用户名: 密码: 验证码:
H型钢异型坯表面裂纹和洁净度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在钢铁产品的结构组成中,各种异型钢材占很重要部分。H型钢是一种经济断面型材,其一经问世就在国民经济建设的各个领域得到了广泛应用。近终形异型连铸坯是生产H型钢最理想的坯料,目前国内仅有三条异型坯连铸生产线。作为一种新型坯型,异型坯连铸技术在国内外均属刚刚起步阶段,加上异型坯截面形状比较复杂,在其生产过程中容易存在较多的内部质量和表面质量缺陷。目前科研工作者对异型坯连铸技术的研究刚刚开始,因此开展H型钢异型坯质量控制研究,从根本上查找异型坯产生相关质量缺陷的原因,并在此基础上优化改进异型坯连铸工艺技术,具有重大的经济意义和学术价值。
     本文以一异型坯连铸生产线为基础,从异型坯存在的表面裂纹和洁净度等质量问题入手,采用实验研究和数值模拟两种研究方法对异型坯出现相关质量问题的原因和预防措施进行了分析和探讨。其中实验研究主要是对裂纹和夹杂物以及保护渣的分析和检测,初步分析影响铸坯质量的各种因素;数值模拟是对连铸工艺过程的流场、温度场和以及夹杂物行为的跟踪模拟,通过模拟从根本上查找异型坯存在相关质量问题的根源,并提出优化异型坯连铸工艺的具体措施。主要研究工作有:
     (1)从异型坯生产工艺现状和轧后H型钢出现的表面裂纹入手,采用金相显微镜及扫描电镜观察了裂纹特征,根据裂纹形貌、显微成分及夹杂,统计了裂纹的类型,初步分析了表面裂纹的成因。
     (2)采用示踪剂追踪、系统取样、综合分析等手段开展了从转炉炼钢→中间包→结晶器→异型坯成品整个异型坯生产工序中钢的洁净度水平的跟踪分析,其中采用红外吸收法测定了各试样中氧含量;采用大样电解法和扫描电镜分析了钢中的大型夹杂物;采用金相显微镜和扫描电镜分析了钢中显微夹杂物;在以上对夹杂物的类型、来源、组成和演变规律研究基础提出了提高异型坯洁净度、减少缺陷发生率的有效措施。
     (3)测定分析了异型坯结晶器保护渣成分,保护渣熔化温度、熔化速度及粘度等理化指标,查找了由于保护渣问题而导致异型坯发生表面裂纹缺陷的原因,并根据测定结果和生产实际提出了保护渣性能调整建议。
     (4)采用有限元法对异型坯中间包内钢液三维流场及温度场进行了耦合数值模拟分析,在此基础上对中间包钢液中不同尺寸夹杂物的运动规律以及夹杂物的去除率、收集率进行了模拟计算,详细分析了中间包钢液流动行为存在的问题;并在模拟计算基础上对中间包稳流器结构进行了优化,以改善中间包内钢液流动,促进夹杂物的去除,提高钢水洁净度。
     (5)采用有限元法对异型坯结晶器内钢液三维流场进行了数值模拟,对异型坯结晶器弯月面的自由液面波动进行了仿真,分析了拉速、浸入式水口参数(水口的浸入深度、水口侧孔出口角度)等工艺参数对结晶器内钢液的涡心位置、冲击深度、自由液面表面流速和自由液面波高的影响规律;并在模拟计算的基础上提出了最适宜的工艺参数取值,以优化结晶器内钢液流动,促进夹杂物的去除,提高钢水洁净度。
     (6)采用有限元法对异型坯凝固过程的二维温度场与应力场进行了系统模拟和详细分析;通过与连铸冶金准则的对比,找出了异型坯出现表面裂纹问题的主要工艺因素;创建了应用MATLAB遗传算法工具箱函数编制多目标遗传算法(MOGA)和有限元方法(FEM)相结合的多目标优化程序,对连铸二冷各段配水量进行了多目标智能优化,以降低缺陷发生率,提高生产率。
     最后,在以上分析基础上综合提出了异型坯出现表面裂纹和洁净度等质量问题的原因和预防措施。研究成果在生产现场的实际应用证明,本文所建立的H型钢异型坯质量控制研究体系科学、合理、有效。
In the steel products, there are some kinds of special section steel. As an economic section material, H-beam has been used in many fields of national economy development. Beam blank is the idealist strand for H-beam production. In our country, there are only three beam blank production lines. Moreover, there are more defects on /in beam blank than other common strand. Therefore, studying on the H-beam blank quality assurance system, finding the key factors causing the defects and optimizing the casting technic has great significance to the economy and science.
