用户名: 密码: 验证码:
半导体纳米材料生长机制及成核理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的薄膜异质外延技术,由于不同材料晶格常数的失配,会在接触表面产生位错,从而导致薄膜光学和电学性能的显著下降。纳米线解决了长期困扰薄膜异质外延领域的技术问题。由于弹性能量在纳米线侧壁上的弛豫,使得纳米线可以在晶格失配衬底上无位错生长,因此纳米异质外延技术被认为是减少位错缺陷产生的有效途径。同时,为制备出高晶体质量的纳米材料,去除催化物对纳米材料造成的污染,世界上很多实验小组都在尝试用无催化方法制备纳米材料。因此,理解半导体纳米材料的生长机制及成核理论,将为制备出高质量纳米材料打下坚实的理论基础。
     本论文研究工作主要围绕任晓敏教授担任首席科学家的国家重点基础研究发展规划(973计划)项目(No:2010CB314900)以及课题组承担的国家自然科学基金重大国际(地区)合作研究项目(No:90201035)、高等学校学科创新引智计划项目(No:B07005)、国家863计划项目(No:2007AA03Z418)杜布罗夫斯基教授承担的俄罗斯联邦科学创新项目(No:02.740.11.0383)、俄罗斯基础研究项目(No:11-02-00727-a)、俄罗斯科学院科学研究项目(No:10-02-93107-a)展开。
     针对倾斜纳米线在MBE沉积条件下的理论和实验,异质生长纳米结构弹性应变能及塑性应变能模型,三维纳米结构应力驱动成核理论,以及量子点在台阶衬底的成核理论进行了研究。取得了以下主要研究成果:
     1.首次推导出倾斜纳米线在MBE沉积条件下的生长速率模型。分析了纳米线生长速率对纳米线半径和沉积条件的函数关系。用MBE沉积法分别制备出在GaAs(211)A和GaAs(111)B衬底上的GaAs纳米线。实验表明,由于入射粒子对倾斜纳米线侧壁有着更大碰撞率,倾角为20°的倾斜纳米线平均长度大约是垂直生长纳米线长度的两倍。通过理论模型与实验结果对比分析,估算出吸附粒子在衬底和纳米线侧壁的超饱和度和扩散长度,认为在MBE生长条件下粒子在纳米线侧壁的扩散效应对其生长速率有着重要影响。
     2.首次用解析的方法推导出在大高宽比和失配生长条件下不同形状纳米结构的弹性应变能弛豫函数。比较了柱状纳米结构分别在刚性衬底和弹性衬底上弹性弛豫函数的异同。通过对比不同形状纳米结构在有位错以及无位错条件下总能量之间的差异,得到了产生位错的临界直径和临界厚度。研究表明:弹性能量弛豫与纳米结构的形状以及侧壁衬底之间夹角相关,夹角越大,弹性能量随着高宽比的增加弛豫得越迅速。上述结论得到了已发表实验数据及有限元仿真结果的验证。
     3.首次提出三维纳米结构在晶格失配衬底上的应力驱动成核模型。得到了二维和三维纳米结构的成核势垒和最有利成核高宽比。通过分析二维和三维纳米结构成核势垒之间的差异,得到了纳米结构的三维成核条件。将上述分析结果与实验数据进行对照后发现:对于多种材料系三维纳米结构最有利成核高宽比均随晶格失配度的增大而变大。理论分析预测了三维纳米结构在应力驱动成核条件下为纤锌矿晶体结构,这与实验得到的在蓝宝石衬底上无催化自组织GaAs纳米针的晶体结构一致。总之,应力驱动成核为实验制备出无催化高质量纳米材料提供了一种新的生长机制。
     4.首次提出了在失配台阶衬底上按照Stranski-Krastanov(SK)生长模式生长三维纳米结构时的成核理论模型,并基于此模型分析得出了不同材料系纳米结构的成核势垒、最有利成核高宽比以及该比值随衬底取向偏角的变化关系。结果表明,纳米结构的最小成核势垒随着台阶衬底取向偏角的增大而减小,这说明相对于平面衬底,纳米结构在台阶衬底更容易成核,此结论与实验结果一致。通过选取不同衬底取向偏角的台阶衬底,可以控制纳米结构自组织成核过程。
     5.在考虑浸润层表面能随厚度变化的条件下,提出了Ge量子点在Si台阶衬底上按照SK生长模式成核的模型。拟合出量子点形状系数和弹性能量密度随衬底取向偏角的变化关系,分析了衬底取向偏角、浸润层厚度和量子点密度对量子点成核的影响。得出量子点成核势垒和临界体积均随衬底取向偏角和浸润层厚度的增大而减小,而量子点密度对量子点成核势垒的影响较小。
The conventional film technologies have run into interfacial lattice mismatch issues that often result in highly defective optical materials. The unique one-dimensionality inherent to nanowires has already solved some of the long-standing technical problems that have plagued the thin film community. In this regard, nanowires growth provides a natural mechanism for relaxing the lattice strain at the interface and enables dislocation-free semiconductor growth on lattice mismatched substrates. The unwanted Au contamination has led to many attempts to develop catalyst-free growth procedures by a lot of research groups in the world. Understanding their growth mechanism as well as nucleation theory is crucial for the fabrication of high-quality materials.
     The research in this dissertation is supported by grants from The National Basic Research Program of China (No:2010CB314900), which professor Xiaomin Ren is responsible for as a chief scientist, Key Program Project of the National Natural Science Foundation of China(No:90201035), The111Project(No:B07005), The National High Technology Research and Development Program of China(No:2007AA03Z418)。The Russian Federal Agency for Science and Innovation(No:02.740.11.0383), The Russian Foundation for Basic Research(No:11-02-00727-a), The Scientific Programs of Russian Academy of Sciences(No:10-02-93107-a), which professor Dubrovskii is responsible for them.
     In this dissertation, a great deal of research work can be described as follow:theoretical and experimental studies on the growth of inclined nanowires by Molecular Beam Epitaxy, study of elastic energy relaxation and plastic deformation in nanostructures on lattice mismatched substrates, stress-driven nucleation theory of three-dimensional nanostructures, the nucleation theory of quantum dots on the vicinal substrates. The main achievements are listed as follows.
     1. Theoretical model for the growth of inclined semiconductor nanowires via Molecular Beam Epitaxy deposition is developed. General expression for the nanowires growth as function of its radius and the growth condition is obtained and analyzed. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found out that20°inclined nanowires are two times longer in average, which is explained by a larger impingment rate on their sidewalls. Supersaturations and diffusion lengths of surface and sidewall adatoms are also estimated by fitting the theoretical model to the experimental data. The obtained results show the importance of sidewall adatoms in the MBE growth of nanowires.
