用户名: 密码: 验证码:
高压配网直挂式电能质量混合补偿技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性负荷的快速增长造成配网功率因数低、谐波含量高、负序电流大等电能质量问题,导致损耗大、设备故障频繁出现。由于高压配网(6/10/35kV)电压等级高,而电力电子器件的耐压水平较低,为实现高压直接补偿需通过不同形式的器件串联,这是当前研究的热点。目前对高压配网的电能质量直接治理主要停留在无功补偿上;而对高压谐波主要采用LC或降压APF,缺乏有源高压直接补偿装置。为此对一种新型高压直挂式混合补偿器(HVSHC)及相关控制技术与应用展开研究。在分析已有治理技术的基础上,对无功和谐波的快速检测方法进行了改进。结合HVSHC装置对其运行原理、等效模型、控制策略及优化技术展开了研究,并开发了HVSHC装置应用于电弧炉所在配网电能质量治理,取得了明显的成效。其主要研究工作及创新性成果如下:
     (1)提出了一种由H桥级联型SVG与TCR型SVC组成的新型拓扑HVSHC。该种方式结合SVG的快速可控性和SVC大容量的优势直接对高压配网的大容量无功、谐波和负序进行同时治理,其中SVC对负序电流和波动较慢的大容量无功功率的进行补偿,而SVG对高压谐波和快速波动的无功功率跟踪补偿。通过协同控制可等效于一台同容量的纯SVG的补偿效果,且避免了大容量有源补偿研制问题,并降低了成本。
     (2)提出了一种基于数字带通和多旋转坐标变化的无功、谐波快速检测方法。采用数字带通对特定次谐波电流进行分次提取后,采用多旋转坐标下的dq变换将其变成便于PI调节的直流量。该方式与普通旋转变换相比,用一个带通滤波器代替两个低通滤波器,减少了延时和计算量。
     (3)建立了HVSHC的综合模型,并在此基础上提出了基于H桥级联多电平SVG在不同旋转坐标下的有功和无功解耦控制策略,并实现了无功和谐波的同时补偿控制;提出了基于相角相加的直流电压均衡控制,解决了直流电压之间的均衡问题;面向快速负荷提出了新型TCR控制触发策略,改进了无功计算、触发时刻选取,将SVC的响应时间从40~60ms提高到20~30ms。这些方法都通过仿真和实验验证。
     (4)提出了一种基于规则和神经网络预测的SVG和SVC协同控制方法解决了因两者的响应时间不一致而导致SVG先于SVC响应而进入极限输出,从而使得SVG失去无功储备和谐波抑制功能的问题。以负载无功变化率为准则,将SVG的输出容量分类限制,并根据Elman神经网络对电压波动的预测来实现柔性跟踪。
     (5)提出了一种调制波幅值可调和载波变频的优化控制方法。通过调制波幅值可调可抑制由于直流侧电压波动导致的逆变器输出电压的畸变;通过载波变频充分利用SVG的容量,以一定规则根据其输出无功功率的多少分区间改变开关频率,实现输出无功少时开关频率高,从而改善对谐波的抑制效果。
     (6)开发了某铸锻厂35kV电弧炉系统用HVSHC装置,对HVSHC参数进行了优化计算。实际应用结果表明,不仅35kV的电能质量得到明显改善,而且还将每炉冶炼时间从原来的8h缩短为7h,节能降耗效果明显。
With rapid increasing of nonlinear loads, the problem of power quality is more and more serious including low power factor, serious harmonic pollution and large negative current. It results in high energy losses and frequent equipment failures. Because of the voltage level is too high to power electronic for power quality direct compensation in the high voltage distribution network (6/10/35kV), different topologies with power electronic device in series become a hot focus for solving the contradiction. At present, suspended technology is still restricted to reactive power compensation. LC and low voltage active power filter (APF) are the main ways for high voltage harmonic direct suppression, and the active suspended compensator is destitute. So a new high voltage suspended hybrid compensator (HVSHC) with its control and application is researched. The improved method of harmonic and reactive power fast extraction is advanced based on existing techniques, and the topological structure, operation principle and equivalent model of HVSHC are analysed. The control and optimization technologies of HVSHC are presented. The equipment of HVSHC is designed and applied to the distribution network of electric arc furnace, and the results demonstrate the validity of the proposed system.The major innovation research achievements include:
     (1) A new topological structure combined with H bridge cascade SVG and TCR of SVC is proposed. With the merits of rapid controllability of SVG and large capacity of SVC, it comprehensively compensates the reactive power, harmonic and negative sequence current in high voltage distribution network. SVC is used to compensate negative sequence current and slow change reactive power, and SVG is used to suppress of harmonic and rapid change reactive power. The effect of HVSHC is equivalent to the same capacity pure SVG, but avoids the difficulty of large capacity active compensation and reduces the cost.