     Based on the actual production process, the paper is aimed to find the key factors causing the surface cracks and the cleanness defects of beam blank and to optimize the casting technic. There are two research methods, the one is experiment analysis, and the other is numerical simulation. The former is to test and analyze the cracks, the inclusions and the flux in the mould, and to find the preliminary factor causing defects of beam blank. The latter is to simulate the flow field, temperature field and the inclusion movement, to find the key factor causing defects and the optimum the casting technic. The main work is listed in the followings:
     (1)The cracks on the H-beam web were analyzed under the metalloscope, the stereoscan and the energy spectrometer. Based on the pattern and the component of the surface cracks, the cracks characteristics were analyzed and the preliminary factor causing cracks were found.
     (2)By the tracers tracking, sampling taking and micro analyzing the steel cleanness, the source of inclusions were analyzed from steelmaking to continuous casting. T[O] in the steel was analyzed by infra-red absorption, the large-scale inclusions were analyzed by sample-electrolyzing method and the micro inclusions were analyzed by the metalloscope and the stereoscan. The methods increasing the cleanness and decreasing the defects were brought forward based on the above analysis.
     (3)The physicochemical property of the flux in the mould, such as the alkalipenia, the melting speed, the melting temperature and the viscosity was measured or calculated. The weakness of the flux was find, which may cause the surface defects of beam blank. The suggestion was put forward to modify the flux based on the above analysis and actual production.
     (4)The 3D coupled flow field and temperature field in the tundish was simulated used the finite element method. Then, the inclusions movement, the collection rate from the outlets and removal rate of the inclusions were calculated. The shortcomings of the fluid flow in the tundish were analyzed. Moreover, to increase the cleanness of the steel, the physical dimension of turbulence inhibitor was optimized.
     (5)The 3D flow field and the meniscus fluctuation in the mould were simulated used the finite element method. The influences of processing parameters (such as casting speed and the nozzle parameters) on the molten steel flow (such as the location of the vortex, the steel impact depth, the velocity and fluctuation of the liquid at free surface) were analyzed. In order to increase the cleanness of the steel, the optimum spans of the processing parameters were brought forward based on the calculation.
     (6)A coupled 2D thermo-mechanical finite element model was developed to compute the temperature and stress/strain profile in beam blank. By comparing the calculated data with the metallurgical constraints, the key factors causing the cracks on the beam blank can be found out. In order to optimize the processing parameters, a new optimization method was developed combined MOGA and FEM based on the MATLAB toolbox functions. The heat flow density was modified in each secondary cooling zone used this optimization method.
     In order to increase the cleanness of beam blank and decrease the cracks on the web, a series of corresponding methods are put forward in this paper. Now, online verifying of those optimization projects have been put in practice, which can prove that those are very useful and efficient to control the actual production.
