2009,20:841-850
    [39]Zhong X., Xie R., Zhang Y., et al. High-Quality Violet-to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chemistry of Materials [J],2005,17:4038-4042.
    [40]Ghosh Chaudhuri R., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical reviews [J],2012,112:2373-2433.
    [41]Wang, H. Q., Wang, J. H., Li, Y. Q., et al. Multi-color Encoding of Polystyrene Microbeads with CdSe/ZnS Quantum Dots and its Application in Immunoassay. Journal of Colloid and Interface Science [J],2007,316:622-627.
    [42]吴战宇,撒宗朋,邱芳萍,等.多功能两亲梳状聚合物的合成及包覆荧光量子点.高分子学报[J],2010,5:516-521.
    [43]Xie H. Y, Zuo C., Liu Y, et al. Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small [J],2005,5:506-509.
    [44]Mahler B., Lequeux N., Dubertret B. Ligand-Controlled Polytypism of Thick-Shell CdSe/CdS Nanocrystals. Journal of the American Chemical Society [J],2009,132:953-959.
    [45]Kim W., Lim S. J., Jung S., et al. Binary Amine-Phosphine Passivation of Surface Traps on CdSe Nanocrystals. The Journal of Physical Chemistry C [J],2010,114:1539-1546.
    [46]Ghosh Chaudhuri R., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chemical Review [J],2012,112:2373-2433.
    [47]Simth A.M., Nie S. Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering. Accounts of Chemical Research [J],2010,43:190-200.
    [48]Mansur H. S. Quantum Dots and Nanocomposites. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology [J],2010,2:113-129.
    [49]Smith A. M., Duan H., Mohs A. M., et al. Bioconjugated Quantum Dots for in vivo Molecular and Cellular Imaging. Advanced Drug Delivery Reviews [J],2008,60:1226-1240.
    [50]王洪哲,赵慧玲,申怀彬,等.利用离子型Cd源制备ZnSe/CdSe核-壳结构纳米晶.中国科学:化学[J],2010,40:1529-1597.
    [1]Reinhardt C. G, Krugh T. R. A Comparative Study of Ethidium Bromide Complexes with Dinucleotides and DNA: Direct Evidence for Intercalation and Nucleic Acid Sequence Preferences. Biochemistry [J],1978,17:4845-4854.
    [2]李来生,黄伟东,王瑞琼.荧光法研究抗癌药物更生霉素D与小牛胸腺DNA的作用机理.化学学报[J],1999,57:572-577.
    [3]Leary J. J. Proceedings of the National Academy of the United Steds [P] 1983,80:4045.
    [4]Langer P. R. Proceedings of the National Academy of the United Steds [P] 1981,78:6633.
    [5]Morales-Narvaez E., Monton H., Fomicheva A., et al. Signal Enhancement in Antibody Microarrays Using Quantum Dots Nanocrystals:Application to Potential Alzheimer's Disease Biomarker Screening. Analytical Chemistry [J],2012,84:6821-6827.
    [6]Erogbogbo F., Tien C. A., Chang, C.W., et al. Bioconjugation of Luminescent Silicon Quantum Dots for Selective Uptake by Cancer Cells. Bioconjugate Chemistry [J],2011,22:1081-1088.
    [7]Li M., Li J., Sun L., et al. Measuring Interactions and Conformational Changes of DNA Molecules using Electrochemiluminescence Resonance Energy Transfer in the Conjugates Consisting of Luminol, DNA and Quantum Dot. Electrochimica Ada [J],2012,80:171-179.
    [8]Chen Y., Wang L., Jiang W. Micrococcal Nuclease Detection Based on Peptide-bridged Energy Transfer between Quantum Dots and Dye-labeled DNA. Talanta [J],2012,97:533-538.