     (2) A new method for fast extraction selective harmonic is proposed. It detects the control variables of selective harmonic by digital band-pass filter and multiple synchronous rotating reference coordinate in synchronism with frequency. Different AC variables are transformed DC components, which is easy to adjust by proportion-integral. With universal rotating transform, the proposed method decreases the delay time and calculation by two low power filters placed by a band pass filter.
     (3) The equivalent model of HVSHC is built, the active power and reactive power decoupling control strategy of H bridge cascade multilevel is advanced on multiple synchronous coordinates is proposed. The reactive power and harmonics are control at the same time. A new control technique of phase angle superposition is introduce to slove DC voltage unbalance. A new calculation and trigger strategy is put forward for fast change loads, and reactive computer and the time of control are improved. The response time of TCR is improved from40~60ms to20~30ms. These methods are validated by the results of the simulation and the experiment.
     (4) The cooperating control method based on rules and neural network prediction is proposed. It solved the problem of the function losing of reactive reserve and harmonic suppression by different response time of SVG and SVC. The output of SVG is limited by the change ratio of loads' reactive power, and flexible track of reactive power is realized based on the voltage fluctuation prediction by Elman neural network.
     (5) An optimization method of adjustable modulation waveform amplitude and s variable switch frequency are invented. Output voltage distortion of H bridge cascade multilevel converter with DC voltage fluctuation is restrained by adjustable modulation waveform amplitude, and the ratio of active capacity is advanced by variable switch frequency. Switch frequency is divided to multi-sections by anticipant reactive power, and switch frequency is higher when output reactive power is lesser. The effect of harmonic suppression is improved.
     (6) The HVSHC device of power quality compensation system for35kV distribution network of electric arc furnace in cast steel factory, and its parameters are optimization. The application results indicated not only that power quality is promoted roundly, but also that smelting time is decreased form8hours to7hours. Moreover it reduces the power energy consumption is obviously.
引文
[1]程浩忠,艾芊,张志刚,等.电能质量.北京:清华大学出版社,2006.
    [2]陈建业.工业企业电能质量控制.北京:机械工业出版社,2008.
    [3]肖湘宁.电能质量科技发展动态及其分析.大功率变流技术,2010,(1):25-30.
    [4]Ghosh A, Ledwich G. Power quality enhancement using custom power devices. Boston:Kluwer Academic Publishers,2002.
    [5]全国电压电流等级和频率标准化技术委员会.电压电流频率和电能质量国家标准应用手册.北京:中国电力出版社,2001.
    [6]Wagner V E, Balda J C, Griffith D C, etal. Effects of harmonics on equipment report of the IEEE task force on the effects of harmonics on equipment. IEEE Transactions on Power Delivery,1993, B(2):672-680.
    [7]史银建,袁春,刘云鸽.供电系统中谐波的危害与抑制.重庆通信学院学报,2005,24(2):95-97.
    [8]姜齐荣,赵东元,陈建业.有源电力滤波器—结构、原理、控制.北京:科学技术出版社,2005.
    [9]Baggini A. Handbook of power quality. New York:Wiley Blackwell,2008.
    [10]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004.
