用户名: 密码: 验证码:
自主式智能体的跟踪控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪以自主式智能体(Autonomous Intelligent Agents)为代表的机器人系统得到了人们的广泛关注。轮式移动机器人(Wheeled Mobile Robots, WMRs)和自主式水下航行器(Autonomous Underwater Vehicles, AUVs)是其中的典型代表。WMR和AUV分别能在陆地和水中自主执行各种复杂的任务,且在民用、工业及军事领域方面有广泛的应用。在执行海底石油管道和海底电缆维修检测、地形地貌探测、海洋观测以及军事应用等任务时都需要智能体能够高效精确地跟踪特定曲线,这使得研究如何实现自主式智能体的跟踪控制具有重要意义。其中AUV是一类比较复杂的非线性系统,状态向量之间相互耦合,控制难度较大。本文主要的研究内容和创新点现概括如下:
     1.研究WMR及全驱动AUV的点镇定问题。首先建立极坐标系下的系统方程,基于Lyapunov方法得到运动学控制器设计方法。其次,结合系统的动力学特性,利用Lyapunov方法和Backstepping法将运动学控制器拓展到动力学,设计出光滑的控制律。仿真实例验证设计方法的有效性。
     2.提出WMR在有限时间内的停车控制问题,即设计控制策略使机器人在有限时间内停靠在预先给定的停车区域内。基于极坐标系下机器人的非线性运动模型,将机器人运动控制系统分解为原地转动的线性系统及直线运动和转动结合的弱非线性系统两种形式。利用Lyapunov设计方法,得到了在有限时间内机器人到达给定停车区域的切换控制律,并给出了到达给定区域所需时间的估算公式。仿真算例说明控制方法的有效性。
     3.基于级联方法研究一类质心和几何中心不重合的WMR的自适应轨迹跟踪控制问题和海流影响下AUV的轨迹跟踪问题。将跟踪误差分解为位置和方位角误差两个子系统,利用Backstepping法和Lyapunov方法设计位置跟踪控制器,利用Lyapunov方法设计航向角跟踪控制器。对于WMR,针对参数未知的情况,通过自适应方法进行参数估计,给出自适应轨迹跟踪控制律的设计方法,并保证轨迹跟踪系统的稳定性。对于欠驱动AUV系统,给出海流影响下轨迹跟踪控制器的设计方法,同时给出了部分控制器参数的调整方法。
     4.研究海流影响及参数不确定条件下AUV的地形跟踪控制。基于Serret-Frenet坐标系,建立海流影响下的路径跟踪误差方程,并引入额外的系统自由度来达到控制目的。利用Lyapunov方法设计AUV的运动学跟踪控制器,然后采用Backstepping法得到动力学跟踪控制器,最后针对AUV参数未知的情况,给出其自适应控制方案。给出不同地形仿真实例与效果图,验证控制方法的可行性。
     5.研究时滞依赖的非线性AUV系统的H∞控制。通过对Fossen提出的AUV六自由度模型的简化,给出非线性四自由度的AUV数学模型,并考虑到时滞和海流、风浪等因素的影响,得到不确定时滞系统,采用线性矩阵不等式(LinearMatrix Inequality, LMI)方法和积分不等式技术得到时滞依赖的H∞控制律的设计方法,仿真结果表明所设计控制方法的有效性。
21st century Autonomous Intelligent Agents have been widely concerned as therespresentative of the robot systems. Wheeled Mobile Robots (WMRs) andAutonomous Underwater Vehicles (AUVs) are typical ones of them. WMR and AUVcan autonomously perform complex tasks both on land and in water, respectively.They are widely used in civil, industrial and military fields. In the seabed oil pipelineand sunmarine cable detection, topograph detection, ocean observation and militaryapplications, intelligent agents should track a specific curve efficiently and accurately.It is of significant in reseaching the tracking control of autonomous intelligent agents.AUV is a class of complex nonlinear systems, mutual coupling between the statevectors. This increases the difficulty for the control of AUV. The major results andinnovations of this dissertation are summarized as follows.
     1. The point stabilizaion of WMR and full-actuated AUV are discussed. First, thesystem equations are established in polar coordinates. The designing methods ofkinematic controller are obtained. Next, the kinematic controller is extended todynamic controller through Lyapunov methods and Backstepping combined with thedynamic characteristics of the system. The smooth control laws are designed. Thesimulation results show the effectiveness of the control method.