引文
1卢盛意.连铸坯质量.北京:冶金工业出版社,2003:1
    2蔡开科,程士富.连续铸钢原理和工艺.北京:冶金工业出版社,2005:8-10
    3徐匡迪,中国钢铁工业的发展和技术创新.钢铁,2008,43(2):1-13
    4张小平,梁爱生.近终形连铸技术.北京:冶金工业出版社,2001:126-134
    5关义,王小玲.异型坯连铸的特点与展望.包钢科技,2000,26(3):21-23
    6姜红军.异型坯连铸技术的推广与应用.炼钢,1999,15(6):5-9
    7陈霞,苏勇,汪开忠.“多级”结构用H型钢冶炼、连铸工艺的开发.湖南冶金,2002,9(5):25-30
    8刘学华,马玉平.马钢异型坯连铸生产及工艺研究.马钢科研,2001,(2):8-15
    9崔荣峰,周俐,洪天亮,等.异型坯中间包中钢液三维流场研究.安徽工业大学学报(自然科学版), 2006,23 (4): 373-376
    10陈健,刘玉兰,王建军.马钢异型坯连铸中间包冶金性能数模研究.炼钢,1999,15(4):37-41
    11沈昶,周俐,李建中.异型坯连铸结晶器流场的水模型研究.炼钢,2000,16(1):30-33
    12周俐,沈昶,王建军.异型坯连铸结晶器内流场.北京科技大学学报,2000,22(5):431-434
    13杜艳平,杨建伟,崔小朝,等.异型坯连铸结晶器内钢液流动状况的三维数值模拟.钢铁研究学报,2002(5):21-25
    14 Jian-wei YANG, Yan-ping DU, Rong SHI, etc. Fluid Flow and Solidification Simulation in Beam Blank Continuous Casting Process with 3D Coupled Model. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2006,13(4):17-21
    15杜艳平,史荣,杜建新,等.异型坯连铸液固温耦合计算机仿真.矿冶工程,2002,20(4):75-77
    16 K.Kim, H.N.Han, T.Yeo, etc. Analysis of surface and internal cracks in continuously cast beam blank. Ironmaking and steelmaking, 1997, 24(3):249-256
    17曹晓兵,梁爱生,郭希学.带液芯控制的异型坯连铸二冷区动态控制模型.太原重型机械学院学报,2000,21(1):6-12
    18孙维,王开忠.异型坯表面纵向微细裂纹研究.钢铁,2006,41(3):32-35
    19杜松林,汤寅波,王开忠,谢欣荣.连铸异型坯腹板中心裂纹研究.连铸,2003,(5):34-36
    20汤寅波,王开忠,杜松林.连铸工字形异型坯腹板中心裂纹研究.钢铁,2003,38(10):19-20
    21沈昶,李建中.减少异型坯裂纹的工艺研究.炼钢,2004,20(5):51-53
    22汤寅波,邓南阳.异型坯主要质量缺陷及控制措施.安徽冶金科技职业学院学报,2006,16(2):18-21
    23周杰,汪开忠.提高连铸异型坯质量的生产工艺优化研究.安徽冶金科技职业学院学报,2007,17(1):4-8
    24蔡开科,党紫九.连铸钢高温力学性能专辑.北京科技大学学报,1993,增刊,15(2):3-23
    25 HirowoG, Suzuki. Hot ductility in steels in the temperature range between 900 and 600℃.Proceedings of 7th International symposium on physical simulation of casting, hot rolling and welding. Japan, 1997:27-39
    26 B.Mintz, J.M.Arrowsmith. Hot-ductility behavior of C-Mn-Nb-A1steels and its Relationship to crack propagation during the straightening of continuously cast strand. Metals Technology,1979,(1):24-31
    27蔡开科.连续铸钢.北京:科学出版社,1991:209-256
    28张爱梅.非金属夹杂物对钢性能的影响.物理测试,2006,24(4):42-44
    29 Kiedssling R. Non-metallic Inclusion in Steel. London: Met. Soc, 1978:11-60
    30 Gatellier C, Olette M. Kinetics of high temperature. Metallurgy, 1979(79): 377-386
    31张彩军.管线钢非金属夹杂物行为研究. [北京科技大学工学博士论文].2003:13-19.