    [11]梁时远.我国工业节能形势及其对策.中外能源,2009,14(1):2-5.
    [12]<<电力节能技术丛书>>编委会.电能质量与节能技术.北京:中国电力出版社,2008.
    [13]Akagi H. New trends in active filters for power conditioning. IEEE Transactions on Industrial Application,1996,32 (6):1312-1322.
    [14]陈志业,尹华丽,李鹏.电能质量及其治理新技术.电网技术,2002,26(7):67-70.
    [15]任丕德,刘友发,周胜军.动态无功补偿技术的应用现状.电网技术,2004,28(23):81-83.
    [16]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [17]Domijan A, Montenegro A, keri A J F. Simulation study of the worlds first distributed premium power quality park, IEEE Transactions on Power Delivery,2005,20(2):1483-1492.
    [18]胡铭,陈珩.电能质量及其分析方法综述.电网技术,2000,24(2):36-38.
    [19]张文亮,刘壮志,王明俊,等.智能电网的研究进展及发展趋势.电网技术,2009,33(13):1-11.
    [20]吴卫民,钱照明,彭方正,等.一种高性能串联混合型有源电力滤波器拓扑的研究.中国电机工程学报,2004,24(12):108-112.
    [21]游小杰,李永东,Victor Valouch,等.并联型有源电力滤波器在非理想电源电压下的控制.中国电机工程学报,2004,24(2):55-60.
    [22]Fujita H, Akagi H. The unified power quality conditioner:the integration of series and shunt active filters. IEEE Transactions on Power Electronics,1998,13(2):315-322.
    [23]钱照明,张军明,吕征宇,等.我国电力电子与电力传动面临的挑战与机遇.电工技术学报,2004,19(8):10-22.
    [24]涂春鸣,罗安.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3):17-21.
    [25]巩庆.晶闸管投切电容器动态无功补偿技术及其应用.电网技术,2005,31(2):118-122.
    [26]丁仁杰,刘健,张隽,等.一种基于瞬时无功功率理论的SVC控制方法.电工技术学报.2006,21(5):47-51.
    [27]何大愚.柔性交流输电技术的定义、机遇和局限性.电网技术,1996,20(6):18-24.
    [28]何大愚.柔性交流输电技术及其控制器研制的新发展-TCPST, IPC(TCIPC)和(SSSC)电力系统自动化,1997,21(6):1-6.
    [29]王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用于发展.电力系统自动化,2000,24(23):1-6.
    [30]段大鹏,孙玉坤,潘春伟.基于三相VSI的STATCOM动态建模与仿真研究.高电压技术,2006,32(6):84-87.
    [31]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2000.
    [32]刘凤君.现代逆变技术及应用.北京:电子工业出版社,2000.
    [33]刘文华,姜齐荣,韩英译,等±20Mvar STATCOM控制器设计,电力系统自动化,2000,24(23):14-18.
    [34]纪勇,李向荣,朱庆翔,等.基于GTO的±20Mvar STATCOM的现场运行与改进.电力系统自动化,2003,27(4):61-65.
    [35]谢小荣,崔文进,唐义良,等STATCOM无功电流的鲁棒性自适应控制.中国电机工程学报,2001,21(4):35-39.
    [36]刘文华,宋强,滕乐天,等.基于集成门极换向晶闸管与链式逆变器的士50Mvar静止同步补偿器.中国电机工程学报,2008,25(15):55-60.
    [37]耿俊成,刘文华,俞旭峰,等.链式STATCOM的数学模型.中国电机工程学报,2003,23(6):66-70.
    [38]刘文华,宋强,滕乐天,等.链式逆变器的50MVA静止同步补偿器的直流电容电压平衡控制.中国电机工程学报,2009,29(30):7-12.
    [39]孙宜峰,阮新波.级联型多电平逆变器的功率均衡控制策略.中国电机工程学报,2006,26(4):126-133.