     2. The parking problem of WMR in finite time is proposed. The control objectiveis to make the robot stop in a pre-given parking area. Based on the nonlinear motionmodel of the robot in polar coordinates, the motion control system of the robot isdivided into two types. The two types are the linear system of rotation and the weaklynonlinear system of rectilinear motion together with rotation. The switching controllaws are obtained through Lyapunov designing method. The control laws guaranteethe robot reach a given parking domain in finite time. The estimatin formula of thefinite time is obtained. A simulation example illustrates the effectiveness of the designing method.
     3. The problem of adaptive trajectory tracking control for WMR and the problemof trajectory tracking control for underactuated AUV based on cascaded method isresearched. There is a distance between the mass center and the geometrical center ofthe WMR. The tracking error system is divided into two subsystems. They are theposition and the orientation error system. Backstepping technique and Lyapunovmethod are applied to design the position tracking controller. Lyapounov method isapplied to design the orientation tracking controller. An adaptive tracking control lawis proposed to deal with the circumstance with the unknown parameters for WMR.The stability of the system of trajectory tracking is ensured. The designing method oftrajectory tracking controller for the underactuate AUV on the horizontal plane in thepresence of ocean currents is obtained. The adjustment methods of some controllerparameters are derived.
     4. The bottom-following control problem of underactuated AUV in the presenceof ocean currents and uncertain parameters is proposed. The Serret-Frenet frame isused to describe the bottom-following of the AUV. An extra degree of freedom forcontroller design is introduced. It make the virtual AUV can regulate its velocityalong with the real AUV. Based on Lyapunov method and Backstepping techniques,an adaptive controller is designed to ensure that the AUV converges to the desiredpath asymptotically. Different terrain simulations and effect diagrams are given toshow the effectiveness of the proposed controllers.
     5. Delay-dependentH∞control for nonlinear AUV is researched. Bysimplifying the Fossen’s six degrees model of AUV, the AUV’s four degrees model isobtained. The uncertain time-delay system is built through taking into accout theeffect of time delay and ocean currents, waves and other factors. Linear matrixinequality (LMI) and integral inequality techniques are applied to derivedelay-dependentH∞control laws. Simulation results illustrate the effectiveness ofthe control methods proposed.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000
    [2] Curtin T B, Crimmins D M, Curcio J, et al. Autonomous underwater vehicles: Trends andtransformations. Marine Technology Society Journal,2005,39(3):65-75
    [3] Zain Z M, Watanabe K, Izumi K, et al. A nonholonomic control method for stabilizing anX-AUV. Artificial Life and Robotics,2011,16(2):202-207
    [4] Aguiar A P, Hespanha J P, Pascoal A M. Switched seesaw control for the stabilization ofunderactuated vehicles. Automatica,2007,43(12):1997-2008
    [5] Christopher I B. On Brockett’ necessary condition for stabilizability and the topology ofliapunov functionN. Communications in Information and Systems,2008,8(4):333-352
    [6] Vanni F, Aguiar A P, Pascoal A. Nonlinear motion control of multiple AutonomousUnderwater Vehicles. Proceedings of the7th IFAC Conference on Control Applications inMarine Systems,2007:75-80
    [7] Yang E F, Gu D B. Nonlinear formation-keeping and mooring control of multipleautonomous underwater vehicles. IEEE-ASME Transactions on mechatronics,2007,12(2):164-178
    [8] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV. IEEE Journalof Oceanic Engineering,2008,33(2):89-102