    [9]He X., Ma N. A General Strategy for Label-Free Sensitive DNA Detection Based on Quantum Dot Doping. Analytical Chemistry [J],2014:(As soon as published)
    [10]Zhang C., Yan J., Liu C., et al. One-Pot Synthesis of DNA-CdTe:Zn2+ Nanocrystals Using Na2Te03 as the Te Source. ACS Applied Materials & Interfaces [J],2014,6:3189-3194.
    [11]Su S., Fan J., Xue B., et al. DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA. ACS Applied Materials & Interfaces [J],2013,6: 1152-1157.
    [12]Jiang G, Susha A. S., Lutich A. A., et al. Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection. ACS Nano [J],2009,3: 4127-4131.
    [13]Robelek R., Niu L., Schmid E. L., et al. Multiplexed Hybridization Detection of Quantum Dot-Conjugated DNA Sequences Using Surface Plasmon Enhanced Fluorescence Microscopy and Spectrometry. Analytical Chemistry [J],2004,76:6160-6165.
    [14]Kim T., Noh M., Lee H., et al. Fluorescence-Based Detection of Point Mutation in DNA Sequences by CdS Quantum Dot Aggregation. The Journal of Physical Chemistry B [J],2009,113: 14487-14490.
    [15]Mahtab R., Harden H. H., Murphy C. J. Temperature-and Salt-Dependent Binding of Long DNA to Protein-Sized Quantum Dots:Thermodynamics of "Inorganic Protein"-DNA Interactions. Journal of the American Chemical Society [J],1999,122:14-17.
    [16]Han M. Y., Gao X. H., Su Jack Z., et al. Quantum-dot-tagged microbeads for multiplexed
    optical coding of biomolecules. Nature Biotechnology [J],2001,19:631-635. [17]Wu X.Y., Liu H.J., Liu J.Q., et al. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology [J],2002,21: 41-46.
    [18]Ghazani A. A., Lee J. A., Klostranec J., et al. High Throughput Quantification of Protein Expression of Cancer Antigens in Tissue Microarray Using Quantum Dot Nanocrystals. Nano Letters [J],2006,6:2881-2886.
    [19]Ebenstein Y., Gassman N., Kim S., et al. Lighting Up Individual DNA Binding Proteins with Quantum Dots. Nano Letters [J],2009,9:1598-1603.
    [20]Li H., Shih, W. Y, Shih W. H. Synthesis and Characterization of Aqueous Carboxyl-Capped CdS Quantum Dots for Bioapplications. Industrial & Engineering Chemistry Research [J],2007,46: 2013-2019.
    [21]He Y., Su Y, Yang X., et al. Photo and pH Stable, Highly-Luminescent Silicon Nanospheres and Their Bioconjugates for Immunofluorescent Cell Imaging. Journal of the American Chemical Society [J],2009,131:4434-4438.
    [22]Gupta M., Caniard A., Touceda-Varela A., et al. Nitrilotriacetic Acid-Derivatized Quantum Dots for Simple Purification and Site-Selective Fluorescent Labeling of Active Proteins in a Single Step. Bioconjugate Chemistry [J],2008,19:1964-1967.
    [23]Yezhelyev M. V, Qi L., O'regan R. M., et al. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging. Journal of the American Chemical Society [J],2008,130: 9006-9012.
    [24]Yu W. W., Qu L., Guo W., et al. Experimental Determination of the Extinction Coefficient of CdTe, CdSe and CdS Nanocrystals. Chemistry of Materials [J],2004,16:560-560.
    [25]Smith A. M., Duan H., Rhyner M. N., et al. A Systematic Examination of Surface Coatings on the Optical and Chemical Properties of Semiconductor Quantum Dots. Physical Chemistry Chemical Physics [J],2006,8:3895-3903.
    [26]王镜岩,朱圣庚,徐长法.生物化学[M].第三版(下册),高等教育出版社,2002,407-412.