    [40]Jintakosonwit P, Fujita H, Akagi H. Control and performance of a fully-digital-controlled shunt active filter for installation on a power distribution system. IEEE Transactions on Power Electronics,2002,17(1): 132-140.
    [41]Vasco Soares, Pedro Verdelho, Gil D.Marques. An instantaneous active and reactive current component method for active filters. IEEE Transactions on Industrial Electronics,2000,15(4):660-669
    [42]Akagi H, Kanazawa Y, Nabae A. Instantaneous reactive power compensators comprising switching device without energy storage components, IEEE Transactions Industrial Applications,1984,20(3):625-630
    [43]Peng F Z. Application issues of active power filters. IEEE Transactions Industrial Applications,1998,4(5):21-30
    [44]卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器.电网技术,2000.8:5-7.
    [45]杨进,杨向宇,余辉.基于逆变器多重化的串联混合型有源滤波器的仿真研究.电工技术学报,2004,19(10):23-26.
    [46]李红雨,吴隆辉,卓放,等.多重化大容量有源电力滤波器的主电路结构研究.电网技术,2004,28(3):12-16.
    [47]鞠建永,陈敏,徐君,等.模块化并联有源电力滤波器.电机与控制学报,2008,12(1):20-26.
    [48]汤赐,罗安,荣飞,等.混合型并联有源滤波器的设计及工程应用.电工技术学报,2007,22(6):101-107.
    [49]王卫安,桂卫华,张定华,等.基于大容量SVC的SCOTT变压器电能质量能质量治理方案及应用.铁道学报,2011,33(1):31-38.
    [50]许湘莲.基于级联多电平逆变器的STATCOM及其控制策略研究[博士论文].华中科技大学,2006.
    [51]Cheng Y, Qian C, Crow M L, etal. A comparison of diode-clamped and cascaded multilevel converters for a STATCOM with energy storage, IEEE Transactions on Industrial Electronics,2006,53(5):1512-1521.
    [52]Barrena J A, Marroyo L, Vidal M A R,etal. Individual voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM, IEEE Transactions on Industrial Electronics,2008,55(1):21-29.
    [53]彭建春,黄纯,王耀南.静止无功补偿器的智能自适应PID控制器设计.湖南大学学报(自然科学版),1999,26(5):50-55.
    [54]曾光,苏彦民,柯敏倩等.用于无功静补系统的模糊-PID控制方法.电工技术学报,2006,21(6):40-43.
    [55]刘瑞叶,刘宝柱.SVC的模糊变结构控制对电力系统稳定性的影响,继电器,2001,29(6):13-19.
    [56]盘宏斌,罗安,赵伟,等.基于DSP的不平衡补偿和单纯形优化的静止无功补偿器.电力自动化设备,2009,29(3):51-55.
    [57]盘宏斌,罗安,涂春鸣,等.蚁群优化PI控制器在静止无功补偿器电压控制中的应用.电网技术,2008,32(18):41-46.
    [58]付俊,赵军,乔治·迪米罗夫斯基.静态无功补偿器鲁棒控制的一种新自适应逆推方法.中国电机工程学报,2006,26(10):7-12.
    [59]Arash K S, Seyed H H, Mehran S.etal. Double Flying Capacitor Multi-cell Converter Based on Modified Phase-Shifted Pulse width Modulation. IEEE Transactions on Industrial Electronics,2010,25(6):1517-1526.
    [60]Du Z, Tolbert L M, Ozpineci B, etal. Fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter. IEEE Transactions on Industrial Electronics,2009,24(1):25-33.
    [61]Song Q, Liu W H. Control of a cascade STATCOM with star configuration under unbalanced conditions. IEEE Transactions on Industrial Electronics, 2009,24(1):45-57.
    [62]李旷,刘进军,魏标,王兆安.静止无功发生器电网电压不平衡的控制及其优化方法.中国电机工程学报,2006,26(5):58-63.
    [63]李建林,张仲超,许洪华.基于级联H桥五电平变流器SAPF的应用研究.电工技术学报,2006,21(2):79-82.