    [9] Petillot Y, Tena Ruiz I, Lane D M. Underwater vehicle obstacle avoidance and pathplanning using a multi-beam forward looking sonar. IEEE Journal of Oceanic Engineering,2001,26(2):240-251
    [10] Jones T S. Inspection of composites using the automated ultrasonic scanning system(AUSS). Materials Evaluation,1985,43(6):746-753
    [11] Evans J C, Keller K M, Smith J S, et al. Docking techniques and evaluation trials of theSWIMMER AUV: An autonomous deployment AUV for workclass ROVs. Proceedings ofthe Oceans Conference Record,2001,1:520-528
    [12] Cowen S, Briest S, Dombrowski J. Underwater docking of autonomous undersea vehiclesusing optical terminal guidance. Proceedings of the Oceans Conference Record,1997,2:1143-1147
    [13] Healey A J. Application of formation control for multi-vehicle robotic minesweeping.Proceedings of the40th IEEE Conference on Decision and Control,2001,2:1497-1502
    [14] Healey A J, Kim J. Control and random searching with multiple robots. Proceedings of the39th IEEE Conference on Decision and Control,2000,1:340-345
    [15] Zimmerman R, D'Spain G L, Chadwell C D. Decreasing the radiated acoustic and vibrationnoise of a mid-size AUV. IEEE Journal of Oceanic Engineering,2005,30(1):179-187
    [16] Von Alt C J, Grassle J F. LEO-15an unmanned long term environmental observatory.Proceedings of Mastering the Oceans Through Technology,1992,2:849-854
    [17] Fodrea L R, Healey A J. Obstacle avoidance considerations for the REMUS autonomousunderwater vehicle. Proceedings of the ASME OMAE Conference,2003:537-543
    [18] Yoerger D R, Jakuba M, Bradley A M, et al. Techniques for deep sea near bottom surveyusing an autonomous underwater vehicle. International Journal of Robotics Research,2007,26(1):41-54
    [19] Maki T. Development of advanced secondary cables for the Kaiko. Sea Technology,2006,47(7):32-34
    [20] Murashima T, Nakajoh H, Takami H, et al.11,000m class free fall mooring system.OCEANS2009-EUROPE,2009:1-5
    [21] Ageev M D, Woo J. Development and Preliminary Sea Trial of “OKPO-6000” AUV.Proceedings of the Second ISOPE OCEAN MINING SYMPOSIUM,1997:24-26
    [22] Xu W, Sun F, Li J. Integrated navigation for an autonomous underwater vehicle carryingsynthetic aperture sonar. IET Radar, Sonar&Navigation,2012,6(9):905-912
    [23] Molnar L, Omerdic E, Toal D. Guidance navigation and control system for the Tethraunmanned underwater vehicle. International Journal of Control,2007,80(7):1050-1076
    [24] Wang X, Shang J, Luo Z, et al. Reviews of power systems and environmental energyconversion for unmanned underwater vehicles. Renewable and Sustainable Energy Reviews,2012,16(4):1958-1970
    [25] Wernli R L. AUVs-a technology whose time has come. Proceedings of the InternationalSymposium on Underwater Technology,2002:309-314
    [26]李一平,封锡盛.“CR01”6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通讯,2001,11(1):85-87
    [27]李一平,燕奎臣.“CR-02”自治水下机器人在定点调查中的应用.机器人,2002,24(5):386-390
    [28]刘海林.自主式水下航行器的最优编队控制研究(博士学位论文).青岛:中国海洋大学,2013
    [29] Behal A, Dawson D M, Dixon W E, Fang Y. Tracking and regulation control of anunderactuated surface vessel with nonintegrable dynamics. IEEE Transactions onAutomatic Control,2002,47(3):495-500
    [30] Lapierre L, Soetanto D, Pascoal A. Nonsingular path following control of a unicycle in thepresence of parametric modeling uncertainties. International Journal of Robust andNonlinear Control,2006,16(10):485-503
    [31] Walsh G, Tilbury D, Murry R, Launond J P. Stabilization of trajectories for systems withnonholonomic constraints. IEEE Transactions on Automatic Control,1994,39(1):216-222
    [32] Brockett R W. Asymptotic stability and feedback stabilization. Differential GeometricControl Theory. Boston, Brikhauser,1983:181-191
    [33] Sankaranarayanan V, Banavar R N. Stabilization of an underwater vehicle. Preceedings ofthe16th IFAC World Congress,2005:251-259