     2. An analytical expression of elastic strain energy relaxation in nanostructures of different isotropic geometries grown on lattice mismatched substrates is obtained. The results are derived from large aspect ratio condition. The differences of the elastic strain energy relaxation in cylindrical nanostrucuture on the rigid and elastic substrate are compared. A dislocation model is considered to analyze the competition between the elastic and dislocation energies. We calculate out the critical diameter and critical thickness below which the plastic deformation is energetically suppressed. Our data indicate that the elastic energy is highly depended on the island shape, with the relaxation becoming faster as the contact angle increases. The analytical model is compared with experimental and numerical results.
     3. The model of stress-driven nucleation of three-dimensional nanostructures in lattice mismatched systems is proposed. The nucleation barrier and the energetically preferred aspect ratio are obtained. The comparison between the two-dimensional and three-dimensional nucleation barrier is carried in order to get the three-dimensional nucleation conditions. The fitting curve is plotted according to the experimental results, and the curve shows the tendency for an increase in the preferred aspect ratio with regard to different material systems. The nucleation theory expects the wurzite crystal structure of nanocrystals under the stress-driven nucleation process, which is consistent with the case of GaAs nanoneedles on sapphire. Overall, the stress-driven nucleation of islands may offer a new growth mechanism for the fabrication of catalyst-free high quality nanomaterials.
     4. A model of the nanoislands nucleation in Stranski-Krastanov growth mechanism on lattice-mismatched vicinal substrate is proposed. The nucleation barrier and energetically favorable aspect ratio are obtained on different material systems. The favorable aspect ratio as a function of miscut angle is also demonstrated. The theoretical analysis shows the minimum nucleation barrier of island is on the decrease with increment of substrate misorientation, which means the nucleation of nanoislands on vicinal substrate is more favorable than that on singular substrate. This result is consistent with experimental observation. It is suggested that the vicinal substrate can be explored further as an effective way to direct nanoislands nucleation and self-assembly. With regard to miscut, it offers an additional degree of control over the nucleation process of nanoislands.
     5. A nucleation model of Ge quantum dots on Si vicinal substrate in Stranski-Krastanov growth mechanism is proposed. The variation of shape factor and elastic energy densities of quantum dots with miscut angles is fitted. The influence of miscut angles, the thickness of wetting layers and the densities of quantum dots on the nucleation process is analyzed. The conclusion shows the tendency for a decrease in the nucleation barrier and critical volume of quantum dots with miscut angle and the thickness of wetting layers. The variation of densities of quantum dots is trivial to the nucleatin barrier.
引文
[1]任晓敏,国家重点基础研究发展计划(973计划)项目“新型光电子器件中的异质兼容集成与功能微结构体系基础研究”申请书,2010.
    [2]韦乐平,光纤通信系统技术的发展与展望,电信网技术,2006.
    [3]Ross, F. M., Tersoff, J., Reuter, M. C., "Sawtooth faceting in silicon nanowires" Phys. Rev. Lett.,95(14),2005,146104-1-146104-4.
    [4]Ma, D., D., Lee, C. S., Au, F. C., "Small-diameter silicon nanowire surfaces" Science,299(5614),2003,1874-1877.
    [5]Qian, F., Li, Y., Gradecak, S., et al. "Gallium nitride-based nanowire radial heterostructures for nanophotonics", Nano Lett.,4(10),2004,1975-1979.
    [6]Duan, X. F., Huang, Y., Agarwal, R., et al. "Single-nanowire electrically driven lasers", Nature,421,2003,241-245.
    [7]Shi, S. C., Chen, C. F., Chattopadhyay, S., et al. "Field emission from quasi-aligned aluminum nitride nanotips", Appl. Phys. Lett.,87(7),2005, 073109-1-073109-3.
    [8]Ng, H. T., Han, J., Toshishige, Y, et al. "Single crystal nanowire vertical surround-gate field-effect transistor", Nano Lett.,4(7),2004,1247-1252.
    [9]Zhao, M. H., Wang, Z. L., Mao, S. X., et al. "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope", Nano Lett.,4(4),2004,587-590.
    [10]Fuhrmann, B., Leipner, H. S., Hoche, H. R., "Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy", Nano Lett., 5(12),2005,2524-2527.
    [11]Martensson, T., Borgstrom, M., Seifert, W., et al. "Fabrication of individually seeded nanowire arrays by vapour-liquid-solid growth", Nanotechnology,14(12), 2003,1255.
    [12]Wagner, R. S., and Ellis, W.C., "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett.,4(5),1964,89-90.
    [13]Yazawa, M., Koguchi, M., Hiruma, K., "Heteroepitaxial Ultrafine Wire-Like Growth of InAs on GaAs Substrates", Appl. Phys. Lett.,58(10),1991,1080-1082.
    [14]Dubrovskii, V. G, Sibirev, N. V., Cirlin, G E., et al. "Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires", Phys. Rev. B,79(20),2009,5316-1-5316-7.
    [15]Froberg, L. E., Seifert, W., and Johansson, J., Phys. Rev. B,76(15),2007, 3401-1-3401-4.
    [16]Dubrovskii, V. G., Sibirev, N. V., Harmand, J. C., et al. "Growth kinetics and crystal structure of semiconductor nanowires", Phys. Rev. B,78(23),2008, 5301-1-5301-10.
    [17]Hochbaum, A. I., Yang, P. D., "Semiconductor nanowirs for energy conversion" Chem. Rev.,110(1),2010,527-546.
    [18]Wang, N. P., Heinze, S., Tersoff, J., "Random-telegraph-signal noise and device variability in ballistic nanotube transistors", Nano Lett.,7(4),2007,910-913.
    [19]Gao, X. P. A., Zheng, G. F., Lieber, C. M., "Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors", Nano Lett.,10(2),2009,547-552.
    [20]Chuang, L. C., Sedgwick, F. G., Chen, R., et al. "GaAs-Based Nanoneedle Light Emitting Diode and Avalanche Photodiode Monolithically Integrated on a Silicon Substrate", Nano Lett.,11(2),2011,385-390.
    [21]Huo, Z. Y, Tsung, C. K., Huang, W. Y, et al. "Self-organized ultrathin oxide nanocrystals", Nano Lett.,9(3),2009,1260-1264.
    [22]Gargas, D. J., Toimil-Molares, M. E., Yang, P. D., "Imaging Single ZnO Vertical Nanowire Laser Cavities Using UV-laser Scanning Confocal Microscopy", J. Am. Chem. Soc.,131(6),2009,2125-2127.