    32 Nishi S. Melting of Clean Maraging Steel by Vacuum Induction Method. R & D Kobe Steel Report, 1989, 39(1): 73
    33 Mizuno K. Effects of Al and Ca in Ferrosilicon Alloys for Deoxidation on Inclusion Composition in Type304 Stainless Steel. Iron and Steelmaker, 2001, 28(8): 93-101
    34 Yoshiyuki KATO, Tsutomu MASUDA, Kiyoshi KAWAKAMI. Recent Bearing Improvements in Steel Cleanliness in High Carbon Chromium. ISIJ International, 1996, 36(Supplement page): 89-92
    35张军.H型钢表面裂纹研究.[北京科技大学工学硕士论文],2006:19-25
    36 N.A.Mcpherson, S.L.Mclntosh. Mold powder related defects in some continuously cast steel products. Iron and Steelmaker, 1987, 14(6): 19-25
    37职建军.连铸板坯纵裂原因分析.中国金属学会第十届炼钢年会学术会议论文集.郑州,1998:283-288
    38 Masayuki Onishi, Testsuo Ueda, Yutaka Shinjo. Continuous casting of beam blank. Kawasaki Seitetsu Giho, 1980,12(3):414-424
    39 T.J.H.Billany, A.S.Normanton, K.C.Mills. Surface cracking in contiuously cast products. Ironmaking and steelmaking,1991,18(6):403-412
    40蔡开科.连铸坯表面裂纹的控制.鞍钢技术,2004,(3):1-8
    41草野昭彦,三隅秀幸,千葉仁ㄅ.連铸铸片の中心割机の機搆.鐵ㄜ鋼,1998,84(1):43-48
    42 Thompson K.J. Optimizing slag performance in the mould. 72ed Steelmaking Conference Proceedings, ISS, 1989: 109-114
    43朱立光,王硕明,张彩军,等.现代连铸工艺与实践.石家庄:河北科学技术出版社,2000:183-215
    44 Sato R. Melting temperature of mould flux. Steelmaking Proceedings, ISS-AIME, 1979,62: 48-67
    45张贺林,朱果灵.薄板坯连铸用保护渣.钢铁,1995, 30(2):23-27
    46 Pinbeiro C A, Samarasekern I V, Brimacombe J K. Mold Fluxes for Continuous Casting of Steel. Iron and Steelmaker, 1995, 22(4): 45-47
    47乌力平,李建中,汤寅波.保护渣对连铸异型坯表面质量的影响.炼钢,2004, 20(12):40-44
    48万爱珍,朱立光,王硕明.连铸保护渣粘度特性及机理研究.炼钢,2000, 16(4):21-25
    49孙凤晓,柳润民,胡润东.高速连铸保护渣的物化性能分析.山东冶金,2003, 25(6):40-43.
    50朱立光,王硕明.高速连铸保护渣结晶特性的研究.金属学报,1999, 35(12):1280-1283.
    51 Koyama K. Design for chemical and physical properties of continuous casting powders. Nippon Steel Technical Report, 1987,34(8):41-47
    52干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟,北京:冶金工业出版社,2001:55-72,96-114,213-244
    53王建军,包燕平,曲英.中间包冶金学.北京:冶金工业出版社,2001:4-10,78-89,197-280
    54张邦文,邓康,雷作胜.连铸中间包中夹杂物聚合与去除的数学模型.金属学报,2004,40(6):623-628
    55于学斌,唐继山,谢长川.六流连铸机T型中间包内流场的数学模拟.武汉科技大学学报,2005,28(6):122-125
    56 Crowley R W. Cleanliness Improvenment Using a Turbulence-Suppressing Tundish Impact Pad. Steelmaking Conference Proceeding,1995,78:629-636
    57 Bolger D. Development of A Turbulence Inhibiting Pouring Pad/Flow Control Device for the Tundish. Steelmaking Conference Proceeding,1994,77:225-233