    [64]张彦魁,张焰,卢国良.基于PWM控制及相角控制的静止同步补偿器潮流模型及应用.中国电机工程学报,2005,25(17):42-47.
    [65]刘钊,刘邦银,段善旭,等.链式静止同步补偿器的直流电容电压平衡控制.中国电机工程学报,2009,29(30):7-12.
    [66]Jon A B, Luis M M, Rodriguez A. Individual voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM, IEEE Transactions on Industrial Electronics,2008,55(1):21-29.
    [67]Tolbert L M, Peng F Z, Cunnyngham T. Charge balance control schemes for cascade multilevel converter in hybrid electric vehicles. IEEE Transactions on Industrial Electronics,2002,49(5):1058-1064.
    [68]王跃,王兆安.复合控制的新型并联HAPF的稳态特性研究.电力电子技术,2004,38(6):13-16
    [69]Sangsun K, Prasad N E. A new hybrid active power filter (APF) topology. IEEE Transactions on Power Electronics,2002,17(1):48-54.
    [70]唐卓尧,任震.并联型混合滤波器及其滤波特性分析.中国电机工程学报,2000,20(5):25-29
    [71]范瑞祥,罗安,章兢,等.谐振注入式有源滤波器的输出滤波器研究.中国电机工程学报,2006,26(5):95-100
    [72]唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19(11):50-55.
    [73]Lou A, Shuai Z K, Zhu W J,etal. Develpoment of hybrid active power filter based on the adaptive fuzzy dividing frequency control metnod. IEEE Transactions on Power Delivery,2009,24(1):424-432.
    [74]Shuai Z K, Lou A, Zhu W J,etal. Study on A novel hybrid active power filter applied to a high voltage grid. IEEE Transactions on Power Delivery,2009, 24(4):2344-2352.
    [75]Lou A, Shuai Z K, Zhao W,etal. A novel three-phase hybrid active power filter with a series resonance circuit tuned at the fundamental frequency. IEEE Transactions on Industrial Electronics,2009,56(7):2431-2439.
    [76]Lou A, Zhao W, Deng X,etal. Dividing frequency control of hybrid active power filter with multi-injection branches using improved ip-iq algorithm. IEEE Transactions on Power Electronics,2009,24(10):2396-2405.
    [77]Akagi H, Watanabe E H, Aredes M. Instantaneous power theory and application to power conditioning. IEEE Press-Wiley InterScience,2007.
    [78]李强,罗安,刘秋英TSC-DSTATCOM混合型动态无功补偿器及其混杂控制方法.电力系统及其自动化学报,2009,21(4):12-19.
    [79]张定华,桂卫华,王卫安,等.混合动态无功补偿装置及其应用研究.电机与控制学报,2010,14(2):71-79.
    [80]张定华,桂卫华,王卫安,等.牵引变电所电能质量混合动态治理技术. 中国电机工程学报,2011,31(7):48-55.
    [81]邓礼宽,姜新建,朱起东,等.APF和SVC联合运行的稳定控制.电力系统自动化,2005,29(18):29-32.
    [82]张定华,桂卫华,王卫安,等.大型电弧炉无功补偿与谐波抑制的综合补偿系统.电网技术,2008,32(12):23-29.
    [83]纪飞峰,Mansoor,解大,等.有源电力滤波器与直流偏磁式静止无功补偿器综合补偿系统的研究.中国电机工程学报,2006,26(18):77-81.
    [84]吴传平,罗安,徐先勇.采用V/v变压器的高速铁路牵引供电系统负序和谐波综合补偿方法.中国电机工程学报,2010,30(16):111-117.
    [85]Luo A, Shuai Z K, Zhu W J,etal. Combined System for Harmonic Suppression and Reactive Power Compensation. IEEE Transactions on Power Electronics,2009,56(2):418-428.
    [86]Shuai Z K, Luo A, Shen Z J. A Dynamic Hybrid Var Compensator and a Two-Level Collaborative Optimization Compensation Method. IEEE Transactions on Power Electronics,2009,24(9):2092-2100.