    [23]Jiang, X., Tian, B., Xiang, J. et al. "Rational growth of branched nanowire heterostructures with synthetically encoded properties and function," Proc. Natl. Acad. Sci.,108(30),2011,12212-12216.
    [24]Yan, H., Choe, H. S., Nam, S. W., et al. "Programmable nanowire circuits for nanoprocessors," Nature,470,2011,240-244.
    [25]Yu, G, Lieber, C. M., "Assembly and integration of semiconductor nanowires for functional nanosystems," Pure Appl. Chem.,82(12),2010,2295-2314.
    [26]Wang, Z. L., Song, J. H., "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science,312(5771),2006,242-246.
    [27]Huang, M., Mao, S., Feick, H., et al. "Room-temperature ultraviolet nanowire nanolasers", Science,292(5523),2001,1897-1899.
    [28]Johnson, J., Choi, H. J., Knutsen, K. P., et al. "Single gallium nitride nanowire lasers", Nature Mater.,1,2002,106-110.
    [29]Chen, R., Tran, T. D., Ng, K. W., et al. "Nanolasers grown on silicon", Nature Photon.,5,2011,170-175.
    [30]Chuang, L. C., Moewe, M., Ng, K. W., et al. "GaAs nanoneedles grown on sapphire", Appl. Phys. Lett.,98(12),2011,3101-1-3101-3.
    [31]Ren Xiaomin, Huang Hui, Dubrovskii, V. G., et al. "Experimental and theoretical investigations on the phase purity of GaAs zincblende nanowires", Semicond. Sci. Technol.,26(1),2011,014-034.
    [32]Liu K., Huang Y. Q., Ren X. M., "Theory and experiments of a three-cavity wavelength-selective photodetector", Appl. Opt.,39(24),2000,4263-4269.
    [33]Wang, S. S., Magnusson, R., "Theory and applications of guided-mode resonance filters", Appl. Opt.,32(14),1993,2606-2613.
    [34]Kirstaedter, N., Ledentsov, N. N., Grundmann, M., et al. "Low threshold, large To injection laser emission from (InGa)As quantum dots", Electron. Lett.,30(17), 1994,1416-1417.
    [35]Skold, N., Karlsson, L. S., Larsson, M. W. et al. "Growth and optical properties of strained GaAs-GaxInl-xP core-shell nanowires", Nano Lett.,5(10),2005, 1943-1947.
    [36]Loss, D., Divincenzo, D. P., "Quantum computation with quantum dots", Phys. Rev. A,57(1),1998,120-126.
    [1]Kashchiev, D., "Nucleation basic theory with application", Butterworth. Heinemann, Oxford, U. K.,2000.
    [2]Lennard-Jones, J. E., "The equation of state of gases and critical phenomena", Physica,4(10),1937,941-956.
    [3]Ehrlich, G., "The mechanism of chemisorption on metals", J. Phys. Chem. Solids, 1(1-2),3-13.
    [4]Lothe, J., Pound, G. M., "Reconsiderations of nucleation theory", J. Chem. Phys., 36,2080-2085.
    [5]Hirth, J. P., Moazed, K. L., "Physics of thin films", Academics Press, New York, 1967.
    [6]Zinsmeister, G., "Basic problem in thin film physics", Vandenhoeck and Ruprecht, Gottingen,1966.
    [7]Lewis, B., Campbell, D. S., "Nucleation and Initial-Growth Behavior of Thin-Film Deposits", J. Vac. Sci. Technol.,4(5),1967,209-218.
    [8]Lewis, B., "Analysis of In Situ Electron Microscopy Studies of Heterogeneous Nucleation", J. Appl. Phys.,41(1),1970,30-35.
    [9]Gilmer, G. H., Ghez, R., Cabrera, N., "An analysis of combined surface and volume diffusion processs in crystal growth", J. Cryst. Growth,8(1),1971,79-93.
    [10]Legrand, B., Nys, J. P., Grandidier, B., et. al., "Imaging the wave function amplitudes in cleaved semiconductor quantum boxes", Phys. Rev. Lett.,85(5), 2000,1068-1071.
    [11]Tersoff, J., Legoues, F. K., "Competing relaxation mechanisms in strained layers", Phys. Rev. Lett.,72(22),1994,3570-3573.
    [12]Solomon, G. S., Trezza, J. A., Marshall, A. F., et. al., "Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs", Phys. Rev. Lett., 76(6),1996,952-955.
    [13]Markov, Ivan V., Crystal Growth for Beginners:Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore:World Scientific,1995.
    [14]Matthews, J. W., Epitaxial Growth. New York:Academic Press,1975.
    [15]Kukta, R. V., Freund, L. B., "Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate", Journal of the Mechanics and Physics of Solids,45(11-12),1997,1835-1860.
    [16]Venables, J; Spiller, G. D. T., and Hanbucken, M., "Nucleation and growth of thin films", Reports on Progress in Physics,47(4),1984,399-459.
    [17]Li, Y. R., Liang, Z., Zhang, Y., et. al., "Growth modes transition induced by strain relaxation in epitaxial MgO thin films on SrTiO3 (001) substrates", Thin Solid Films,489(1-2),2005,245-250.
    [18]Chiu, C.-h., Huang, Z., and Poh, C. T., "Formation of Nanostructures by the Activated Stranski-Krastanow Transition Method", Phys. Rev. Lett.,93(13),2004, 6105-1-6105-4.
    [19]Milchev, A., Kruijt, W. S., Sluyters-Rehbach, M., et. al., "Distribution of the nucleation rate in the vicinity of a growing spherical cluster:Part 1. Theory and simulation results", J. Electroanal. Chem.,362(1-2),1993,21-31.
    [20]Adam, N. K., The physics and chemistry of surfaces, Oxford University Press, U.K.,1941.
    [21]Toschev, S., Crystal growth:An Introduction, Ed. P. Hartman, North-Holland, Amsterdam,1973.
    [22]Benson, S. W., The foundations of chemical kinetics, McGraw-Hill, New. York, 1960.
    [1]Dubrovskii, V. G., Cirlin, G. E, Ustinov, V. M., "Semiconductor nanowhiskers Synthesis, properties, and applications", Semiconductors,43(12),2009, 1539-1584.
    [2]Mohammad, S. N., "General hypothesis governing the growth of single-crystal nanowires", J. App. Phys.,107(11),2012,4304-1-4304-27.
    [3]Fan, H. J., Werner, P., Zacharias, M., "Semiconductor Nanowires From Self organization to patterned growth", Small,2(6),2006,700-717.
