用户名: 密码: 验证码:
利用结构生物信息学方法促进药物研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构生物信息学是生物信息学中关注在原子和哑细胞空间尺寸上结构信息表述、存储、获取和分析的一个分支。近年来,世界各国对结构生物信息学在药物研发中的应用越来越重视。因为结构生物信息学几乎可以应用到药物发现中的各个环节例如靶标评估、虚拟筛选和先导化合物优化等。本论文的绪论部分综述了结构生物信息学的研究框架,给出了相关的实用数据库和工具,阐述了结构生物信息学方法在药物研发中的重要作用。我的研究工作主要围绕利用结构生物信息学方法促进药物研发这一主题展开,进行了以下3个相对独立的研究:
     1.GPCR药效团模型产生的新方法研究
     G蛋白偶联受体(GPCR)具有保守的七次跨膜结构域,是药物治疗中最有前景的靶点蛋白。利用药效团技术可以加快基于GPCR的药物研发,但是现有药效团模型只适用于那些有晶体结构或配体信息的少数GPCR,仍有大部分GPCR缺乏对应的药效团模型以用来进行先导化合物的设计和发现。因此如何对这些GPCR产生药效团模型是这个领域的难点和热点。本研究旨在解决上述难题,通过研究现有方法的优缺点,在充分挖掘和利用所有GPCR结构数据的基础上,开发出一种全新的药效团产生方法Pharm-Map-Pick。我们的方法主要包括三步:第1步,构建一个关键氨基酸和药效团特征的关联数据库;第2步,根据确定的氨基酸位置,将药效团特征映射到每一个GPCR;第3步,优选药效团特征来构建最终的药效团模型。研究结果表明该方法既不需要晶体结构也无需配体信息就可以对整个GPCR家族产生药效团模型。这些模型不仅能准确预测GPCR-配体的结合模式,而且具有很高的富集因子,可以直接用于虚拟筛选。我们还构建了世界上首个包含人体内所有GPCR的药效团数据库。这种方法以及产生的药效团模型将极大地促进GPCR的基础研究和药物研发。
     2.基因组水平预测阿司匹林的作用靶点
     除了发挥抗炎,解热和镇痛等治疗作用,阿司匹林还用于预防心血管疾病以及各种类型的癌症。尽管很多文献已经表明阿司匹林确实可以预防心血管疾病和各种类型的癌症,但是阿司匹林众多疗效背后的分子机制现在还不是完全清楚。阿司匹林的多种疗效不能只归功于一种蛋白靶点,更有可能的是涉及到多个靶标和分子通路。因此,系统地识别阿司匹林的潜在分子靶标可以帮助我们理解阿司匹林的多种疗效和可能的副作用。在本研究中,我们联合结构生物信息学和系统生物学的方法来预测和分析阿司匹林在全基因组范围内的潜在靶标和分子通路。首先利用蛋白质局部结构检测和比对工具加上分子对接以及结合自由能的计算我们识别出了21个阿司匹林的潜在靶标。对这些靶标进行的进一步系统生物学分析,我们发现了阿司匹林参与的一些分子通路例如血管内皮生长因子、促分裂原活化蛋白激酶、JNK/P38、Fc epsilon RI和花生四烯酸代谢等。基于这些发现,我们构建了阿司匹林的靶点-细胞效应相互作用网络。这个网络可以很好地解释阿司匹林具有的抗炎症以及预防心血管疾病和癌症等多种医学疗效。随着这部分论文的完成,我们已经建立了识别小分子药物作用靶标和分子通路的通用平台。可以用来寻找其他小分子的分子靶标。
     3.识别和比较人类PPI界面上的可药性结合口袋
     识别和比较在人类PPI界面上的可药性结合口袋,为发现潜在药物新靶标提供重要结构基础。PPIs是生物体内最复杂、最具多样性和最具调控重要性的一类相互作用。最近十年,PPIs已经成为新颖治疗中具有吸引力的分子靶标。本研究我们识别出了1731个存在人类PPI复合物结合界面上的可药性结合位点。通过对所有人类PPI复合物结合界面的可药性结合口袋的系统识别以及相关特征研究,产生了很多以前未知的有趣发现:1.在有结合界面的蛋白之中有接近一半的蛋白是具有可药性结合口袋;2.具有可药性结合口袋的蛋白的功能大都集中在各类疾病的分子通路上:3.较整个结合界面而言,可药性结合口袋的所有疏水性氨基酸的出现频率都增加了,疏水性的增加有利于小分子的结合;
     4.同聚体和异聚体蛋白相互作用的差异,同聚体相互作用的蛋白双方同时具有可药性结合口袋的比例远大于异聚体相互作用;5.构建了一个可药性结合口袋的相似性网络,可以用来指导我们设计多靶标药物。这些发现对于研发靶向相互作用的药物以及多靶标药物都有实际意义。
Structural Bioinformatics, as a branch of bioinformatics, is concerned about the expression, storage, access and analysis of the structural information at atomic and sub-cellular space size. In recent years, researchers have paid more attention to the applications of structural bioinformatics in drug development. Structural bioinformatics can be applied to almost all aspects of drug discovery, such as the evaluation of target assessment, virtual screening and lead optimization. In this paper, we reviewed the research framework of structural bioinformatics, given the practical databases and tools for structural bioinformatics and elaborated the important role of structural bioinformatics in drug discovery. My research mainly focused on the use of structural bioinformatics methods to promote drug discovery and development. The following three relatively independent works were carried out:
     1. Research on the new method of generating pharmacophore model for GPCRs
     G-protein coupled receptors (GPCRs) are the most prominent therapeutic target family characterized by seven conserved transmembrane (7TM) α-helical fold. With the aim to speed up the process of GPCR-based drug discovery, by studying the advantages and disadvantages of the existing methods and data mining from GPCR structures, we developed a new method, Pharm-Map-Pick, which can rapidly generate pharmacophore models for GPCR family. Our method mainly comprises three steps:constructing a library for key residues and pharmacophore features revealed from complex structures, mapping these pharmacophore features to a given GPCR and picking appropriate features to generate a final pharmacophore model. The results show that our method neither require a crystal structure nor ligand information. These models can accurately predict the binding mode of GPCR-ligand and has a high enrichment factor, thus can be directly used for virtual screening. We also built a world's first database contains pharmacophore modes for all human GPCRs. This method and the resulting pharmacophore models will greatly contribute to the GPCR-based basic research and drug discovery.
