用户名: 密码: 验证码:
延迟焦化工业过程先进控制与性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界石油资源供应日趋紧张,以及原油品质的劣质化、重质化趋势日益明显,重油加工技术已成为提高炼油企业效益和竞争能力的主要手段之一。延迟焦化技术具有原料适应性强、投资和操作费用较低等特点,是炼油企业主要的重油加工工艺。但由于延迟焦化装置的原料来源复杂,各个单元变量之间的关联性强,特别是延迟焦化过程的连续/间歇操作特性,使延迟焦化装置成为最难操作和控制的炼油装置之一。因此,如何在现有工业装置的基础上,保证生产过程的平稳操作,进而通过先进控制技术提高该装置的控制和管理水平,是一项具有重要实际应用价值的研究。
     本论文的研究内容包括:
     1.对延迟焦化工业生产过程和延迟焦化常规控制系统进行讨论和分析。重点针对延迟焦化装置的间歇特性展开深入的讨论和分析,主要分析延迟焦化连续装置和间歇装置之间的关系,并从工程应用的角度,提出了一种延迟焦化间歇操作特性的检测模型,该模型可以有效地对延迟焦化装置的间歇操作状态进行实时检测。
     2.针对延迟焦化装置工况的多变性和扰动的时变性,研究了时不变和时变扰动过程的PID控制器性能评估方法。对于时不变过程的PID控制器,提出了一种双层结构的综合评估方法。该方法对PID控制器的随机性性能和确定性性能两方面进行有效的评估。对于时变扰动过程的PID控制器,提出了一种基于权衡曲线的PID控制器性能评估方法,该方法综合考虑系统受到时变扰动时的全局性能。根据PID控制器的权衡曲线,可在克服暂态扰动和常态扰动之间权衡,选取合适的基准,有效地对控制器进行评估和维护。同时将所提出的方法分别应用于延迟焦化装置的时不变过程和时变扰动过程的PID控制器的性能评估,对评估结果差的控制器进行整定或维护,从而提高常规PID控制系统的性能。
     3.针对延迟焦化连续/间歇操作特性,提出了一种基于事件驱动的迭代学习预测控制算法。该算法通过间歇操作特性模型对事件的检测,及时触发对重复扰动的估计和学习,从而在MPC结构中增加对扰动的迭代估计,以克服间歇事件的周期性干扰。同时,针对延迟焦化工业过程先进控制系统的实际工业应用,对延迟焦化先进控制目标、控制器结构、约束条件、工程实施等方面进行详细的分析。实际应用结果表明:延迟焦化装置先进控制系统,提高了延迟焦化操作过程的控制品质和稳定性。
     4.在分析工业生产过程控制系统经济性能评估方法的基础上,将基于性能评估的最小方差引入到多变量模型预测控制软约束调整与经济性能的协调中,从而提高先进控制系统的经济性能。同时将该方法用于评估和提高延迟焦化装置加热炉先进控制系统的经济性能,从而更合理地提高加热炉的热效率。
With the increasingly tight supply of oil resources, petrochemical industry nowadays involves more and more heavy oil based applications. Heavy oil upgrading has been an important method for refineries to enhance the economic benefits and competitive capacity. Delayed coking has become a major processing technology for heavy oil and has the advantages of low investment and operating costs, handling different kinds of heavy oil etc.
     Delayed coking, however, is one of the most difficult units of refinery to operate and control, because of its strongly coupling, the semi-batch nature and its source complexity. Therefore, It is important and of practical significance to ensure smooth operation and improve the performance of control and management through the advanced control technology.
     The main contents of this thesis are as following:
     1. The technological process and conventional control system design for delayed coking units are introduced. Specially, Semi-batch nature of delayed coking units is analyzed and the relationship between continuous processes and batch processes is discussed in depth. A practical model for batch operation nature is proposed for on-line monitoring the operation status of batch processes.