    [4]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy Theory and experiment", Phys. Rev. B,71(20),2005,5325-1-5325-6.
    [5]Shtrikman, H., Popovitz-Biro, R., Kretinin, A., et al. "Stacking-Faults-Free Zinc Blende GaAs Nanowires", Nano Lett.,9(1),2009,215-219.
    [6]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires", Phys. Rev. B,79(20),2009,5316-1-5316-7.
    [7]Cirlin, G. E., Dubrovskii, V. G., Samsonenko, Y. B., "Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy", Phys. Rev. B,82(3),2010,5302-1-5302-6.
    [8]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Role of nonlinear effects in nanowire growth and crystal phase", Phys. Rev. B,80(20),2009,5305-1-5305-8.
    [9]Xiang, J., Lu, W., Hu, Y. J., et al. "Ge/Si nanowire heterostructures as high-performance field-effect transistors", Nature,441,2006,489-493.
    [10]Chang, P. C., Fan, Z. Y., Wang, D. W., et al. "ZnO Nanowires Synthesized by Vapor Trapping CVD Method", Nano Lett.,16(24),2004,5133-5137.
    [11]Seifert, W., Borgstrom, M., Deppert, K., et al. "Growth of one-dimensional nanostrucutures in MOVPE", J. Cryst. Growth,272(1),2004,211-220.
    [12]Froberg, L. E., Seifert, W., and Johansson, J., "Diameter-dependent growth rate of InAs nanowires", Phys. Rev. B,76(15),2007,3401-1-3401-4.
    [13]Dubrovskii, V. G., Sibirev, N. V., "Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires", Phys. Rev. B,77(3), 2008,5414-1-5414-8.
    [14]Wagner, R. S., and Ellis, W.C., "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett.,4(5),1964,89-90.
    [15]Givargizov, E. I., "Fundamental aspect of VLS growth", J. Cryst. Growth,31, 1975,20-30.
    [16]Kukushkin, S. A., Osipov, A. V., "New phase formation on solid surfaces and thin film condensation", Prog. Surf. Sci.,51(1),1996,1-107.
    [17]Osipov, A. V., "Kinetic model of vapor-deposited thin film condensation: nucleation stage", Thin Solid Films,227(2),1993,111-118.
    [18]Obreten, W., Kashchiev, D., Bostanov, V., "Unified description of the rate of nucleation-mediated crystal growth", J. Cryst. Growth,96(4),1989,843-848.
    [19]Cai, X. M., Djursic, A. B., Xie, M. H., "GaN nanowires:CVD synthesis and properties", Thin Solid Films,515(3),2006,984-989.
    [20]Bryllert, T., Wernersson, L. E., Lowgren, T., "Vertical wrap-gated nanowire transisters", Nanotechnology,17(11),2006, S227-S230.
    [21]Hochbaum, A. I., Fan, R., He., R., et al. "Controlled growth of Si nanowire arrays for device integration", Nano Lett.,5(3),2005,457-460.
    [22]Goldberger, J., Hochbaum, A. I., Fan, R., et al. "Silicon Vertically Integrated Nanowire Field Effect Transistors", Nano Lett.,6(5),2006,973-977.
    [23]Martensson, T., Carlberg, P., Borgstrom, M., et al. "Nanowire arrays defined by nanoimprint lithography", Nano Lett.,4(4),2004,699-702.
    [24]Duan, X., Wang, J., Lieber, C. M., "Synthesis and optical properties of gallium arsenide nanowires", Appl. Phys. Lett.,76(9),2000,1116-1118.
    [25]Chan, Y. F., Duan, X. F., Chan, S. K., et al. "ZeSe nanowires epitaxially grown on GaP(111) substrate by molecular-beam epitaxy", Appl. Phys. Lett.,83(13), 2003,2665-2667.
    [26]Schubert, L., Wener, P., Zakharov, N. D., et al. "Silicon nanowhiskers grown on <111>Si substrates by molecular-beam epitaxy", Appl. Phys. Lett.,84(24),2004, 4968-4970.
    [27]Bjork, M. T., Ohlsson, B. J., Sass, T., et al. "One-dimensional heterostructures in semiconductor nanowhiskers", Appl. Phys. Lett.,80(6),2002,1058-1060.
    [28]Dubrovskii, V. G., Soshnikov, I. P., Sibirev, N. V., et al. "Growth of GaAs nanoscale whiskers by magnetron sputtering deposition", J. Cryst. Growth, 289(1),2006,31-36.
    [29]Morales, A. M., Lieber, C. M., "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science,279(5348),1998,208-211.
    [30]Chen, C. C., Yeh, C. C., "Large-scale catalytic synthesis of crystalline gallium nitride nanowires", Adv. Mater.,12(10),2000,738-741.
    [31]Chen, C. C., Yeh, C. C., Chen, C. H., "Catalytic growth and characterization of gallium nitride nanowires", J. Am. Chem. Soc.,123 (12),2001,2791-2798.
    [32]Duan, X., Lieber, C. M., "General synthesis of compound semiconductor nanowires", Adv. Mater.,12(4),2000,298-302.
    [33]Westwater, J., Gosain, D. P., Tomiya, S., et al. "Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction", J. Vac. Sci. Technol. B,15(3),1997, 554-557.
    [34]Hiruma, K., Yazawa, M., Katsuyama, T., et al. "Growth and optical properties of nanometer-scale GaAs and InAs whiskers", J. Appl. Phys.,77(2),1995,447-462.
    [35]Wang, Y., Meng, G., Zhang, L., et al. "Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence", Chem. Phys. Lett.,14(4),2002,1773-1777.
    [36]Wang, Y., Zhang, L., Liang, C., et al. "Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires", Chem. Phys. Lett. 357(3),2002,314-318.
    [37]Bootsma, G. A., Gassen, H. J., "A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane", J. Crys. Growth, 10(3),1971,223-234.
    [38]Adhikari, H., Marshall, A. F., Chidsey, C. E. D., et al. "Germanium nanowire epitaxy:shape and orientation control", Nano Lett.,6(2),2006,318-323.
    [39]Schubert, L., Werner, P., Zakharov, N. D., et al. "Silicon nanowhiskers grown on <111> Si substrates by molecular-beam epitaxy", Appl. Phys. Lett.,84(24),2004, 4968-4970.
    [40]Brenner, S. S., Sears, G. W., "Mechanism of whisker growth—Ⅲ nature of growth sites", Acta Metallurgica,4(3),1956,268-270.
    [41]Dittmar, W., Neumann, K., Growth and perfection crystals, Wiley, New York, 1958.