    [87]吴文传,张伯明.能量损耗最小的无功补偿动态优化算法研究.中国电机工程学报,2004,24(4):68-73.
    [88]Lee S Y, Wu C J. Combined compensation structure of a static var compensator and an active filter for unbalanced three-phase distribution feeders with harmonic distortion. Electric Power Systems Research, 1998,46(1):243~250.
    [89]Fujita H, Yamasaki T, Akagi H. A hybrid active filter for damping of harmonic resonance in industrial power system. IEEE Transactions on Power Electronics,2000,15(2):215-222.
    [90]Peng F Z, Mckeever J W, Adams D J. A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Transactions on Industry Applications,1998,34(6):293-1298.
    [91]Manjrekar M D, Steimer P, Lipo T A. Hybrid multilevel power conversion system:a competitive solution for high power applications, IEEE Transactions on Industry Applications,2000,36(3):834-841.
    [92]Anish P, Jyoti S, Deepak M D. Dynamic Capacitor (D-CAP):An integrated approach to reactive and harmonic compensation. IEEE Transations on Power Delivery,2010,24(4):2518-2525.
    [93]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法.中国电机工程学 报,2002,22(12):106-110.
    [94]Rosendo M J A, Gomez E A. Efficient moving-window DFT algorithms, IEEE Transactions on Circuits and Systems,1998,45(2):256-260.
    [95]Habrouk M E, Darwish M K. Design and implementation of a modified fourier analysis harmonic current computation technique for power active filters using DSPs. IEE Proc. Power Application,2001,148(1):21-28.
    [96]丁洪发,段献忠,何仰赞.同步检测法的改进及其在三相不对称无功补偿中的应用.中国电机工程学报,2000,20(6):17-20.
    [97]Karimi H, Karimi-Ghartemani M, Reza Iravani M, et al. An adaptive filter for synchronous extraction of harmonics and distortions [J]. IEEE Transaction on Power Delivery,2003,18(4):1350-1356.
    [98]Freijedo F D, Doval G J, Lopez O,etal. A signal-processing adaptive algorithm for selective current harmonic cancellation in acive power filters. EEE Transaction on Industry Electronics,2009,56(8):2829-2840.
    [99]危韧勇,李志勇,李群湛.一种基于ANN理论的谐波电流动态检测方法研究.铁道学报,2000,22(1):40-44.
    [100]王群,周雒维,吴宁,等.一种基于神经网络的自适应谐波电流检测法.重庆大学学报,1997,20(5):6-11.
    [101]高大威,孙孝瑞.基于自适应线性神经元网络的三相畸变电流检测方法及实现.中国电机工程学报,2001,21(3):49-52.
    [102]李江,孙海顺,程时杰,等.基于灰色系统理论的有源滤波器的预测控制.中国电机工程学报,2002,22(2):6-10.
    [103]张桂斌,豫政,王广柱.基于空间矢量的基波正序、负序分量及谐波分量的实时检测方法.中国电机工程学报,2001,21(10):1-5.
    [104]Firouzjah K. G, Sheikholeslami A, Karami-Mollaei M R,etal. A new harmonic detection method for shunt active filter based on wavelet transform. Journal of Applied Sciences Research,2008,4(11):1561-1568.
    [105]Peng F Z, Lai J S. Generalized instantaneous reactive power theory for three-phase power systems. IEEE Transactions on Instrumentation and Measurement,1996,45(1):293-297.
    [106]Chang G W, Chen S K, Chu M. An efficient a-b-c reference frame-based compensation strategy for three-phase active power filter control. Electric Power Systems Research,2002 (60):161-166.
    [107]孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐 波电流的检测方法.中国电机工程学报,2003,23(12):43-48.
    [108]张树全,戴珂,谢斌.等.多同步旋转坐标系下指定次谐波电流控制.中国电机工程学报,2010,30(3):55-62.
    [109]王群,姚为正,王兆安.低通滤波器对谐波检测电路的影响,西安交通大学学报,1999,33(4):5-8.