    58文光华,唐萍,祝明妹.六流大方坯连铸中间包选型和控流装置研究.钢铁钒钛,2002,23(2):19-22
    59贺友多,Sahai Y.不同因数对连铸机中间包流场的影响.金属学报,1989,25(4):272-276
    60 Mcpherson N A.The Effect of Tundish Design on The Quality of Continnuously Cast Steel Slabs. ISIJ International,1999,39(6):524-547
    61萧泽强,彭世恒,程乃良.中间包一种典型的非等温反应器.东北大学学报(自然科学版),2000,21(4):408-411
    62 Yuji M,Brian G T. Modeling of Inclusion Removal in a Tundish. Metallurgical Transactions B,1999,30B(4):639-654
    63王波,张捷宇,贺友多.中间包钢液非等温现象的水模型研究.钢铁研究学报,2004,16(6):11-15
    64黄希祜.钢铁冶金原理.第3版.北京:冶金工业出版社,2002:123
    65 Chakraborty S, Sahai Y. Mathematical modeling of transport phenomena in continuous casting tundishes Part1 Transient effects during ladle transfer operations. Ironmaking and Steelmaking, 1992,19(6):479-487
    66 Chakraborty S, Sahai Y. Mathematical modeling of transport phenomena in continuous casting tundishes Part2 Transient effects owing to varying ladle stream temperature. Ironmaking and Steelmaking, 1992,19(6):488-494
    67樊俊飞,朱苗勇,张清朗.六流连铸中间包内流动与传热耦合过程的数值模拟及控流装置优化.金属学报,1999,35(11):1191-1194
    68樊俊飞,张清朗,朱苗勇.六流连铸中间包内流动与传热过程的数值模拟及控流装置优化的研究.钢铁,1999,34(10):608-612
    69朱苗勇,沢田郁夫.连铸中间包内三维湍流流动的数值模拟.金属学报,1997,33(11):1215-1221
    70齐新霞.板坯结晶器内流场物理模拟及冶金效果研究.钢铁研究,2003,136(1):12-16
    71 Kouji Takatani, Yoshinori Tanizawa, Hideo Mizukami. Mathematical Model for Transient Fluid Flow in Continuous Casting Mold. ISIJ International, 2001,41(10):1252-1261
    72 Fady M.Najjar, Thomas B G, Donald E. Hershey. Numerical Study of Steady Turbulent Flow through Bifurcated Nozzles in Continuous Casting. Metallurgical and Materials Transactions B, 1995, (26B):749-765
    73 Panaras G A, Theodorakakos A, Bergelse G. Numerical Investigation of the Free Surface in Continuous Steel Casting Mold Model. Metallurgical and Materials Transactions B,1998,(29B):1117-1126
    74 Auagnostopoulos J, Bergeles G. Three-dimensional Modeling of the Flow and the Interface Surface in Continuous Casting Mold Model. Metallergical and Materials Transactions B, 1999, (30B):1095-1105
    75文光华,唐萍,苏振江.大方坯连铸结晶器伸入式水口结构类型研究.钢铁钒钛,2002,23(3):21-24
    76幸伟,沈巧珍.方坯连铸结晶器浸入式水口结构类型的研究.钢铁研究,2004,(5):24-27
    77幸伟,沈巧珍,王晓红.方坯连铸结晶器内钢液三维流场的数值模拟.山东冶金,2004,26(5):42-44
    78武文斐,郑坤灿,李义科.数值模拟研究钢液入口速度对结晶器流场的影响.铸造技术,2003,24(2):143-145
    79王仁贵,郑敏,张炯明.方坯连铸结晶器三维流场的数值模拟.鞍钢技术,1999,(7):4-7
    80张乔英,王书桓,王立涛.浸入式水口底部结构对板坯结晶器内钢液流场和温度场的影响.钢铁研究,2005,(1):17-20.