    [42]Glas, F., Harmand, J. C., Patriarche, G., "Nucleation antibunching in catalyst-assisted nanowire growth", Phys. Rev. Lett.,104(13),2010, 5501-1-5501-4.
    [43]Harmand, J. C., Glas, F., Patriarche, G., "Growth kinetics of a single InP1-xAsx nanowire", Phys. Rev. B,81(23),2010,5436-1-5436-8.
    [44]Markov, I. N., Crystal Growth for Beginners, World Scientific, Singapore,2003.
    [45]Harmand, J.C., Patriarche, G., Pere-Laperne, N., et al. "Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth", Appl. Phys. Lett.,87(20),2005,3101-3103.
    [46]Dubrovskii, V. G., Sibirev, N. V., Harmand, J. C., et al. "Growth kinetics and crystal structure of semiconductor nanowires", Phys. Rev. B,78(23),2008, 5301-1-5301-10.
    [47]Takebe, T., Fujii, M., Yamamoto, T., et al. "Orientation-dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates", J. App. Phys.,81(11),1997,7273-7281.
    [48]Massalski, T. B., (Ed.), Binary Alloy Phase Diagrams, v.1, first ed., p.260 American Society for Metals, Metals Park, Ohio,1986.
    [49]Harmand, J. C., Tchernycheva, M., Patriarche, G., et al. "GaAs nanowires formed by Au-assisted molecular beam epitaxy:Effect of growth temperature", J. Cryst. Growth,301,2007,853-856.
    [50]Plante, M.C., LaPierre, R. R., "Analytical description of the metal-assisted growth of III-V nanowires:Axial and radial growths", J. Appl. Phys.,105(11), 2009,4304-1-4934-8.
    [51]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Shape modification of Ⅲ-Ⅴ nanowires:The role of nucleation on sidewalls", Phys. Rev. E,77(3),2008, 1606-1-1606-7.
    [52]Dubrovskii, V. G., Sibirev, N. V., Suris, R. A., et al. "The role of surface diffusion of adatoms in the formation of nanowire crystals", Semiconductors, 40(9),2006,1075-1082.
    [53]Dubrovskii, V. G., Sibirev, N. V., Suris, R. A., et al. "Diffusion-controlled growth of semiconductor nanowires:Vapor pressure versus high vacuum deposition", Surf. Sci.601(18),2007,4395-4401.
    [54]Huang, H., Ren X., Ye, X., et al. "Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers", Nano Lett.,10(1),2010,64-68.
    [1]McCray, W. P., "MBE deserves a place in the history books", Nature Nanotechnol.,2(5),2007,259-261.
    [2]Hunt, L. B., "The first organometallic compounds:william christopher zeise and his platinum complexes", Platinum Metals Rev.,28(2),1984,76-83.
    [3]Glas, F., Harmand, J. C., Patriarche, G., "Nucleation antibunching in catalyst-assisted nanowire growth", Phys. Rev. Lett.,104(13),2010, 5501-1-5501-4.
    [4]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Role of nonlinear effects in nanowires growth and crystal phase", Phys. Rev. B 80(20),2009,5305-1-5305-8.
    [5]Glas, F., "Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires", Appl. Phys. Lett.,108(7),2010,3506-1-3506-6.
    [6]Johansson, J., Karlsson, L. S., Svensson, C. P. T., et al. "Structural properties of <111>B-oriented III-V nanowires", Nature Mater.,5,2006,574-580.
    [7]Heitz, R., Ledentsov, N.N., Bimberg, D., et al. "Optical properties of InAs quantum dots in a Si matrix", Physica E,7(3),2000,317-321.
    [8]Ledentsov, N.N., Ustinov, V. M., Shchukin, V. A., et. al. "Quantum dot heterostructures:fabrication, properties, laers", Semiconductors,32(4),1998, 343-365.
    [9]王占国,“半导体纳米结构的可控生长”,人工晶体学报,31(3),2002,208-217.
    [10]Vengrenovich, R. D., Gudyma, Y. V., Yarema, S. V., "Dislocation mechanism of quantum dot formation in heteroepitaxial structures", Phys. Stat. Sol. (b),242(4), 2005,881-889.
    [11]Leon, R., Okuno, J. O., Lawton, R. A., el. al. "Dislocation-induced changes in quantum dots:step alignment and radiative emission", Appl. Phys. Lett.,74(16), 1999,2031-2033.
    [12]刘恩科,朱秉生,罗晋生等,《半导体物理学》,西安交通大学出版社,1998.
    [13]左演声,陈文哲,梁伟,材料现代分析方法,北京,北京工业大学出版社,2000.
    [14]Chuang, L. C., Moewe, M., Ng, K. W., et. al. "GaAs nanoneedles grown on sapphire", Appl. Phys. Lett.,98(12),2011,3101-3103.
    [15]Chen, R., Crankshaw, S., Tran, T., et. al. "Second-harmonic generation from a single wurzite GaAs nanoneedle", Appl. Phys. Lett.,96(5),2010,1110-1112.
    [16]Glas, F., "Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires", Phys. Rev. B,74(12),2006, 1302-1305.
    [17]Kukushkin, S.A., Osipov, A.V., Schmitt, F., et. al. "The nucleation of coherent semiconductor islands during the Stanski-Krastanov growth induced by elastic strain", Semiconductors,36(10),2002,1097-1105.
    [18]Martensson, T., Svensson, C. P. T., Wacaser, B. A., et. al. "Epitaxial Ⅲ-Ⅴ Nanowires on Silicon", Nano Lett.,4(10),2004,1987-1990.
    [19]Grundmann, M., Stier, O., Bimberg, D., "InAs/GaAs Quantum Pyramids:Strain Distribution, Optical Phonons and Electronic Structure", Phys. Rev. B,52(16), 1995,11969-11981.
    [20]Carlson, A., Wallenberg. L. R., Persson. C., et. al. "Strain state in semiconductor quantum dots on surfaces:a comparison of electron microscopy and finite element calculations", Surf. Sci.,406 (1),1998,48-56.
    [21]Benabbas, T., Androussi, Y., Lefebvre. A., "A finite-element study of strain fields in vertically aligned InAs islands in GaAs", J. App. Phys.,86(4),1999, 1945-1950.
    [22]Tersoff, J., and Tromp, R.M., "Shape transition in growth of strained islands: spontaneous formation of quantum wires", Phys. Rev. Lett.,70(18),1993, 2782-2785.
    [23]Shchukin, V. A., Bimberg, D., Munt, T. P., et. al. "Elastic interaction and self-relaxation energies of coherently strained conical islands", Phys. Rev. B, 70(08),2004,5416-1-5416-10.