    [110]史伟伟,蒋全,胡敏强,等.低通滤波器在串联型电力有源滤波器中的应用.电网技术,2002,26(5):44-48.
    [111]Silva C H, Silva V F, Borges L E, etal. DSP Implementation of Three-Phase PLL using Modified Synchronous Reference Frame, IEEE IECON07, Taiwan, 2007.
    [112]王立乔,王长永,黄玉水,等.基于相移SPWM技术的级联型多电平变流器.高电压技术,2002,28(7):17-18.
    [113]魏文辉,宋强,滕乐天,等.基于反故障控制的链式STATCOM动态控制策略的研究.中国电机工程学报,2005,25(4):19-24.
    [114]魏文辉,刘文华,宋强,等.基于逆系统方法有功—无功解耦PWM控制的链式STATCOM动态控制策略研究.中国电机工程学报,2005,25(3):23-28.
    [115]Matsui K, Kojima H, Yamamoto I,etal, PWM-STATCOM System Additionally having Active Filter Function, Energy and Power Systems (EPS 2006),Chiang Mai,Thailand,March 29-31,2006.
    [116]姜旭,肖湘宁,尹忠东,等.基于载波移相SPWM级联式变换器输出谐波分析.电力电子技术,2005,39(5):620-626.
    [117]王立乔,杨博生,邬伟扬.载波幅值可调PWM技术及其在级联型多电平变流器中的应用.电工技术学报,2010,25(11):121-127.
    [118]周雒维,杜雄,谢品芳,等.直流侧APF与APF和PFC开关利用率的比较研究.中国电机工程学报,2003,23(8):28-31.
    [119]刘艳红,宋伟华,王杰.包含SVC和非线性负荷的电力系统耗散实现与控制.控制理论与应用,2010,21(7):47-52.
    [120]桂卫华,张定华,阳春华,等.基于瞬时无功理论与伏安特性的静止无功补偿器控制系统及应用.信息与控制,2009,38(5):608-612.
    [121]刘飞,卢志良,刘燕,等.用于TCR的晶闸管光电触发与监测系统.高电压技术,2007,33(6):123-128.
    [122]刘华东,张定华,邓建华,等.SVC在电弧炉治理中的应用研究.大功率变流技术,2009,(5):51-56.
    [123]刘隽,李兴源,汤广福.SVC电压控制与阻尼调节间的相互作用机理,中国 电机工程学报,2008,28(1):12-17
    [124]袁佳歆,陈柏超,万黎,等.利用配电网静止无功补偿器改善电网电能质量的方法,电网技术,2004,28(19):81-84.
    [125]缪耀珊.交流电气化铁道牵引供电系统的综合补偿.电气化铁道,2005,(5):1-5.
    [126]王卫安,桂卫华,张定华.一种新型SVC智能监控系统的设计及应用.电气化铁道,2009,(1):13-17.
    [127]何斌,张秀彬.基于结构保持模型的多SVC协调控制,中国电机工程学报,2007,27(28):35-39.
    [128]董长虹Matlab神经网络与应用.北京:国防工业出版社,2007:68-92.
    [129]MATLAB中文论坛MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社,2010.
    [130]Engelbrecht A P, Ismail A. Training product unit neural networks. Stability and Control:Theory and Applications,1999,2:59-74.
    [131]Kannan S, Slochanal S M R, Subbaraj P, et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem. Electric Power Systems Research,2004,70:203-210.
    [132]Wu H, Sun F C, Sun Z Q, et al. Optimal trajectory planning of a flexible dual-arm space robot with vibration reduction. Journal of Intelligent & Robotic Systems,2004,40:147-163.
    [133]Yin P Y. A discrete particle swarm algorithm for optimal polygonal approximation of digital curves. Journal of Visual Communication and Image Representation,2004, (15):241-260.
    [134]《钢铁企业电力设计手册》编委会.钢铁企业电力设计手册.北京:冶金工业出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700