    [27]Warnement M. R., Tomlinson I. D., Chang J. C., et al. Controlling the Reactivity of Ampiphilic Quantum Dots in Biological Assays through Hydrophobic Assembly of Custom PEG Derivatives. Bioconjugate Chemistry. [J],2008,19:1404-1413.
    [28]Warnement M. R., Tomlinson I. D., Chang J. C., et al. Controlling the Reactivity of Ampiphilic Quantum Dots in Biological Assays through Hydrophobic Assembly of Custom PEG Derivatives. Bioconjugate Chemistry [J],2008,19:1404-1413.
    [29]Pons T., Uyeda H. T., Medintz I. L.,et al. Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots. Journal of Physical Chemistry B [J],2006, 110:20308-20316.
    [30]Tortiglione C., Quarta A., Tino A., et al. Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for Staining Hydra Wulgaris. Bioconjugate Chemistry. [J],2007,18: 829-835.
    [31]Choi Y., Kim H. P., Hong S. M., et al. In situ Visualization of Gene Expression Using Polymer-Coated Quantum-Dot-DNA Conjugates. Small [J],2009,5:2085-2091.
    [32]Bernardin A., Cazet A. L., Guyon L., et al. Copper-Free Click Chemistry for Highly Luminescent Quantum Dot Conjugates:Application to in Vivo Metabolic Imaging. Bioconjugate Chemistry [J],2010,21:583-588.
    [33]Zhang Y, Liu K. J., Wang T. L., et al. Mapping DNA Quantity into Electrophoretic Mobility through Quantum Dot Nanotethers for High-Resolution Genetic and Epigenetic Analysis. ACS Nano [J],2011,6:858-864.
    [34]Abraham R. J. Spectrometric Identification of Organic Compounds,6th edition Wiley, New York,1998. Magnetic Resonance in Chemistry [J],1999,37:864-865.
    [35]Klessinger M. Book Review: Spectrometric Identification of Organic Compounds. By R. M. Silverstein and G. C. Bassler. Angewandte Chemie International Edition in English [J],1968,7: 405-405.
    [36]Bernardin A., Cazet A., Guyon L., et al. Copper-Free Click Chemistry for Highly Luminescent Quantum Dot Conjugates:Application to in Vivo Metabolic Imaging. Bioconjugate Chemistry [J], 2006,110:20308-20316.
    [37]He Y, Su Y. Y, Yang X. B., et al. Photo and pH Stable, Highly-Luminescent Silicon Nanospheres and Their Bioconjugates for Immunofluorescent Cell Imaging. Journal of American Chemical Society. [J],2009,131:4434-4438.
    [1]Hsiao I. L., Huang Y. J. Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO2 Nanoparticles toward Human Lung Epithelial Cells. Science of The Total Environment [J],2011,409:1219-1228.
    [2]Easo S. L., Mohanan P. V. Dextran Stabilized Iron Oxide Nanoparticles:Synthesis, Characterization and in Vitro Studies. Carbohydrate Polymers [J],2013,92:726-732.
    [3]Nel A., Xia T., Madler L., et al. Toxic Potential of Materials at the Nanolevel. Science [J],2006, 311:622-627.
    [4]Xu J., Yin A., Zhao J., et al. Surfactant-Free Microemulsion Composed of Oleic Acid, n-Propanol, and H2O. The Journal of Physical Chemistry B [J],2012,117:450-456.
    [5]Zhang J., Ju X., Wu Z. Y, et al. Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method. Chemistry of Materials [J],2001,13:4192-4197.
    [6]Han W. Q., Wu L., Zhu Y. Formation and Oxidation State of CeO2-x Nanotubes. Journal of the American Chemical Society [J],2005,127:12814-12815.
    [7]Lee S. S., Song W., Cho M., et al. Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano [J],2013,7:9693-9703.
    [8]Liu W., Chai J. L., Chen L. S., et al. Effect of the Composition of Mixed Oils on the Phase Behavior and Solubilization Ability of Microemulsion Systems. Journal of Chemical & Engineering Data [J],2012,57:469-474.