     2. Genome-wide Prediction of Targets for Aspirin
     Besides to anti-inflammatory, analgesic, and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin cannot be attributed wholly to a single target and likely involve several molecular targets and pathways. In this study, we combined structural bioinformatics and systems biology approaches to predict potential targets and molecular pathways of aspirin in genome-wide. Firstly, using the tool of protein local structure detection and comparison together with molecular docking and binding free energy calculations, we identified21potential targets of aspirin. Further systems biology analysis of these targets, we found that aspirin participates in multiple molecular pathways, such as vascular endothelial growth factor, mitogen-activated protein kinase, JNK/p38, Fc epsilon RI and arachidonic acid metabolism. Based on these findings, we constructed a target of aspirin-cell effect interaction network. This network can explain a variety of medical efficacy of aspirin, which is used for anti-inflammatory as well as the prevention of cardiovascular disease and cancer. With the finish of this work, we have established a common platform to identify targets for small-molecule drugs. It can be used to find molecular targets for other small molecules.
     3. Identification and comparison of the druggable pocket at the interface of human PPI
     In the last decade, PPIs have become the attractive molecular target for novel therapy. In this study, we identified1731druggable pocket at the interface of human PPI. Identification and comparison of these druggable pockets resulted in a lot of previously unknown interesting findings:1. Nearly half of the proteins have druggable pockets at the interface of human PPI;2. These proteins are enriched in the molecular pathways of various diseases;3. Compared to the protein binding interface, the frequencies of hydrophobic amino acids in the druggable pockets are increased;4. The partners of homo-PPI tend to have druggable pockets simultaneously. However, it is exactly the opposite for the partners of hetero-PPI;5. The druggable pocket similarity network built here can be used to guide the design of multi-target drugs. These findings have practical significance for discovery of the drug targeting protein interactions as well as the multi-target drugs.
引文
2012. A decade in drug discovery[J]. Nat Rev Drug Discov,11(1):3.
    Accelrys Software, Inc:San Diego, CA. Discovery Studio v.3.1.0 [M].
    An Jianghong, Totrov Maxim, Abagyan Ruben.2005. Pocketome via comprehensive identification and classification of ligand binding envelopes[J]. Molecular & Cellular Proteomics,4(6):752-761.
    Andrade M. A., Sander C.1997. Bioinformatics:from genome data to biological knowledge[J]. Curr Opin Biotechnol,8(6):675-683.
    Anfinsen Christian B.1973. Principles that govern the folding of protein chains[J]. Science, 181(96):223-230.
    Avivi D., Moshkowitz M., Detering E., et al.2012. The role of low-dose aspirin in the prevention of colorectal cancer[J]. Expert Opinion on Therapeutic Targets,16:S51-S62.
    Balsinde J., Balboa M. A., Insel P. A., et al.1999. Regulation and inhibition of phospholipase A(2)[J]. Annual Review of Pharmacology and Toxicology,39:175-189.
    Bennani Y. L.2012. Drug discovery in the next decade:innovation needed ASAP[J]. Drug Discov Today,17 Suppl:S31-44.
    Berger J. S., Brown D. L., Becker R. C.2008. Low-dose aspirin in patients with stable cardiovascular disease:a meta-analysis[J]. The American journal of medicine,121(1): 43-49.
    Bickerton G. R., Higueruelo A. P., Blundell T. L.2011. Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions:the PICCOLO database[J]. BMC Bioinformatics,12:313.