    [34] Bhat S P, Bernstein D S. Lyapunov analysis of finite-time differential equations.Preceedings of the American Control Conference,1995,3:1831-1832
    [35] Moreau L. Stability of multiagent systems with time-dependent communication links. IEEETransactions on Automatic Control,2005,50(2):169-182
    [36] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAMJournal of Control and Optimization,2000,38(3):751-766
    [37] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability.Mathematics of Control, Signals and Systems,2005,17(2):101-127
    [38]李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法.自动化学报,2007,33(1):101-103
    [39] Reyhanoglu M. Exponential stabilization of an underactuated autonomous surface vessel.Automatica,1997,33(12):2249-2254
    [40] Hong Y G, Yang G W, Cheng D Z, et al. Finite time convergent control using terminalsliding model. Journal of Control Theory and Applications,2004,2(1):69-74
    [41] Feng Y, Yu X H, Man Z H. Nonsingular terminal sliding mode control of rigidmanipulators. Automatica,2002,38(12):2159-2167
    [42] Egeland O, Dalsmo M, Soerdalen O J. Feedback control of a nonholonomic underwatervehicle with a constant desired configuration. The International Journal of RoboticsResearch,1996,15(1):24-25
    [43] Reyhanoglu M. Control and stability of an underactuated surface vessel. Proceedings of the35th IEEE Conference on Decision and Control,1996,3:2371-2376
    [44] Aguiar A P, Pascoal A M. Rugulation of a nonholonomic autonomous underwater vehiclewith parametric modeling uncertainty using Lyapunov functions. Proceedings of the40thIEEE Conference on Decision and Control,2001,5:4178-4183
    [45] Pettersen K Y, Egeland O. Time-varying exponential stabilization of the position andattitude of an underactuated autonomous underwater vehicle. IEEE transactions onAutomatic Control,1999,44(1):112-115
    [46] Leonard N E. Periodic forcing, dynamic and control of underactuated spacecraft andunderactuated vehicles. Proceedings of the34th IEEE Confefence on Decision and Control,1995,4:3980-3985
    [47] Tian Y P, Li S H. Exponential stabilization of nonholonomic dynamic systems by smoothtimevarying control. Automatica,2002,38(7):1139-1146
    [48] Aguiar A P, Pascoal A M. Dynamic positioning and way-point tracking of underactuatedAUVs in the presence of ocean currents. International Journal of Control,2007,80(7):1092-1108
    [49] Aguiar A P, Hespanha J P, Pascoal A M. Stability of Switched seesaw systems withapplication to the stabilization of underactuated vehicles. Proceedings of the44th IEEEConference on Decision and Control,2005:4584-4589
    [50] Aguiar A P, Hespanha J P, Kokotovic P. Path-following for non-minimum phase systemsremoves performance limitations. IEEE Transactions on Automatic Control,2005,50(2):234-239
    [51]王智学,边信黔,王奎民,刘云霞.近壁面水动力干扰下的AUV运动控制研究.船舶工程,2006,25(5):63-66
    [52] Ma L, Cui W C. Path following control of a deep-sea manned submersible based uponNTSM. China Ocean Engineering,2005,19(4):625-636
    [53] Cristi R, Papoulias F A, Healey A J. Adaptive sliding mode control of autonomousunderwater vehicles in the dive plane. IEEE Journal of Oceanic Engineering,2002,15(3):152-160
    [54] Zhou H Y, Liu K Z, Feng X S. State feedback sliding mode control without chattering byconstructing Hurwitz matrix for AUV movement. International Journal of Automation andComputing,2011,8(2):262-268
    [55] Lee P M, Hong S W, Lim Y K, et al. Discrete-time quasi-sliding mode control of anautonomous underwater vehicle. IEEE Journal of Oceanic Engineering,1999,24(3):388-395
    [56]戴学丰,边信黔.六自由度水下机器人轨迹控制仿真研究.系统仿真学报,2001,13(3):368-369
    [57]陈奕梅,韩正之.欠结构水下机器人的自适应位置跟踪控制器的设计.系统仿真学报,2005,17(7):1714-1716
    [58] Liu S, Wang D, Poh E. Nonlinear adaptive observer design for tracking control of AUVs inwave disturbance condition. OCEANS2006-Asia Pacific,2007:1-8