    [24]Shchukin, V. A., Ledentsov, N. N., Kop'ev, P. S., et. al. "Spontaneous Ordering of Arrays of Coherent Strained Islands", Phys. Rev. Lett.75(16),1995, 2968-2971.
    [25]Ratsch, C., and Zangwill, A., "Equilibrium theory of the Stranski-Krastanov epitaxial morphology", Surf. Sci.,293(1),1993,123-131.
    [26]Frenkel I., and Kontorova, T., "On the theory of plastic deformation and twinning", J. Phys. Acad. Sci. USSR 1,1939,137-149.
    [27]Gill, S. P. A., and Cocks, A. C. F., Proc. R. Soc. A,462(2076),2006,3523-3553.
    [28]Gill, S. P. A., "Enhanced elastic interactions between conical quantum dots", Appl. Phys. Lett.,89(20),2006,3115-1-3115-3.
    [29]Landau, L.D., Lifshitz, E.M., Theory of Elasticity Pergamon, New York,1970.
    [30]Dubrovskii, V.G., Sibirev, N.V., Zhang, X., et. al. "Stress-driven nucleation of three-dimensional crystal islands:from quantum dots to nanoneedles", Cryst. Growth & Design,10(9),2010,3949-3955.
    [31]F. Glas, privite communication.
    [32]Bert, N. A., Freidin, A. B., Kolesnikova, A. L., et. al. "On strain state and pseudo-moire TEM contrast of InSb quantum dots coherently grown on InAs surface", Phys. Stat. Sol. (a),207(10),2010,2323-2326.
    [33]S.P. Timoshenko, J.N. Goodier, Theory of elasticity, McGraw-Hill, New York, 1970.
    [34]E. Ertekin, P. A. Greaney, and D. C. Chrzan, "Equilibrium limits of coherency in strained nanowire heterostructures", J. Appl. Phys.,97(11),2005,4325-4334.
    [35]Ovid'ko, I. A., "Relaxation Mechanisms in Strained Nanoislands", Phys. Rev. Lett.,88(4),2002,6103-6106.
    [36]Osipov, A.V., Schmitt, F., Kukushkin, S.A., et. al. "Stress-driven nucleation of coherent islands:theory and experiment", Appl. Surf. Sci.,188(1),2002, 156-162.
    [37]Cirlin, G. E., Dubrovskii, Soshnikov, I. P., et al. "Critical diameters and temperature domains for MBE growth of III-V nanowires on lattice mismatched substrates", Phys. Rev. B 80(20),2009,5305-1-5305-8.
    [38]Chuang, L. C., Moewe, M., Chase, C., et al. "Critical diameter for III-V nanowires grown on lattice-mismatched substrates", Appl. Phys. Lett.,90(4), 2007,3115-1-3115-3
    [1]Fang, S. F., Adomi, K., Iyer, S., et al. "Gallium arsenide and other compound semiconductors on silicon", J. Appl. Phys.,68(7),1990, R31-R58.
    [2]Bimberg, D., Grundmann, M., Ledentsov, N. N., Quantum dot heterostructures, New York,1999.
    [3]Ustinov, V. M., Zhukov, A. E., Egorov, A. Yu., et al. Quantum dot lasers, Oxford University Press,2003.
    [4]Goldstein, L., Glas, F., Marzin, J. Y., et al. "Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices" Appl. Phys. Lett.,47(10),1985,1099-1101.
    [5]Leonard, D., Pond, K., Petroff, P. M., "Critical layer thickness for self-assembled InAs islands on GaAs", Phys. Rev. B,50(16),1994,11687-11692.
    [6]Apetz, R., Vescan, L., Hartman, A., et al. "Photoluminescence and electroluminescence of SiGe dots fabricated by island growth", Appl. Phys. Lett., 66(4),1995,445-447.
    [7]Shchukin, V. A., Ledentsov, N. N., Kop'ev, P. S., et al. "Spontaneous ordering of arrays of coherent strained islands", Phys. Rev. Lett.,75(16),1995,2968-2971.
    [8]Barabasi, A. L., "Self-assembled island formation in heteroepitaxial growth" Appl. Phys. Lett.,70(19),1997,2565-2567.
    [9]Mariette, H., "Formation of self-assembled quantum dots induced by the Stranski-Krastanow transition:a comparison of various semiconductor systems" C. R. Phys.,6(1),2005,23-32.
    [10]Constantini, G., Ratelli, A., Manzano, C., et al. "Pyramids and domes in the InAs/GaAs(001) and Ge/Si(001) systems" J. Cryst. Growth,278(1),2005, 38-45.
    [11]Cirlin, G. E., Dubrovskii, V. G., Petrov, V. N., et al. "Formation of InAs quantum dots on a silicon (100) surface", Semicond. Sci. Technol.,13(11),1998, 1262-1265.
    [12]Gill, S. P. A., Cocks, A. C. F., "An analytical model for the energetics of quantum dots:beyond the small slope assumption", Proc. R. Soc. A,462(2076), 2006,3523-3553.
    [13]Floro, J. A., Lucadamo, G. A., Chason, E., "SiGe island shape transitions induced by elastic repulsion", Phys. Rev. Lett.,80(21),1998,4717-4720.
    [14]Daruka, I., Tersoff, J., Barabasi, A.-L., "Shape transition in growth of strained islands", Phys. Rev. Lett.,82(13),1999,2753-2756.
    [15]Shchukin, V. A., Bimberg, D., Munt, T. P., et al. "Elastic interaction and self-relaxation energies of coherently strained conical islands", Phys. Rev. B, 70(8),2004,5416-1-5416-10.
    [16]Ratsch, C, Zangwill, A., "Equilibrium theory of the Stranski-Krastanov epitaxial morphology" Surf. Sci.,293(1),1993,123-131.
    [17]Stoica, T., Vescan. L., "Misfit dislocations in finite lateral size Si1-xGex films grown by selective epitaxy", J. Cryst. Growth,131(1),1993,32-40.
    [18]Glas, F., "Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires", Phys. Rev. B,74(12),2006, 1302-1-1302-4.
    [19]Lu, W., Lieber, C. M., Nature materials,6(11),2007,841-850.
    [20]Ohlsson, B. J., Bjork, M. T., Magnusson, M. H., et al. "Size-, shape-, and position-controlled GaAs nano-whiskers", Appl. Phys. Lett.,79(20),2001, 3335-3337.
    [21]Dubrovskii, V. G., Sibirev, N. V., Harmand, J. C., et al. "Growth kinetics and crystal structure of semiconductor nanowires", Phys. Rev. B,78(23),2008, 5301-1-5301-10.