    Blundell T. L., Sibanda B. L., Montalvao R. W., et al.2006. Structural biology and bioinformatics in drug design:opportunities and challenges for target identification and lead discovery[J]. Philos Trans R Soc Lond B Biol Sci,361(1467):413-423.
    Bogan Andrew A, Thorn Kurt S.1998. Anatomy of hot spots in protein interfaces[J]. J Mol Biol, 280(1):1-10.
    Braisted A. C., Oslob J. D., Delano W. L., et al.2003. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly[J]. J Am Chem Soc,125(13):3714-3715.
    Buchan N. S., Rajpal D. K.., Webster Y., et al.2011. The role of translational bioinformatics in drug discovery [J]. Drug Discov Today,16(9-10):426-434.
    Burn J., Gerdes A. M., Macrae F., et al.2011. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer:an analysis from the CAPP2 randomised controlled trial[J]. Lancet,378(9809):2081-2087.
    Chene Patrick.2006. Drugs targeting protein-protein interactions[J]. ChemMedChem,1(4): 400-411.
    Chang R. L., Xie L., Xie L., et al.2010. Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model [J]. Plos Computational Biology, 6(9).
    Cherezov V., Rosenbaum D. M., Hanson M. A., et al.2007. High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor[J]. Science, 318(5854):1258-1265.
    Chien E. Y. T., Liu W., Zhao Q. A., et al.2010. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist[J]. Science,330(6007):1091-1095.
    Chothia Cyrus, Janin Joel.1975. Principles of protein-protein recognition[J], Nature,256(5520): 705.
    Chou K. C.2004. Structural bioinformatics and its impact to biomedical science[J]. Curr Med Chem,11(16):2105-2134.
    Cohen M. S., Zhang C., Shokat K. M., et al.2005. Structural bioinformatics-based design of selective, irreversible kinase inhibitors[J]. Science,308(5726):1318-1321.
    Coleman Ryan G, Salzberg Anna C, Cheng Alan C.2006. Structure-based identification of small molecule binding sites using a free energy model[J]. J Chem Inf Model,46(6): 2631-2637.
    Collins S. R., Miller K. M., Maas N. L., et al.2007. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map[J]. Nature, 446(7137):806-810.
    Dai S. X., Zhang A. D., Huang J. F.2012. Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes Scapularis[J]. BMC Evol Biol,12:4.
    Darnell Steven J, LeGault Laura, Mitchell Julie C.2008. KFC Server:interactive forecasting of protein interaction hot spots[J]. Nucleic Acids Res,36(suppl 2):W265-W269.
    Darnell Steven J, Page David, Mitchell Julie C.2007. An automated decision-tree approach to predicting protein interaction hot spots[J]. Proteins:Structure, Function, and Bioinformatics,68(4):813-823.
    Deng H. Y., Fang Y.2012. Aspirin metabolites are GPR35 agonists[J]. Naunyn-Schmiedebergs Archives of Pharmacology,385(7):729-737.
    Dessailly Benoit H, Lensink Marc F, Orengo Christine A, et al.2008. LigASite—a database of biologically relevant binding sites in proteins with known apo-structures[J]. Nucleic Acids Res,36(suppl 1):D667-D673.
    Din F. V. N., Valanciute A., Houde V. P., et al.2012. Aspirin Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces Autophagy in Colorectal Cancer Cells[J]. Gastroenterology,142(7):1504-+.
    Dovizio Melania, Bruno Annalisa, Tacconelli Stefania, et al.2013. Mode of action of aspirin as a chemopreventive agent [M], Prospects for Chemoprevention of Colorectal Neoplasia. Springer:39-65.
    Dror Oranit, Schneidman-Duhovny Dina, Inbar Yuval, et al.2009. Novel approach for efficient pharmacophore-based virtual screening:method and applications[J]. Journal of chemical information and modeling,49(10):2333-2343.
    Edwards David.2009. Bioinformatics:tools and applications [M]. Springer.
    Fauman E. B., Hopkins A. L., Groom C. R.2003. Structural bioinformatics in drug discovery[J]. Methods Biochem Anal,44:477-497.
    Fischer PM.2005. Protein-protein interactions in drug discovery[J]. Drug Design Reviews-Online,2(3):179-207.
    Fogolari Federico, Brigo Alessandro, Molinari Henriette.2002. The Poisson-Boltzmann equation for biomolecular electrostatics:a tool for structural biology[J]. Journal of Molecular Recognition,15(6):377-392.
    Fredriksson Robert, Lagerstrom Malin, Lundin Lars-Gustav, et al.2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints[J]. Molecular Pharmacology,63(6):1256-1272.
    Fuster V., Sweeny J. M.2011. Aspirin A Historical and Contemporary Therapeutic Overview[J]. Circulation,123(7):768-778.
    Gao M., Skolnick J.2012. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation[J]. Proc Natl Acad Sci U SA,109(10):3784-3789.
    Gao M., Skolnick J.2013. APoc:large-scale identification of similar protein pockets[J]. Bioinformatics,29(5):597-604.