    [59] Santhakumar M, Asokan T. Nonlinear adaptive control system for an underactuatedautonomous underwater vehicle using dynamic state feedback. International Journal ofRecent Trends in Engineering,2009,2(5):384-389
    [60] Nambisan P R, Singh S N. Multi-variable adaptive back-stepping control of submersiblesusing SDU decomposition. Ocean Engineering,2009,36(2):158-167
    [61] Nishida S, Ishii K, Furukawa T. An adaptive neural network control system using mnSOM.OCEANS2006-Asia Pacific,2007:1-6
    [62] Li J H, Lee P M, Lee S J. Neural net based nonlinear adaptive control for autonomousunderwater vehicles. IEEE International Conference on Robotics and Automation,2002,2:1075-1080
    [63] Guo, J, Chiu F C, Wang C C. Adaptive control of an autonomous underwater vehicletestbed using neural network. Proceedings of OCEANS'95MTS/IEEE Challenges of OurChanging Global Environment,1995,2:1033-1039
    [64] Kanakakis V, Valavanis K P, Tsourveloudis N C. Fuzzy-logic based navigation ofunderwater vehicles. Journal of Intelligent and Robotic Systems,2004,40(1):45-48
    [65] DeBitetto P A. Fuzzy logic for depth control of unmanned undersea vehicles. Proeeedingsof Symposium of Autonomous Underwater Vehicle Technology,1994:233-241
    [66] Xu M, Smith S M. Adaptive fuzzy logic depth controller for variable buoyancy system ofautonomous underwater vehicle. Proceedings of the3th IEEE Conference on FuzzySystems,1994:1191-1196
    [67] Javadi-Moghaddam J, Bagheri A. An adaptive neuro-fuzzy sliding mode based geneticalgorithm control system for underwater remotely operated vehicle. Expert Systems withApplications,2010,37(1):647-660
    [68]汪伟,边信黔,王大海. AUV深度的模糊神经网络滑模控制.机器人,2003,25(3):209-212
    [69] Shi X S, Chen J, Yan Z P, L T. Design of AUV height control based on adaptiveneuro-fuzzy inference system. IEEE International Conference on Information andAutomation,2010:1646-1651
    [70]马岭,崔维成.大深度载人潜水器低速大漂角模糊滑模航向控制研究.海洋工程,2006,24(3):74-78
    [71] Fliess M, Levine J, Martin P, Rouchon P. Flatness and defect of nonlinear systems:introductory theory and examples. International Journal of Control,1995,61(6):1327-1361
    [72]王晓飞.基于解析模型预测控制的欠驱动船舶路径跟踪控制研究(博士学位论文).上海:上海交通大学,2009
    [73] Isidori A. Nonlinear control systems. New York: Springer-Verlag,1995
    [74] Aguiar A P, Hespanha J P. Trajectory-tracking and path-following of underactuatedautonomous vehicles with parametric modeling uncertainty. IEEE Transactions onAutomatic Control,2007,52(8):1362-1379
    [75] Aguiar A P, Hespanha J P. Logic-based switching control for trajectory-tracking andpath-following of underactuated autonomous vehicles with parametric modeling uncertainty.Proceedings of the American Control Conference,2004:3004-3010
    [76] Micaelli A, Samson. Trajectory tracking for unicycle-type and two-steering-wheels mobilerobots. Technical Report No.2097, INRIA, Sophia-Antipolis, France,1993
    [77] Encarnacao P, Pascoal A, Arcak M. Path following for autonomous marine craft.Proceedings of5th IFAC Conference on Manoeuvring and Control of Marine Craft,2000:117-122
    [78] Encarnacao P. and Pascoal A.3D path following for autonomous underwater vehicle.Proceedings of the39th IEEE Conference on Decision and Control,2000:2977-2982
    [79] Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. Ocean Engineering,2007,34(11):1734-1744
    [80] Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships.Proceedings of the41th IEEE Conference on Decision and Control,2002:3243-3248
    [81] Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships.Automatica,2004,40(6):929-944
    [82] Do K D, Pan J. Global robust adaptive path following of underactuated ships. Automatica,2006,42(10):1713-1722
    [83] Do K D, Pan J. Robust path-following of underactuated ships: theory and experiments on amodel ship. Ocean Engineering,2006,33(10):1354-1372
    [84] Do K D, Jiang Z P, Pan J. Robust and adaptive path following for underactuatedautonomous underwater vehicles. Ocean Engineering,2004,31(16):1967-1997