    [9]Okoli C., Sanchez-Dominguez M., Boutonnet M., et al. Comparison and Functionalization Study of Microemulsion-Prepared Magnetic Iron Oxide Nanoparticles. Langmuir [J],2012,28: 8479-8485.
    [10]Xu P., Han X., Wang M. Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse Microemulsion Technique. The Journal of Physical Chemistry C [J], 2007,111:5866-5870.
    [11]Li X., Zheng W., He G, et al. Morphology Control of TiO2 Nanoparticle in Microemulsion and Its Photocatalytic Property. ACS Sustainable Chemistry & Engineering [J],2013,2:288-295.
    [12]Nagy K., Dekany I. Preparation of Nanosize Cerium Oxide Particles in W/O Microemulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects [J],2009,345:31-40.
    [13]潘海敏,杨伯伦,李萌萌,等.基于相图法的W/O型微乳体系稳定性分析.高校化学工程学报[J],2005,20:679-684.
    [14]Bumajdad A., Eastoe J., Mathew A. Cerium Oxide Nanoparticles Prepared in Self-assembled Systems. Advances in Colloid and Interface Science [J],2009,147-148:56-66.
    [15]Nagy K., Dekany I. Preparation of Nanosize Cerium Oxide Particles in W/O Microemulsions. Colloids and Surfaces A:Physicochemical and Engineering Aspects [J],2009,345:31-40.
    [16]徐桂英,栾玉霞,刘军.双烃链表面活性剂的聚集行为及其应用.物理化学学报[J],2005,21:450-457.
    [17]Asati A., Santra S., Kaittanis C., et al. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano [J],2010,4:5321-5331.
    [18]Perez J. M., Asati A., Nath S., et al. Synthesis of Biocompatible Dextran-Coated Nanoceria with pH-Dependent Antioxidant Properties. Small [J],2008,4:552-556.
    [19]Du X., Zhang D., Shi L., et al. Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. The Journal of Physical Chemistry C [J],2012,116:10009-10016.
    [20]Barbara K. P., Yuebin L., Akeel A. Y., et al. Nanoceria Have no Genotoxic Effect on Human Lens Epithelial Cells. Nanotechnology [J],2010,21:035102.
    [21]Wang J. A., Dominguez J. M., Montoya A., et al. New Insights into the Defective Structure and Catalytic Activity of Pd/Ceria. Chemistry Material [J],2002,14:4676-4683.
    [22]Farsad M., Vernerey F. J., Park H. S. An Extended Finite Element/Level Set Method to Study Surface Effects on the Mechanical Behavior and Properties of Nanomaterials. International Journal for Numerical Methods in Engineering [J],2010,84:1466-1489.
    [23]李泉,李维红,翁诗甫,等.水/AOT/正庚烷微乳体系中水结构的FT-IR研究.[J],物理化学学报,1997,5:438-443.
    [24]Imagawa H., Suda A., Yamamura K., et al. Monodisperse CeO2 Nanoparticles and Their Oxygen Storage and Release Properties. The Journal of Physical Chemistry C [J],2011,115: 1740-1745.
    [25]Guo Y, Wu P. FTIR Spectroscopic Study of the Acrylamide States in AOT Reversed Micelles. Journal of Molecular Structure [J],2008,883-884:31-37.
    [26]Alekseev S. A., Zaitsev V. N., Botsoa J., et al. Fourier Transform Infrared Spectroscopy and Temperature-Programmed Desorption Mass Spectrometry Study of Surface Chemistry of Porous 6H-SiC. Chemistry of Materials [J],2007,19:2189-2194.
    [27]Wang J. A., Dominguez J. M., Montoya A., et al. New Insights into the Defective Structure and Catalytic Activity of Pd/Ceria. Chemistry of Materials [J],2002,14:4676-4683.