    Gao Ying, Wang Renxiao, Lai Luhua.2004. Structure-based method for analyzing protein-protein interfaces[J]. J Mol Model,10(1):44-54.
    Gashaw I., Ellinghaus P., Sommer A., et al.2012. What makes a good drug target?[J]. Drug Discov Today,17:S24-S30.
    Gatica E. A., Cavasotto C. N.2012. Ligand and decoy sets for docking to G protein-coupled receptors[J]. Journal of chemical information and modeling,52(1):1-6.
    Gaulton A., Bellis L. J., Bento A. P., et al.2012. ChEMBL:a large-scale bioactivity database for drug discovery[J]. Nucleic Acids Res,40(Database issue):D1100-1107.
    Gerrard JA, Hutton CA, Perugini MA.2007. Inhibiting protein-protein interactions as an emerging paradigm for drug discovery[J]. Mini Rev Med Chem,7(2):151-157.
    Ghooi R. B., Thatte S. M., Joshi P. S.1995. The mechanism of action of aspirin--is there anything beyond cyclo-oxygenase?[J]. Medical hypotheses,44(2):77-80.
    Gloriam D. E., Foord S. M., Blaney F. E., et al.2009. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design[J]. J Med Chem,52(14):4429-4442.
    Gold Nicola D, Jackson Richard M.2006. SitesBase:a database for structure-based protein-ligand binding site comparisons[J]. Nucleic Acids Res,34(suppl 1): D231-D234.
    Granier S., Manglik A., Kruse A. C., et al.2012. Structure of the delta-opioid receptor bound to naltrindole[J]. Nature,485(7398):400-U171.
    Gu Jenny, Bourne Philip E.2009. Structural bioinformatics [M]. Wiley-Blackwell.
    Haga K., Kruse A. C, Asada H., et al.2012. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist[J]. Nature,482(7386):547-U147.
    Hajduk Philip J, Huth Jeffrey R, Fesik Stephen W.2005a. Druggability indices for protein targets derived from NMR-based screening data[J]. J Med Chem,48(7):2518-2525.
    Hajduk Philip J, Huth Jeffrey R, Tse Christin.2005b. Predicting protein draggability [J]. Drug Discov Today,10(23):1675-1682.
    Hanson M. A., Cherezov V., Griffith M. T., et al.2008. A specific cholesterol binding site is established by the 2.8 angstrom structure of the human beta(2)-adrenergic receptor[J]. Structure,16(6):897-905.
    Hanson M. A., Roth C. B., Jo E. J., et al.2012. Crystal Structure of a Lipid G Protein-Coupled Receptor[J]. Science,335(6070):851-855.
    Hayden M., Pignone M., Phillips C., et al.2002. Aspirin for the primary prevention of cardiovascular events:a summary of the evidence for the U.S. Preventive Services Task Force[J]. Annals of internal medicine,136(2):161-172.
    Hopkins A. L., Groom C. R.2002. The druggable genome[J]. Nat Rev Drug Discov,1(9): 727-730.
    Huang da W., Sherman B. T., Lempicki R. A.2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature protocols,4(1):44-57.
    Hubbard Simon J, Argos Patrick.1994. Cavities and packing at protein interfaces[J]. Protein Science,3(12):2194-2206.
    Ideker Trey, Sharan Roded.2008. Protein networks in disease[J]. Genome research,18(4): 644-652.
    Jones D., Thornton J.1993. Protein Fold Recognition[J]. J Comput Aided Mol Des,7(4): 439-456.
    Jones Susan, Thornton Janet M.1996. Principles of protein-protein interactions[J]. Proceedings of the National Academy of Sciences,93(1):13-20.
    Kabsch W., Sander C.1983. Dictionary of protein secondary structure:pattern recognition of hydrogen-bonded and geometrical features[J]. Biopolymers,22(12):2577-2637.
    Kanehisa M., Bork P.2003. Bioinformatics in the post-sequence era[J]. Nat Genet,33 Suppl: 305-310.
    Katritch V., Cherezov V, Stevens R. C.2012. Diversity and modularity of G protein-coupled receptor structures[J]. Trends Pharmacol Sci,33(1):17-27.
    Katritch V., Cherezov V., Stevens R. C.2013. Structure-function of the G protein-coupled receptor superfamily[J]. Annu Rev Pharmacol Toxicol,53:531-556.
    Kellenberger Esther, Muller Pascal, Schalon Claire, et al.2006. sc-PDB:an annotated database of druggable binding sites from the Protein Data Bank[J]. J Chem Inf Model,46(2): 717-727.
    Klabunde T., Giegerich C, Evers A.2009. Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening[J]. J Med Chem,52(9):2923-2932.
    Knox C., Law V., Jewison T., et al.2011. DrugBank 3.0:a comprehensive resource for'omics' research on drugs[J]. Nucleic Acids Res,39(Database issue):D1035-1041.