    [85]周岗,姚琼荟,陈永冰,周永余.基于输入输出线性化的船舶全局直线航迹控制.控制理论与应用,2007,24(1):117-121
    [86]周岗,陈永冰,姚琼荟,周永余,李文魁.一类船舶直线航迹控制系统全局渐近稳定的充分条件及推论.自动化学报,2007,33(11):1204-1208
    [87]周岗,姚琼荟,陈永冰,周永余,李文魁.不完全驱动船舶直线控制稳定性研究.自动化学报,2007,33(4):378-384
    [88]付江峰,严卫生,赵涛.欠驱动AUV的直线航迹跟踪控制.计算机仿真,2009,26(10):145-147
    [89] Hespanha J P, Morse A S. Switching between stabilizing controllers. Automatica,2002,38(11):1905-1917
    [90] Borhaug E, Pettersen K Y. Cross-track control for underactuated autonomous vehicles.Proceedings of the44th IEEE Conference on Decision and Control, and the EuropeanControl Conference,2005:12-15
    [91] Lee T C, Jiang Z P. New cascade approach for globalκ-exponential tracking ofunderactuacted ships. IEEE Trans on Automatic Control,2004,49(12):2297-2303
    [92] Healey A J, Marco D B. Experimental verification of mission planning by autonomousmission execution and data visualization using the NPS AUV II. Proceedings of theSymposium on Autonomous Underwater Vehicle Technology,1992:65-72
    [93] Ghabcheloo R, Aguiar A P, Pascoal A, et al. Coordinated path-following in the presence ofcommunication losses and time delays. SIAM Journal on Control and Optimization,2009,48(1):234-265
    [94] Glegg S A L, Olivieri M P, Coulson R K, et al. A passive sonar system based on anautonomous underwater vehicle. IEEE Journal of Oceanic Engineering,2001,26(4):700-710
    [95] Richard J P. Time-delay systems: an overview of some recent advances and open problems.Automatica,2003,39(10):1667-1694
    [96] Kolmanovskii V B, Richard J P. Stability of some linear systems with delays. IEEETransactions on Automatic Control,1999,44(5):984-989
    [97] Gu K. Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems.Kybernetika,2001,37(4):479-504
    [98] Gu K. A further refinement of discretized Lyapunov functional method for the stability oftime-delay systems. International Journal of Control,2001,74(10):967-976
    [99] Gu K, Han Q L, Luo A C J, et al. Discretized Lyapunov functional for systems withdistributed delay and piecewise constant coefficients. International Journal of Control,2001,74(7):737-744
    [100] Gu K, Niculescu S I. Further remarks on additional dynamics in various modeltransformations of linear delay systems. Proceedings of the American Control Conference,2000,6:4368-4372
    [101] Gu K, Niculescu S I. Additional dynamics in transformed time-delay systems. IEEETransactions on Automatic Control,2000,45(3):572-575
    [102] Fridman E, Shaked U. Delay-dependent stability and H∞control: constant andtime-varying delays. International Journal of Control,2003,76(1):48-60
    [103] Gu K, Niculescu S I. Additional dynamics in transformed time delay sytems. IEEETransactions on Automatic Control,2000,45(3):572-575
    [104] Park P. A delay-dependent stability criterion for systems with uncertain time-invariantdelays. IEEE Transactions on Automatic Control,1999,44(4):876-877
    [105] Moon Y S, Park P, Kwon W H, et al. Delay-dependent robust stabilization of uncertainstate-delayed systems. International Journal of control,2001,74(14):1447-1455
    [106] Fridman E, Shaked U. A deseriptor system approach to control of linear time-delay systems.IEEE Transactions on Automatic Control,2002,47(2):253-270
    [107] Han Q L. Robust stability of uncertain delay-differential systems of neutral type.Automatiea,2002,38(4):718-723
    [108] He Y, Wu M, She J H, et al. Parameter-dependent Lyapunov functional for stability oftime-delay systems with polytypic type uncertainties. IEEE Transactions on AutomaticControl,2004,49(5):828-832
    [109] Niculescu S I. On delay-dependent stability under model transformations of some neutrallinear systems. International Journal of Control,2001,74(6):608-617
    [110] Wu M, HeY, She J H, Liu G P. New delay-dependent stability criteria and stabilizingmethod for neutral systems. IEEE Transactions on Automatic Control,2004,49(12):2266-2271