     2. The operating conditions of delayed coking units are time-variant due to the processing different raw oil. Besides, delayed coking process is also subject to time-varying disturbance due to its semi-batch nature. Therefore, the poorly/less optimally tuned PID control performance is usually encountered in the delayed coking industry. The PID performance assessment in delayed coking units is important for maintaining and improving the control performance of PID controllers. For the time-invariant process under PID control, a two-layer structure method is provided, which enables performance analysis of PID controller by integrating both stochastic performance and deterministic performance of PID controller. For the process involving with time-varying disturbance, a PID trade-off curve is proposed, which represents the global optimum for abrupt disturbance and other representative disturbance. According to the trade-off curve, one can choose alterative benchmark to assess the PID control performance. The two developed performance assessment methods are applied to the delayed coking units.
     3. Focusing on the continuous/batch characteristics of the delayed cooking units, an event-driven iterative learning predictive control (ILMPC) is proposed to the delayed coking units, which is a class of continuous/batch processes characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes. Thus, traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes based on the model of batch operation characteristic, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. Besides, the choice of main controlled variables and manipulated variables, constraint conditions, the structure of controller etc are analyzed. The results of an industrial application show that the proposed ILMPC method is effective for the delayed coking units and improves the stability and enable operations closer to constraints of the delayed coking units.
     4. The economic assessment of advanced control for industrial processes is introduced. The minimum variance based performance assessment is coordinated into the compromise between the soft constrains adjustment of MPC and the economic performance of the system, in order to enhance the economic performance of advanced control system. The economic assessment is illustrated by an industrial furnace, which is a key unit for the delayed coking process.
引文
[1]Henderson, R.; Rodwell, M.; Harji, A.,2005. Consider modifying your refinery to handle heavy opportunity crude oils. Hydrocarbon Processing, 84(9):47-54.
    [2]瞿国华;黄大智;梁文杰,2005.延迟焦化在我国石油加工中的地位和前景.石油学报(石油加工),21(3):47-53.
    [3]Astrom, K. J.; Hagglund, T.,2001. The future of PID control. Control Engineering Practice,9(11):1163-1175.
    [4]Harris, T. J.; Seppala, C. T.; Desborough, L. D.,1999. A review of performance monitoring and assessment techniques for univariate and multivariate control systems. Journal of Process Control,9(1):1-17.
    [5]Schafer, J.; Cinar, A.,2004. Multivariable MPC system performance assessment, monitoring, and diagnosis. Journal of Process Control, 14(2):113-129.
    [6]Jelali, M.,2006. An overview of control performance assessment technology and industrial applications. Control Engineering Practice,14(5):441-466.
    [7]Huang, B.,1999. Performance Assessment of Control Loops Theory and Applications. Springer-Verlag, New York.
    [8]Yuan, Q.; Lennox, B.,2009. Control performance assessment for multivariable systems based on a modified relative variance technique. Journal of Process Control,19(3):489-497.
    [9]Harris, T. J.,1989. Assessment of control loop performance. Canadian Journal of Chemical Engineering,67(5):856-861.
    [10]Yu, J.; Qin, S. J.,2008. Statistical MIMO controller performance monitoring. Part Ⅰ:Data-driven covariance benchmark. Journal of Process Control, 18(3-4):277-296.
    [11]Yu, J.; Qin, S. J.,2008. Statistical MIMO controller performance monitoring. Part Ⅱ:Performance diagnosis. Journal of Process Control,18(3-4):297-319.
    [12]Qin, S. J.; Yu, J.,2007. Recent developments in multivariable controller performance monitoring. Journal of Process Control,17(3):221-227.
    [13]Qin, S. J.,1998. Control performance monitoring-a review and assessment. Computers & Chemical Engineering,23(2):173-186.
    [14]Ordys, A. W.; Uduehi, D.; Johnson, M. A.,2007. Process Control Performance Assessment:From Theory to Implementation. Springer-Verlag, London.
    [15]Astrom, K. J.,1970. Introduction to Stochastic Control Theory. Academic Press, New York.