    Kollman P. A., Massova I., Reyes C., et al.2000. Calculating structures and free energies of complex molecules:Combining molecular mechanics and continuum models[J]. Accounts of Chemical Research,33(12):889-897.
    Komurov K., White M.2007. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network[J]. Mol Syst Biol,3:110.
    Kratochwil N. A., Malherbe P., Lindemann L., et al.2005. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets:alignment, receptor-based pharmacophores, and their application[J]. Journal of chemical information and modeling,45(5):1324-1336.
    Krogan N. J., Cagney G., Yu H., et al.2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae[J]. Nature,440(7084):637-643.
    Kruse A. C., Hu J. X., Pan A. C., et al.2012. Structure and dynamics of the M3 muscarinic acetylcholine receptor[J]. Nature,482(7386):552-556.
    Kuhn B., Gerber P., Schulz-Gasch T., et al.2005. Validation and use of the MM-PBSA approach for drug discovery[J]. Journal of medicinal chemistry,48(12):4040-4048.
    Kuhn Daniel, Weskamp Nils, Schmitt Stefan, et al.2006. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase[J]. J Mol Biol, 359(4):1023.
    Kuntz I. D.1992. Structure-based strategies for drug design and discovery[J]. Science, 257(5073):1078-1082.
    LaCount D. J., Vignali M., Chettier R., et al.2005. A protein interaction network of the malaria parasite Plasmodium falciparum[J]. Nature,438(7064):103-107.
    Lagerstrom M. C., Schioth H. B.2008. Structural diversity of G protein-coupled receptors and significance for drug discovery[J]. Nat Rev Drug Discov,7(4):339-357.
    Langer T., Hoffmann R. D.2006. Pharmacophore modelling:applications in drug discovery[J]. Expert Opinion on Drug Discovery,1(3):261-267.
    Le Guilloux V., Schmidtke P., Tuffery P.2009. Fpocket:an open source platform for ligand pocket detection[J]. BMC Bioinformatics,10:168.
    Lebon G, Warne T., Edwards P. C., et al.2011. Agonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation[J]. Nature,474(7352): 521-U154.
    Levitt M., Chothia C.1976. Structural patterns in globular proteins[J]. Nature,261(5561): 552-558.
    Li G. H., Huang J. F.2012. CDRUG:a web server for predicting anticancer activity of chemical compounds[J]. Bioinformatics,28(24):3334-3335.
    Li Gong-Hua, Huang Jing-Fei.2010. CMASA:an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation[J]. BMC bioinformatics,11(1):439.
    Liu W., Chun E., Thompson A. A., et al.2012. Structural basis for allosteric regulation of GPCRs by sodium ions[J]. Science,337(6091):232-236.
    Luscombe N. M., Greenbaum D., Gerstein M.2001. What is bioinformatics? A proposed definition and overview of the field[J]. Methods Inf Med,40(4):346-358.
    MacDougall Iain JA, Griffith Renate.2006. Selective pharmacophore design for a< sub> 1-adrenoceptor subtypes[J]. Journal of Molecular Graphics and Modelling,25(1): 146-157.
    Malo Marcus, Brive Lars, Luthman Kristina, et al.2010. Selective Pharmacophore Models of Dopamine D1 and D2 Full Agonists Based on Extended Pharmacophore Features [J]. Chemmedchem,5(2):232-246.
    Manglik A., Kruse A. C., Kobilka T. S., et al.2012. Crystal structure of the mu-opioid receptor bound to a morphinan antagonist[J]. Nature,485(7398):321-U170.
    Martin J., Letellier G, Marin A., et al.2005. Protein secondary structure assignment revisited:a detailed analysis of different assignment methods[J]. BMC Struct Biol,5:17.
    McCoy Airlie J, Chandana Epa V, Colman Peter M.1997. Electrostatic complementarity at protein/protein interfaces[J]. J Mol Biol,268(2):570-584.
    Meireles L. M., Domling A. S., Camacho C. J.2010. ANCHOR:a web server and database for analysis of protein-protein interaction binding pockets for drug discovery[J]. Nucleic Acids Res,38(Web Server issue):W407-411.
    Meslamani J., Li J., Sutter J., et al.2012. Protein-Ligand-Based Pharmacophores:Generation and Utility Assessment in Computational Ligand Profiling[J]. Journal of chemical information and modeling.
    Milner-White E James, Nissink J WillemM, Allen Frank H, et al.2004. Recurring main-chain anion-binding motifs in short polypeptides:nests[J]. Acta Crystallographica Section D: Biological Crystallography,60(11):1935-1942.
    Motono C., Nakata J., Koike R., et al.2011. SAHG, a comprehensive database of predicted structures of all human proteins[J]. Nucleic Acids Research,39:D487-D493.
    Moult J., Pedersen J. T., Judson R., et al.1995. A Large-Scale Experiment to Assess Protein-Structure Prediction Methods[J]. Proteins-Structure Function and Genetics, 23(3):R2-R4.