    [28]Ho C., Yu J. C., Kwong T., et al. Morphology-Controllable Synthesis of Mesoporous CeO2 Nano-and Microstructures. Chemistry of Materials [J],2005,17:4514-4522.
    [29]Asati A., Santra S., Kaittanis C., et al. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angewandte Chemie International Edition [J],2009,48:2308-2312.
    [30]Sehgal A., Lalatonne Y., Berret J. F., et al. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid):Toward Stable Dispersions. Langmuir [J],2005,21: 9359-9364.
    [31]Chanteau B., Fresnais J., Berret J. F. Electrosteric Enhanced Stability of Functional Sub-10 nm Cerium and Iron Oxide Particles in Cell Culture Medium. Langmuir [J],2009,25:9064-9070.
    [32]Sreeremya T. S., Thulasi K. M., Krishnan A., et al. A Novel Aqueous Route To Fabricate Ultrasmall Monodisperse Lipophilic Cerium Oxide Nanoparticles. Industrial & Engineering Chemistry Research [J],2011,51:318-326.
    [33]Huang M., Khor E., Lim L. Y. Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation. Pharmaceutical Research [J],2004,21:344-353.
    [34]Yamazoe S., Okumura T., Hitomi Y, et al. Mechanism of Photo-Oxidation of NH3 over TiO2: Fourier Transform Infrared Study of the Intermediate Species. The Journal of Physical Chemistry C [J],2007,111:11077-11085.
    [35]Liu B.C., Li C.Y., Zhang Y. F., et al. Investigation of Catalytic Mechanism of Formaldehyde Oxidation over Three-dimensionally Ordered Macroporous Au/CeO2 Catalyst. Applied Catalysis B: Environmental [J],2012,111-112:467-475.
    [36]Liu B. C., Liu Y, Li C. Y., et al. Three-dimensionally Ordered Macroporous Au/CeO2-Co3O4 Catalysts with Nanoporous Walls for Enhanced Catalytic Oxidation of Formaldehyde. Applied Catalysis B:Environmental [J],2012,127:47-58.
    [37]Korsvik C., Patil S., Seal S., et al. Superoxide Dismutase Mimetic Properties Exhibited by Vacancy Engineered Ceria Nanoparticles. Chemical Communications [J],2007,42:1056-1058.
    [38]Deshpande S., Patil S., Kuchibhatla S. VNT., et al. Size Dependency Variation in Lattice Parameter and Valency States in Nanocrystalline Cerium Oxide. Applied Physics Letters [J],2005, 87:133113-133116.
    [39]Colon J., Herrera L., Smith J., et al. Protection from Radiation-induced Pneumonitis using Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine [J],2009,5: 225-231.
    [40]Shoko E., Smith M. F., Mckenzie R. H. Charge Distribution Near Bulk Oxygen Vacancies in Cerium Oxide. Journal of Physics: Condesed Matter [J],2010,22:223201-223205.
    [41]吕广明,王艳杰,刘瑞,等.纳米氧化铈的抗氧化生物应用.中国科学:化学[J],2013,43:1309-1321.
    [I]Heckert E. G., Karakoti A. S., Seal S., et al. The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials [J],2008,29:2705-2709.
    [2]Babu S., Velez A., Wozniak K., et al. Electron Paramagnetic Study on Radical Scavenging Properties of Ceria Nanoparticles. Chemical Physics Letters [J],2007,442:405-408.
    [3]Tarnuzzer R. W., Colon J., Patil S., et al. Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters [J],2005,5:2573-2577.
    [4]Asati A., Kaittanis C., Santra S., et al. pH-Tunable Oxidase-Like Activity of Cerium Oxide Nanoparticles Achieving Sensitive Fluorigenic Detection of Cancer Biomarkers at Neutral pH. Analytical Chemistry [J],2011,83:2547-2553.
    [5]Chaudhury K., Babu K. N., Singh A. K., et al. Mitigation of Endometriosis Using Regenerative Cerium Oxide Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine [J],2013,9: 439-448.