    81谭利坚,沈厚发,柳百成.连铸结晶器液位波动的数值模拟.金属学报,2003, 39(4):435-438
    82 E.A.Mizikar. Mathematical heat transfer model for solidification of continuously cast steel slabs. Trans. TMS-AIME, 1967, 239:1747-1753
    83 J. H. Weiner, B. A. Boley. Elasto-plastic thermal stresses in a solidifying body. J. Mech. Phys. Solids, 1963, 11: 145-154
    84 A. Grill, J. K. Brimacombe, F. Weinberg. Mathematical analysis of stresses in continuous casting of steel. Ironmaking and Steelmaking, 1976, 3(1): 38-47
    85 K. Sorimachi, J. K. Brimacombe. Improvements in mathematical modelling of stresses in continuous casting of steel. Ironmaking and Steelmaking, 1977, 4(4): 240-245
    86 K. Kinoshita, T.Emi, M.Kasai. Thermal elasto-plastic stress analysis of solidifying shell in continuous casting mold. Tetsu-to-Hagane, 1979,65(4):2022-2031
    87 F. G. Rammerstorfer, C. Jaquemar, D. F. Fischer, etc. Temperature fields, solidification process and stress development in the strand during a continuous casting process of steel. International Conference on Numerical Methods in Thermal Problems, 1979:712-722
    88 J. E. Kelly, K. P. Michalek, T. G. O’Connor, B. G. Thomas, J. A. Dantzig. Initial development of thermal and stress fields in continuously cast steel billets. Metallurgical Transaction A, 1988,9A(10): 2589-2602
    89 T. C. Tszeng, S. Kobayashi. Stress analysis in solidification processes: Application to continuous casting. Int. J. Mach. Tools Manufact, 1989,29(1): 121-140
    90 Barber, A.Perkins. Strand deformation in continuous casting. Ironmaking and Steelmaking, 1989, 16(6): 406-411
    91 Zhang Xiaobing, Xu Liepeng, Wang Jiannong. Mathematical model of formation of air gap in continuous casting mold. Proceedings of the International Conference-MSMM’96, Beijing,1996:385-389
    92 F. Wimmer, H. Thone, B. Lindorfer. Thermomechanically-coupled analysis of the steel solidification process as a basis for the development of a high speed billet casting mold. Proceedings of the International Conference-MSMM’96, Beijing, 1996:366-371
    93 K. Okamura, H. Kawashima. Three-dimensional elasto-plastic and creep analysis of bulging in continuously cast slabs. ISIJ International, 1989, 29 (8):666-672
    94娄娟娟.连铸异型坯凝固过程的数值模拟研究. [北京科技大学工学硕士论文].2005: 31-36
    95陈高兴.异型坯连铸过程温度场和应力场模拟. [北京科技大学工学硕士论文.2006: 43-58
    96姚利丽,张炯明,王新华,等.连铸板坯二冷模型及配水制度的优化.连铸,2003, (3):10-13
    97陈登福,孙海峰,冯科,等.威钢ROKOP小方坯连铸机的二冷制度分析和优化.特殊钢,2002,23(2):8-10
    98孙旭霞.水平连铸工艺参数优化设置专家系统.计算机工程,2005,(7):200-201
    99 C.A.Santos, J.A. Spim, A. Garcia. Mathematical modeling and optimization strategies applied to the continuous casting of steel. Engineering Applications of Artificial Intelligence, 2003, 16,511-527
    100 N.cheung, A. Garcia. The use of heuristic search technique for the optimization of quality of steel billets produced by continuous casting. Engineering Applications of Artificial Intelligence, 2001,14,229-238
    101 Carlos A, Santos, Jaime A. Spim Jr. The use of artificial intelligence technique for the optimization of process parameters used in the continuous casting of steel. Applied Mathematical Modeling, 2002,26,1077-1092
    102 Alexander V.lotov, George K. Kamenev. Optimal control of cooling process in continuous casting of steel using a Visualization-based multi-criteria approach. Applied Mathematical Modeling, 2005,29,653-672
    103胡毓达.实用多目标最优化.上海:上海科学技术出版社,1990:25-39
    104汪定伟,王俊伟,王洪峰,等.智能优化方法.北京:高等教育出版社,2007:20-29
    105王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2005:4-14
    106雷英杰,张善文,李续武.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005:31-33
    107 M. Naghdi. Stress-strain relations in plasticity and thermoplasticity. Proceedings of the SecondSymposium on Naval Structural Mechanics. Pergamon Press, 1960: 198-200
    108 T. C. Tszeng, S. Kobayashi. Stress analysis in solidification processes: Application to continuous casting. International Journal of Machnine Tools Manufacture,1989,29(1):121-140
    109 M. Uehara, I. V. Samarasekera, J. K. Brimacombe. Mathematical modeling of unbending of continuously cast steel slabs. Ironmaking and Steelmaking, 1986, 13(3): 138~153
    110闫小林,陈伟.连铸过程原理及数值模拟.石家庄:河北科学技术出版社,2001:6-45,198-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700