    Nisius B., Sha F., Gohlke H.2012. Structure-based computational analysis of protein binding sites for function and druggability prediction[J]. J Biotechnol,159(3):123-134.
    Nooren Irene MA, Thornton Janet M.2003. Diversity of protein-protein interactions[J]. The EMBO journal,22(14):3486-3492.
    O'Connor K. A., Roth B. L.2005. Finding new tricks for old drugs:an efficient route for public-sector drug discovery[J]. Nat Rev Drug Discov,4(12):1005-1014.
    Okada T., Sugihara M., Bondar A. N., et al.2004. The retinal conformation and its environment in rhodopsin in light of a new 2.2 angstrom crystal structure[J]. Journal of Molecular Biology,342(2):571-583.
    Ollis W. D.1972. Models and Molecules[J]. Proceedings of the Royal Institution of Great Britain, 45(1):1-31.
    Ortore G., Tuccinardi T., Orlandini E., et al.2010. Different Binding Modes of Structurally Diverse Ligands for Human D3DAR[J]. Journal of chemical information and modeling, 50(12):2162-2175.
    Osguthorpe D. J.2000. Ab initio protein folding[J]. Curr Opin Struct Biol,10(2):146-152.
    Pandit S. B., Skolnick J.2008. Fr-TM-align:a new protein structural alignment method based on fragment alignments and the TM-score[J]. BMC bioinformatics,9:531.
    Paul S. M., Mytelka D. S., Dunwiddie C. T., et al.2010. How to improve R&D productivity:the pharmaceutical industry's grand challenge[J]. Nat Rev Drug Discov,9(3):203-214.
    Pauling L., Corey R. B., Branson H. R.1951. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain[J]. Proc Natl Acad Sci U S A,37(4): 205-211.
    Pipeline Pilot, http://accelrys.com/products/pipeline-pilot/. Accessed February 2013 [M].
    Pommier Y., Cherfils J.2005. Interfacial inhibition of macromolecular interactions:nature's paradigm for drug discovery[J]. Trends Pharmacol Sci,26(3):138-145.
    Pop M., Salzberg S. L.2008. Bioinformatics challenges of new sequencing technology[J]. Trends Genet,24(3):142-149.
    Raj M., Bullock B. N., Arora P. S.2012. Plucking the high hanging fruit:A systematic approach for targeting protein-protein interactions [J]. Bioorg Med Chem.
    Raju N., Sobieraj-Teague M., Hirsh J., et al.2011. Effect of aspirin on mortality in the primary prevention of cardiovascular disease[J]. The American journal of medicine,124(7): 621-629.
    Rasmussen S. G. F., DeVree B. T., Zou Y. Z., et al.2011. Crystal structure of the beta(2) adrenergic receptor-Gs protein complex[J]. Nature,477(7366):549-U311.
    Ratti E., Trist D.2001. The continuing evolution of the drug discovery process in the pharmaceutical industry[J]. Farmaco,56(1-2):13-19.
    Richardson J. S.2000. Early ribbon drawings of proteins[J]. Nat Struct Biol,7(8):624-625.
    Robert Charles H, Janin Joel.1998. A soft, mean-field potential derived from crystal contacts for predicting protein-protein interactions [J]. J Mol Biol,283(5):1037-1047.
    Rose P. W., Beran B., Bi C. X., et al.2011. The RCSB Protein Data Bank:redesigned web site and web services[J]. Nucleic Acids Research,39:D392-D401.
    Rosenbaum D. M., Zhang C., Lyons J. A., et al.2011. Structure and function of an irreversible agonist-beta(2) adrenoceptor complex[J], Nature,469(7329):236-240.
    Rost B.2001. Review:protein secondary structure prediction continues to rise[J]. J Struct Biol, 134(2-3):204-218.
    Rothwell P. M., Wilson M., Price J. F., et al.2012. Effect of daily aspirin on risk of cancer metastasis:a study of incident cancers during randomised controlled trials[J]. Lancet, 379(9826):1591-1601.
    Russ A. P., Lampel S.2005. The druggable genome:an update[J]. Drug Discov Today,10(23-24): 1607-1610.
    Ryan Daniel P, Matthews Jacqueline M.2005. Protein-protein interactions in human disease[J]. Curr Opin Struct Biol,15(4):441-446.
    Saeys Y., Inza I., Larranaga P.2007. A review of feature selection techniques in bioinformatics[J]. Bioinformatics,23(19):2507-2517.
    Sams-Dodd F. 2005. Target-based drug discovery:is something wrong?[J]. Drug Discov Today, 10(2):139-147.
    Sanders M. P. A., Verhoeven S., de Graaf C., et al.2011. Snooker:A Structure-Based Pharmacophore Generation Tool Applied to Class A GPCRs[J]. Journal of chemical information and modeling,51(9):2277-2292.
    Sanders M. P., Barbosa A. J., Zarzycka B., et al.2012. Comparative analysis of pharmacophore screening tools[J]. Journal of chemical information and modeling,52(6):1607-1620.