    [6]Perez J. M., Asati A., Nath S., et al. Synthesis of Biocompatible Dextran-Coated Nanoceria with pH-Dependent Antioxidant Properties. Small [J],2008,4:552-556.
    [7]Hirst S. M., Karakoti A. S., Tyler R. D., et al. Anti-inflammatory Properties of Cerium Oxide Nanoparticles. Small [J],2009,5:2848-2856.
    [8]Hsiao I. L., Huang Y. J. Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO2 Nanoparticles toward Human Lung Epithelial Cells. Science of The Total Environment [J],2011,409:1219-1228.
    [9]Easo S. L., Mohanan P. V. Dextran Stabilized Iron Oxide Nanoparticles: Synthesis, Characterization and in Vitro Studies. Carbohydrate Polymers [J],2013,92:726-732.
    [10]An H., Liu Q., Ji Q., et al. DNA Binding and Aggregation by Carbon Nanoparticles. Biochemical and Biophysical Research Communications [J],2010,393:571-576.
    [11]Yin Win K., Feng, S. S. Effects of Particle Size and Surface Coating on Cellular Uptake of Polymeric Nanoparticles for Oral Delivery of Anticancer Drugs. Biomaterials [J],2005,26: 2713-2722.
    [12]Lin W., Huang Y. W., Zhou X. D., et al. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. International Journal of Toxicology [J],2006,25:451-457.
    [13]Auffan M., Rose J., Orsiere T., et al. CeO2 Nanoparticles Induce DNA Damage towards Human Dermal Fibroblasts in Vitro. Nanotoxicology [J],2009,3:161-171.
    [14]Yokel R. A., Florence R. L., Unrine J. M., et al. Biodistribution and Oxidative Stress Effects of a Systemically-introduced Commercial Ceria Engineered Nanomaterial. Nanotoxicology [J],2009, 3:234-248.
    [15]Asati A., Santra S., Kaittanis C., et al. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACSNano [J],2010,4:5321-5331.
    [16]Jemal A., Siegel R., Ward E., et al. Cancer Statistics,2009. CA:A Cancer Journal for Clinicians [J],2009,59:225-249.
    [17]Melvin L., Anne L., Hashem B. E. S. Noncardia Gastric Adenocarcinoma Remains an Important and Deadly Cancer in the United States: Secular Trends in Incidence and Survival. The American Journal of Gastroenterology [J],2006,101:2485-2492.
    [18]蔡琳,Goldsten B. Y., Parkn D. M., et al.东亚地区癌症负担和预防策略.肿瘤[J],2008,28:410-414.
    [19]Roukos D. H., Kappas A. M. Perspectives in the Treatment of Gastric Cancer. Nature Clinical Practice Oncology [J],2005,2:98-107.
    [20]Friedman A., Arosio P., Finazzi D., et al. Ferritin as an Important Player in Neurodegeneration. Parkinsonism & Related Disorders [J],2011,17:423-430.
    [21]Valko M., Rhodes C. J., Moncol J., et al. Free Radicals, Metals and Antioxidants in Oxidative Stress-induced Cancer. Chemico-Biological Interactions [J],2006,160:1-40.
    [22]Seifried H. E., Anderson D. E., Fisher E. I., et al. A Review of the Interaction among Dietary Antioxidants and Reactive Oxygen Species. The Journal of Nutritional Biochemistry [J],2007,18: 567-579.
    [23]Beckman K. B., Ames B. N. The Free Radical Theory of Aging Matures. Physiological Reviews [J],1998,78:547-581.
    [24]Celardo I., Pedersen J. Z., Traversa E., et al. Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale [J],2011,3:1411-1420.
    [25]吕广明,王艳杰,刘瑞,等.纳米氧化铈的抗氧化生物应用.中国科学:化学[J],2013,43:1309-1321.