    [22]Wagner, R. S., and Ellis, W.C., "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett.,4(5),1964,89-90.
    [23]Chuang, L. C., Moewe, M., Crankshaw, S., et al. "Optical properties of InP nanowires on Si substrates with varied synthesis parameters", Appl. Phys. Lett., 92(1),2008,3121-1-3123-3.
    [24]Cirlin, G. E., Dubrovskii, V. G., Soshnikov, I. P., et al. "Critical diameters and temperature domains for MBE growth of Ⅲ-Ⅴ nanowires on lattice mismatched substrates", Phys. Stat. Sol. RRL,3(4),2009,112-114.
    [25]Tchernycheva, M., Sartel, C, Cirlin, G. E., et al. "Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy:structural and optical characterization", Nanotechnology,18(38),2007,5306.
    [26]Debnath, R. K., Meijers, R., Richter, T., et al. "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)", Appl. Phys. Lett.,90(12),2007, 3117-3119.
    [27]Moewe, M., Chuang, L. C., Crankshaw, S., et al. "Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon", Appl. Phys. Lett.,93(2), 2008,3116-3118.
    [28]Chuang, L. C., Moewe, M., Ng, K. W., et al. "GaAs nanoneedles grown on sapphire", Appl. Phys. Lett.,98(12),2011,3101-1-3101-3.
    [29]Persson, A. I., Larsson, M. W., Stengstrom, S., et al. "Solid-phase diffusion mechanism for GaAs nanowire growth", Nature Mater.,3,2004,677-681.
    [30]Soshnikov, I. P., Cirlin, G. E., Tonkikh, A. A., et al. "Atomic structure of MBE-grown GaAs nanowhiskers", Phys. Solid State,47(12),2005,2213-2218.
    [31]Johansson, J., Karlsson, L. S., Dick, K. A., et al. "Effects of Supersaturation on the Crystal Structure of Gold Seeded Ⅲ-Ⅴ Nanowires", Cryst. Growth Des.,9(2), 2009,766-773.
    [32]Tchernycheva, M., Travers, L., Patriarche, G., et al. "Au-assisted molecular beam epitaxy of InAs nanowires:Growth and theoretical analysis", J. Appl. Phys., 102(9),2007,094313-1-094313-8.
    [33]Glas, F., Harmand, J. C., Patriarche, G., "Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors", Phys. Rev. Lett.,99(14),2007, 146101-1-146101-4.
    [34]Leitsmann, R., Bechstedt, F., "Surface influence on stability and structure of hexagon-shaped Ⅲ-Ⅴ semiconductor nanorods", J. Appl. Phys.,102(6),2007, 063528-1-063528-8.
    [35]Dubrovskii, V. G., Sibirev, N. V., "Growth thermodynamics of nanowires and its application to polytypism of zinc blende Ⅲ-Ⅴ nanowires" Phys. Rev. B,77(3), 2008,035414-1-035414-8.
    [36]Akiyama, T., Sano, K., Nakamura, K., et al. "An empirical potential approach to wurtzite-zinc-blende polytypism in group III-V semiconductor nanowires", Jpn. J. Appl. Phys.,45(8),2006, L275-L278.
    [37]Dubrovskii, V. G., Cirlin, G. E., Ustinov, V. M., "Kinetics of the initial stage of coherent island formation in heteroepitaxial systems", Phys. Rev. B,68(7),2003, 075409-1-075409-9.
    [38]Dubrovskii, V. G., Cirlin, G. E., Musikhin, Yu. G., et al. "Effect of growth kinetics on the structural and optical properties of quantum dot ensembles", J. Cryst. Growth,267(1),2004,47-59.
    [39]Saint-Girons, G., Cheng, J., Regreny, P., et al. "Accommodation at the interface of highly dissimilar semiconductor/oxide epitaxial systems", Phys. Rev. B, 80(15),2009,155308-1-155308-6.
    [40]Osipov, A. V., Schmitt, F., Kukushkin, S. A., et al. "Stress-driven nucleation of coherent islands:theory and experiment", Appl. Surf. Sci.,188(1),2002, 156-162.
    [41]A. Yu. Kaminski and R.A. Suris, Proc.23rd Int. Conf. on the physics of semiconductors, ed. M. Scheffler and R. Zimmermann, Singapore,1996.
    [42]Kukushkin, S. A., Osipov, A. V., "New phase formation on solid surfaces and thin film condensation", Prog. Surf. Sci.,51(1),1996,1-107.
    [43]Glas, F., private communication.
    [44]Cirlin, G. E., Polyakov, N. K., Petrov, V. N., et al. "Effect of growth conditions on InAs nanoislands formation on Si(100) surface", Czech. J. Phys.,49(11),1999, 1547-1552.
    [45]Wang, J. S., Yang, C. S., Chen, P. I., et al. "Catalyst-free highly vertically aligned ZnO nanoneedle arrays grown by plasma-assisted molecular beam epitaxy", Appl. Phys, A,97(3),2009,553-557.
    [46]Landolt-Bormstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Ed. W. Martienssen, Group III:Condensed Matter vol. 41ala and vol.42a2.
    [47]Moewe, M., Chuang, L. C., Dubrovskii, V. G., et al. "Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates", J. Appl. Phys.,104(4),2008,044313-1-044313-4.
    [48]Yen, C.-Y., Lu, Z. W., Froyen, S., et al. "Zinc-blende-wurtzite polytypism in semiconductors", Phys. Rev. B,46(16),1992,10086-10097.
    [49]Kuni, F. M., Grinin, A. P., Shchekin, A. K., "The microphysical effects in nonisothermal nucleation", Physica A,252(1),1998,67-84.
    [50]Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., et al. "Shape modification of Ⅲ-Ⅴ nanowires:The role of nucleation on sidewalls", Phys. Rev. E,77(3),2008, 031606-1-031606-7.
    [1]Slepyan, G. Y., Maksimenko, S. A., Hoffmann, A., et al. "Quantum optics of a quantum dot:local-field effects", Phys. Rev. A,66(06),2002,3804-1-3804-17.
    [2]Grundmann, M., Stier, O., Bimberg, D., "InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronics structure", Phys. Rev. B, 52(16),1995,11969-11981.
    [3]Grundmann, M., Ledentsov, N. N., Stier, O., et al. "Nature of optical transitions in self-organized InAs/GaAs quantum dots", Phys. Rev. B,53(16),1996, R10509-R10511.
    [4]Heitz, R., Veit, M., Ledentsov, N. N., et al. "Energy relaxation by multiphonon processes in InAs/GaAs quantum dots", Phys. Rev. B,56(16),1997, 10435-10445.