    [111] He Y, Wu M, She J H, et al. Delay-dependent robust stability criteria for uncertain neutralsystems with mixed delays. Systems&Control Letters,2004,51(l):57-65
    [112] Sun X M, Zhao J, Hill D J. Stability andL2gain analysis for switched delay systems: adelay-dependent method. Automatica,2006,42(10):1769-1774
    [113] Li Q K, Zhao J, Dimirovski M. Robust tracking control for switched linear systems withtime-varying delays. IET Control Theory&Applications,2008,2(6):449-457
    [114] Yue D. Robust stabilization of uncertain systems with unknown input delay. Automatica,2004,40(2):331-336
    [115] Yue D, Han Q L. Delayed feedback control of uncertain systems with time-varing inputdelay. Automatica,2005,41(2):233-240
    [116] Yue D, Han Q L, Lam J. Network-based robust H∞control of systems with uncertainty.Automatica,2005,41(6):999-1007
    [117] Han Q L. A discrete delay decompositon approach to stability of linear retarded and neutralsystems. Automatica,2009,45(2):517-524
    [118] Kim M S, Shin J H, Hong S G, et al. Designing a robust adaptive dynamic controller fornonholonomic mobile robots under modeling uncertainty and disturbances. Mechatronics,2003,13(5):507-519
    [119] Fierro R, Lewis F L. Robust practical point stabilization of a nonholonomic mobile robotusing nerual networks. Journal of Intelligent and Robotic Systems,1997,20(2-4):295-317
    [120] Fossen T I. Marine control systems: guidance, navigation and control of ships, rigs andunderwater vehicles. Trondheim: Marine Cybernetics,2002
    [121] Khalil H K. Nonlinear systems (3rdEdition). New Jersey,2003
    [122] Xie L. Output feedback H∞control of systems with parameter uncertainty. InternationalJournal of Control,1999,63(4):741-750
    [123] Zhang X M, Wu M, She J H, He Y. Delay-dependent stabilization of linear systems withtime-varing state and input delays. Automatica,2005,41(8):1405-1412
    [124] Boyd S, Ghaoui L E, Feron E, et al. Linear matrix inequalities in systems and control theory.SIAM Philadelphia,1994
    [125] Indiveri, G. Kinematic time-invariant control of2D nonholonomic vehicle. Proceedings ofthe38th IEEE Conference on Decision and Control,1999,3:2112-2117
    [126] Fossen T I. Guidance and control of ocean vehicles. New York: Wiley,1994
    [127] Samson C. Control of chained systems application to path following and time-varyingpoint-stabilization of mobile robots. IEEE Transactions on Automatic Control,1995,40(1):64-77
    [128] D’andrea-novel B, Campion G, Bastin G. Control of nonholonomic wheeled mobile robotsby state feedback linearization. International Journal of Robotics Research,1995,14(6):543-559
    [129]向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究(博士学位论文).武汉:华中科技大学,2010
    [130] Panteley E, Lefeber E, Lor′a A, Nijmeijer H. Exponential tracking control of a mobile carusing a cascaded approach. Proceeding of the IFAC Workshop on Motion Control,1998:221-226
    [131] Pettersen K Y, Lefeber E. Waypoint tracking control of ships. Proceedings of the40th IEEEConference on Decision and Control,2001,1:940-945
    [132]桂志辉,严卫生,高剑.虚拟现实在AUV地形跟踪控制研究中的应用.鱼类技术,2008,16(4):24-26
    [133]徐玉如,肖坤.智能海洋机器人技术进展.自动化学报,2007,33(5):518-521
    [134]边信黔,程相勤,贾鹤鸣等.基于迭代滑模增量反馈的欠驱动AUV地形跟踪控制.控制与决策,2011,26(2):289-292
    [135] Repoulias F, Papadopoulos E. Planar trajectory planning and tracking control design forunderactuated AUVs. Ocean Engineering,2007,34(11):1650-1667
    [136] Li Y M, Wan L, Sun Y S, Zhang G C. Altitude information fusion and bottom-followingcontrol for underactuated autonomous underwater vehicle. Control Theory&Applications,2013,30(1):118-122
    [137] Healey A J, Lienard D. Multivariable sliding-mode control for autonomous diving andsteering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering,1993,18(3):327-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700