    [26]陈云芳,王胜,李冰.MTT法用于药物对L2细胞毒性的实验研究.现代生物医学进展[J],2012,12:5451-5455.
    [27]Jin C. Y., Zhu B. S., Wang X. F., et al. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chemical Research in Toxicology [J],2008,21:1871-1877.
    [28]黎瑞珍,杨肃清,陈贻锐,等.超氧化物歧化酶(SOD)活性的测定及其应用研究.琼州大学学报[J],2004,11:34-36.
    [29]夏奕明,朱莲珍.血和组织中谷胱甘肽过氧化物酶活力的测定方法.卫生研究[J],1986,16:29-33.
    [30]Suzuki H., Toyooka T., Ibuki Y. Simple and Easy Method to Evaluate Uptake Potential of Nanoparticles in Mammalian Cells Using a Flow Cytometric Light Scatter Analysis. Environmental Science & Technology [J],2007,41:3018-3024.
    [31]Nel A., Xia T., Madler L., et al. Toxic Potential of Materials at the Nanolevel. Science [J],2006, 311:622-627.
    [32]Xia T., Kovochich M., Liong M., et al. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano [J],2008,2:2121-2134.
    [33]Pierscionek B. K., Li Y., Schachar R. A., et al. The Effect of High Concentration and Exposure Duration of Nanoceria on Human Lens Epithelial Cells. Nanomedicine: Nanotechnology, Biology and Medicine [J],2012,8:383-390.
    [34]Yin H., Too H. P., Chow G. M. The Effects of particle Size and Surface Coating on the Cytotoxicity of Nickel Ferrite. Biomaterials [J],2005,26:5818-5826.
    [35]Xie J., Xu C., Kohler N., et al. Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Advanced Materials [J],2007,19: 3163-3166.
    [36]Mahmoudi M., Simchi A., Imani M. Cytotoxicity of Uncoated and Polyvinyl Alcohol Coated Superparamagnetic Iron Oxide Nanoparticles. The Journal of Physical Chemistry C [J],2009,113: 9573-9580.
    [37]Chen J., Zhou H., Santulli A. C., et al. Evaluating Cytotoxicity and Cellular Uptake from the Presence of Variously Processed TiO2 Nanostructured Morphologies. Chemical Research in Toxicology [J],2010,23:871-879.
    [38]Xu M., Zhao Y., Feng M. Polyaspartamide Derivative Nanoparticles with Tunable Surface Charge Achieve Highly Efficient Cellular Uptake and Low Cytotoxicity. Langmuir [J],2012,28: 11310-11318.
    [39]Lee S. S., Song W., Cho M., et al. Antioxidant Properties of Cerium Oxide Nanocrystals as a Function of Nanocrystal Diameter and Surface Coating. ACS Nano [J],2013,7:9693-9703.
    [40]Verma A., Stellacci F. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small [J], 2010,6:12-21.
    [41]袁红,江素君,尹洪萍.流式细胞仪在医学实验中的应用.健康研究[J],2009,4:306-308.
    [42]刘慧玲.二氧化铈纳米颗粒促人肺癌细胞A549增殖作用的机制研究.河北大学硕士论文[D],2011.
    [43]Verma A., Stellacci F. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small [J], 2010,6:12-21.
    [44]Celardo I., De Nicola M., Mandoli C., et al. Ce3+ Ions Determine Redox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles. ACS Nano [J],2011,5:4537-4549.
    [45]Pirmohamed T., Dowding J. M., Singh S., et al. Nanoceria Exhibit Redox State-dependent Catalase Mimetic Activity. Chemical Communications [J],2010,46:2736-2738.
    [46]Pagliari F., Mandoli C., Forte G., et al. Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano [J],2012,6:3767-3775.
    [47]Liu X., Wei W., Yuan Q., et al. Apoferritin-CeO2 Nano-truffle that has Excellent Artificial Redox Enzyme Activity. Chemical Communications [J],2012,48:3155-3157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700