    Schmidtke P., Barril X.2010. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites[J]. J Med Chem,53(15):5858-5867.
    Schmidtke P., Le Guilloux V., Maupetit J., et al.2010. fpocket:online tools for protein ensemble pocket detection and tracking[J]. Nucleic Acids Res,38(Web Server issue):W582-589.
    Schrodinger, LLC.2010. The PyMOL Molecular Graphics System, Version 1.3rl [M].
    Schulz-Gasch Tanja, Stahl Martin.2003. Binding site characteristics in structure-based virtual screening:evaluation of current docking tools[J]. J Mol Model,9(1):47-57.
    Sclabas G. M., Uwagawa T., Schmidt C., et al.2005. Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin[J]. Cancer,103(12): 2485-2490.
    Shimamura T., Shiroishi M., Weyand S., et al.2011. Structure of the human histamine H-1 receptor complex with doxepin[J]. Nature,475(7354):65-U82.
    Shindyalov I. N., Bourne P. E.1998. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path[J]. Protein Eng,11(9):739-747.
    Shindyalov IN, Bourne PE.2001. CE:a resource to compute and review 3-D protein structure alignments[J]. Nucleic Acid Res,29(1):228-229.
    Simons K. T., Bonneau R., Ruczinski I., et al.1999. Ab initio protein structure prediction of CASP III targets using ROSETTA[J]. Proteins-Structure Function and Bioinformatics: 171-176.
    Singh R. K., Ethayathulla A. S., Jabeen T., et al.2005. Aspirin induces its anti-inflammatory effects through its specific binding to phospholipase A(2):Crystal structure of the complex formed between phospholipase A(2) and aspirin at 1.9 angstrom resolution[J]. Journal of Drug Targeting,13(2):113-119.
    Sirois S., Cloutier L. M.2008. Needed:system dynamics for the drug discovery process[J]. Drug Discov Today,13(15-16):708-715.
    Stevens R. C., Cherezov V., Katritch V., et al.2013. The GPCR Network:a large-scale collaboration to determine human GPCR structure and function[J]. Nat Rev Drug Discov,12(1):25-34.
    Tarricone C., Xiao B., Justin N., et al.2001. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways[J]. Nature,411(6834):215-219.
    Tautermann C. S.2011. The use of G-protein coupled receptor models in lead optimization[J]. Future Medicinal Chemistry,3(6):709-721.
    Tebben A. J., Schnur D. M.2011. Beyond rhodopsin:G protein-coupled receptor structure and modeling incorporating the beta2-adrenergic and adenosine A(2A) crystal structures[J]. Methods Mol Biol,672:359-386.
    Thompson A. A., Liu W., Chun E., et al.2012. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic[J]. Nature,485(7398):395-U150.
    Thun M. J., Jacobs E. J., Patrono C.2012. The role of aspirin in cancer prevention[J]. Nature Reviews Clinical Oncology,9(5):259-267.
    Tilley J. W., Chen L., Fry D. C., et al.1997. Identification of a small molecule inhibitor of the IL-2/IL-2R alpha receptor interaction which binds to IL-2[J]. J Am Chem Soc,119(32): 7589-7590.
    Touqui L., Alaoui-El-Azher M.2001. Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases[J]. Current molecular medicine,1(6):739-754.
    Trist D. G.2011. Scientific process, pharmacology and drug discovery[J]. Curr Opin Pharmacol, 11(5):528-533.
    Tsai Chung-Jung, Lin Shuo Liang, Wolfson Haim J, et al.1996. A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique[J]. J Mol Biol,260(4):604-620.
    Tse C., Shoemaker A. R., Adickes J., et al.2008. ABT-263:A potent and orally bioavailable Bcl-2 family inhibitor[J]. Cancer Research,68(9):3421-3428.
    Ullman F., Boutellier R.2008. A case study of lean drug discovery:from project driven research to innovation studios and process factories[J]. Drug Discov Today,13(11-12):543-550.
    Vajda Sandor, Guarnieri Frank.2006. Characterization of protein-ligand interaction sites using experimental and computational methods[J]. Current Opinion in Drug Discovery and Development,9(3):354.
    Vane J. R.1971. Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs[J]. Nature-New Biology,231(25):232-&.
    Vane J. R., Botting R. M.2003. The mechanism of action of aspirin[J].Thrombosis research, 110(5-6):255-258.
    Venkatakrishnan A. J., Deupi X., Lebon G., et al.2013. Molecular signatures of G-protein-coupled receptors[J]. Nature,494(7436):185-194.
    Villoutreix Bruno O, Bastard Karine, Sperandio Olivier, et al.2008. In silico-in vitro screening of protein-protein interactions:towards the next generation of therapeutics[J]. Curr Pharm Biotechnol,9(2):103-122.
    Vroling B., Sanders M., Baakman C., et al.2011. GPCRDB:information system for G protein-coupled receptors[J]. Nucleic Acids Res,39(Database issue):D309-319.