    [5]Yu, P., Langbein, W., Leosson, K., et al. "Optical anisotropy in vertically coupled quantum dots", Phys. Rev. B,60(24),1999,16680-16685.
    [6]Moison, J. M., Houzay, F. Barthe, F., et al. "Self-organized growth of regular nanometer-scale InAs dots on GaAs", Appl. Phys. Lett.,64(2),1994,196-198.
    [7]Heinrichsdorff, F., Mao, M.-H., Kirstaedter, N., et al. "Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition", Appl. Phys. Lett.,71(1),1997,22-24.
    [8]Notzel, R., Temmyo, J., andTamamura, T., "Self-organized growth of strained InGaAs quantum disks", Nature,368,1994,131-133.
    [9]Eaglesham, D. J., and Cerullo, M., "Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)", Phys. Rev. Lett.,64(16),1990,1943-1946.
    [10]Abstreiter, G., Schittenhelm, P., Engel, C., et al. "Growth and characterization of self-assembled Ge-rich islands on Si", Semicond. Sci. Technol.,11(11S),1996, 1521-1528.
    [11]Teichert, C., Lagally, M. G., Peticolas, L. J., et al. "Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer flms", Phys. Rev. B,53(24),1996,16334-16337.
    [12]Bennett, B. R., Magno, R., Shanabrook, B. V., "Molecular beam epitaxial growth of InSb, GaSb and AlSb nanometer-scale dots on GaAs", Appl. Phys. Lett.,68(4), 1996,505-507.
    [13]Kurtenbach, A., Eberl, K., andShitara, T., "Nanoscale InP island embedded in InGaP", Appl. Phys. Lett.,66(3),1995,361-363.
    [14]Flack, F., Samarth, N., Nikitin, V., et al. "Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots", Phys. Rev. B,54(24),1996, R17312-R17315.
    [15]Springholz, G., Pinczolits, M., Mayer, P., et al. "Tuning of vertical and lateral correlations in self-organized PbSe/Pb1-xEuxTe quantum dot superlattices", Phys. Rev. Lett.,84(20),2000,4669-4672.
    [16]Wang, X.-D., Liu, N., Shih, C. K., et al. "Spatial correlation-anticorrelation in strain-driven self-assembled InGaAs quantum dots", Appl. Phys. Lett.,85(8), 2004,1356-1358.
    [17]Shchukin, V. A., Ledentsov, N. N., Kop'ev, P. S., et al. "Spontaneous orderting of arrays of coherent strained islands", Phys. Rev. Lett.,75(16),1995,2968-2971.
    [18]Mller P., Kern, R., "The physical origin of the two-dimentional towards three dimensional coherent epitaxial Stranski-Krastanov transition", Appl. Surf. Sci., 102,1996,6-11.
    [19]Osipov, A. V., Schmitt, F., Kukushkin, S. A., et al. "Stress-driven nucleation of coherent islands:theory and experiment", Appl. Surf. Sci.,188(1-2),2002, 156-162.
    [20]Markov, I. V., Crystal Growth for Beginners:Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore:World Scientific,1995.
    [21]Dubrovskii, V. G., Sibirev, N. V., Zhang, X., et al. "Stress-driven nucleation of three-dimensional crystal islands:from quantum dots to nanoneedles", Cryst. Growth Des.,10(9),2010,3949-3955.
    [22]Zhang, X., Dubrovskii, V. G., Sibirev, N. V., et al. "Analytical study of elastic energy relaxation and plastic deformation in nanostructures on lattice mismatched substrates", Cryst. Growth Des.,11(12),2011,5441-5448.
    [23]Aurongzeb, D., Song, D. Y., Kipshidze, et al. "Growth of GaN Nanowires on Epitaxial GaN", J. Electron. Mater.,37(8),2008,1076-1081.
    [24]Chuang, L. C., Moewe, M., Chase, C., et al. "Critical diameter for Ⅲ-Ⅴ nanowires grown on lattice-mismatched substrates", Appl. Phys. Lett.,90(4), 2007,3115-1-3115-3.
    [25]Dubrovskii, V. G., Cirlin, G. E., Ustinov, V. M., "Kinetics of the initial stage of coherent island formation in heteroepitaxial systems", Phys. Rev. B,68(7),2003, 5409-1-5409-9.
    [26]Spencer, B. J., Tersoff, J., "Asymmetry and shape transitions of epitaxially strained islands on vicinal surfaces", Appl. Phys. Lett.,96(7),2010, 3114-1-3114-3.
    [27]Ratsch, C., and Zangwill, A., "Equilibrium theory of the Stranski-Krastanov epitaxial morphology", Surf. Sci.,293(1),1993,123-131.
    [28]Li, X. L., Yang, G. W., "Theoretical determination of contact angle in quantum dot self-assembly", Appl. Phys. Lett.,92(17),2008,171902-1-171902-3.
    [29]Lu, G. H., Liu, F., "Towards quantitative understanding of formation and stability of Ge hut islands on Si(001)", Phys. Rev. Lett.,94(17),2005, 176103-1-176103-4.
    [30]Dubrovskii, V. G., Cirlin, G. E., Ustinov, V. M., "Kinetics of the initial stage of coherent island formation in heteroepitaxial systems", Phys. Rev. B,68(7),2003, 075409-1-075409-9.
    [31]Osipov, A. V., Kukushkin, S. A., Schmitt, F., et al. "Kinetic model of coherent island formation in the case of self-limiting growth", Phys. Rev. B,64(20),2001, 205421-1-205421-6.
    [32]Persichetti, L., Sgarlata, A., Fanfoni, M., et al. "Pair interaction between Ge islands on vicinal Si(001) surfaces", Phys. Rev. B,81(11),2010, 113409-1-113409-4.
    [33]Persichetti, L., Sgarlata, A., Fanfoni, M., et al. "Shaping Ge islands on Si(001) surfaces with misorientation angle", Phys. Rev. Lett.,104(3),2010, 036104-1-036104-4.
    [34]Pascale, A., Berbezier, I., Ronda, A., "Self-assembly and ordering mechanisms of Ge islands on prepatterned Si(001)", Phys. Rev. B,77(7),2008, 075311-1-075311-5.
    [35]Shchukin, V. A., Bimberg, D., Munt, T. P., et. al. "Elastic interaction and self-relaxation energies of coherently strained conical islands", Phys. Rev. B, 70(08),2004,5416-1-5416-10.
    [36]Li, X. L., Yang, G. W., "A thermodynamic theory of the self-assembly of quantum dots", New J. Phys.10(4),2008,043007-1-5416-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700