    Vu B. T., Vassilev L.2011. Small-molecule inhibitors of the p53-MDM2 interaction[J]. Curr Top Microbiol Immunol,348:151-172.
    Wacker D., Fenalti G., Brown M. A., et al.2010. Conserved Binding Mode of Human beta(2) Adrenergic Receptor Inverse Agonists and Antagonist Revealed by X-ray Crystallography[J]. Journal of the American Chemical Society,132(33):11443-11445.
    Wang J., Chen L., Sinha S. H., et al.2012. Pharmacophore-based virtual screening and biological evaluation of small molecule inhibitors for protein arginine methylation[J].J Med Chem, 55(18):7978-7987.
    Wanner J., Fry D. C., Peng Z., et al.2011. Druggability assessment of protein-protein interfaces[J]. Future Med Chem,3(16):2021-2038.
    Warne T., Moukhametzianov R., Baker J. G., et al.2011. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor[J]. Nature,469(7329):241-244.
    Warne T., Serrano-Vega M. J., Baker J. G., et al.2008. Structure of a beta(1)-adrenergic G-protein-coupled receptor[J]. Nature,454(7203):486-U482.
    Wells J. A., McClendon C. L.2007. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces[J]. Nature,450(7172):1001-1009.
    Winter C., Henschel A., Tuukkanen A., et al.2012. Protein interactions in 3D:from interface evolution to drug discovery[J]. J Struct Biol,179(3):347-358.
    Wu B. L., Chien E. Y. X, Mol C. D., et al.2010. Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists[J]. Science,330(6007): 1066-1071.
    Wu G. S., Robertson D. H., Brooks C. L., et al.2003. Detailed analysis of grid-based molecular docking:A case study of CDOCKER-A CHARMm-based MD docking algorithm[J]. Journal of Computational Chemistry,24(13):1549-1562.
    Wu H. X., Wacker D., Mileni M., et al.2012. Structure of the human kappa-opioid receptor in complex with JDTic[J]. Nature,485(7398):327-U369.
    Xiang Z. X.2006. Advances in homology protein structure modeling[J]. Curr Protein Pept Sci, 7(3):217-227.
    Xie L., Bourne P. E.2011. Structure-based systems biology for analyzing off-target binding[J]. Curr Opin Struct Biol,21(2):189-199.
    Yang S. Y.2010. Pharmacophore modeling and applications in drug discovery:challenges and recent advances[J]. Drug Discov Today,15(11-12):444-450.
    Yoshida Katsumi, Niwa Tomoko.2006. Quantitative structure-activity relationship studies on inhibition of HERG potassium channels[J]. J Chem Inf Model,46(3):1371-1378.
    Younis N., Williams S., Ammori B., et al.2010. Role of aspirin in the primary prevention of cardiovascular disease in diabetes mellitus:a meta-analysis[J]. Expert Opinion on Pharmacotherapy,11(9):1459-1466.
    Zhang J., Zhang Y.2010. GPCRRD:G protein-coupled receptor spatial restraint database for 3D structure modeling and function annotation[J]. Bioinformatics,26(23):3004-3005.
    Zhang S. L., Wei Y. X., Li Q., et al.2013. Pharmacophore-Based Drug Design and Biological Evaluation of Novel ABCB1 Inhibitors [J]. Chemical Biology & Drug Design,81(3): 349-358.
    Zhang Y., Arakaki A. K., Skolnick J. R.2005. TASSER:An automated method for the prediction of protein tertiary structures in CASP6[J]. Proteins-Structure Function and Bioinformatics,61:91-98.
    Zheng Chanjuan, Han Lianyi, Yap Chun W, et al.2006. Progress and problems in the exploration of therapeutic targets[J]. Drug Discov Today,11(9):412-420.
    Zhou H., Skolnick J.2012. FINDSITE(X):A Structure-Based, Small Molecule Virtual Screening Approach with Application to All Identified Human GPCRs[J]. Molecular pharmaceutics,9(6):1775-1784.
    Zinzalla G, Thurston D. E.2009. Targeting protein-protein interactions for therapeutic intervention:a challenge for the future[J]. Future Med Chem,1(1):65-93.
    王白璐.2012.药物临床试验质量管理评价研究[M].山东大学.
    周建红,艾观华,方慧生,et al.2011.蛋白质结构从头预测方法研究进展[J].生物信息学,9(1).
    徐守军.2010.我国新药研发技术平台发展策略研究[M].中国人民解放军军事医学科学院.
    张旭.2012. GPCR新药创制联盟项目在无锡启动[J].中国医药报:2012-2003-2029.
    张爱娣.2011.蜱类唾液腺吸血相关基因家族的适应性进化[M].中国科学技术大学.
    杨炳忻.2012.香山科学会议第410—414次学术讨论会简述[J].中国基础科学,1009-2412(2012):02-0015-0006.
    许哲军,程飞雄,孙宪强,et al.2011. GPCR配体药效团数据库的构建[J].华东理工大学学报:自然科学版,37(2):167-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700