    [16]Box, G. E. P.; Jenkins, G. M.,1970. Time series analysis:Forecasting and control. Holden-Day, San Francisco, CA.
    [17]Desborough, L.; Harris, T.,1993. Performance assessment measures for univariate feedforward/feedback control. Canadian Journal of Chemical Engineering,71(4):605-616.
    [18]Stanfelj, N.; Marlin, T. E.; MacGregor, J. F.,1993. Monitoring and diagnosing process control performance:The single-loop case. Industrial and Engineering Chemistry Research,32(2):301-314.
    [19]Ko, B.-S.; Edgar, T. F.,2000. Performance assessment of cascade control loops. AIChE Journal,46(2):281-291.
    [20]Tyler, M. L.; Morari, M.,1995. Performance assessment for unstable and nonminimum-phase systems. IFAC On-line Fault Detection and Supervision in the Chemical Process Industries, Newcastle upon Tyne, UK,187-192.
    [21]Harris, T. J.; Boudreau, F.; Macgregor, J. F.,1996. Performance assessment of multivariable feedback controllers. Automatica,32(11):1505-1518.
    [22]Ko, B.-S.; Edgar, T. F.,2001. Performance assessment of multivariable feedback control systems. Automatica,37(6):899-905.
    [23]McNabb, C. A.; Qin, S. J.,2003. Projection based MIMO control performance monitoring:Ⅰ--covariance monitoring in state space. Journal of Process Control,13(8):739-757.
    [24]Huang, B.; Ding, S. X.; Thornhill, N.,2005. Practical solutions to multivariate feedback control performance assessment problem:reduced a priori knowledge of interactor matrices. Journal of Process Control,15(5):573-583.
    [25]Kase, W.; Mutoh, Y.; Teranishi, M.,1999. A simple derivation of interactor matrix and its applications. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA,493-498.
    [26]Huang, B.; Shah, S. L.; Miller, R.,2000. Feedforward plus feedback controller performance assessment of MIMO systems. IEEE Transactions on Control Systems Technology,8(3):580-587.
    [27]Grimble, M. J.,2002. Controller performance benchmarking and tuning using generalised minimum variance control. Automatica,38(12):2111-2119.
    [28]Kadali, R.; Huang, B.,2002. Controller performance analysis with LQG benchmark obtained under closed loop conditions. ISA Transactions, 41(4):521-537.
    [29]Gao, J.; Patwardhan, R.; Akamatsu, K.; Hashimoto, Y.; Emoto, G.; Shah, S. L.; Huang, B.,2003. Performance evaluation of two industrial MPC controllers. Control Engineering Practice,11(12):1371-1387.
    [30]Eriksson, P. G.; Isaksson, A. J.,1994. Some aspects of control loop performance monitoring. Glasgow, UK,1029-1034.
    [31]Isaksson, A. J.,1996. PID controller performance assessment. Control Systems Conference, Halifax, Can,163-169.
    [32]Ko, B.-S.; Edgar, T. F.,2004. PID control performance assessment:The single-loop case. AIChE Journal,50(6):1211-1218.
    [33]Ko, B.-S.; Edgar, T. F.,1998. Assessment of achievable PI control performance for linear processes with dead time. American Control Conference, Philadelphia, PA, USA,1548-1552.
    [34]Zuo, X.; Sun, J.,2005. Performance Assessment of a PID Controller. Petroleum Sicence,2(3):50-53.
    [35]Sendjaja, A. Y.; Kariwala, V.,2009. Achievable PID performance using sums of squares programming. Journal of Process Control,19(6):1061-1065.
    [36]Prabhu, A. V.; Edgar, T. F.,2007. Performance Assessment of Run-to-Run EWMA Controllers. Semiconductor Manufacturing, IEEE Transactions on, 20(4):381-385.
    [37]Julien, R. H.; Foley, M. W.; Cluett, W. R.,2004. Performance assessment using a model predictive control benchmark. Journal of Process Control, 14(4):441-456.
    [38]Ljung, L.; Sderstrm, T.,1987. Theory and Practice of Recursive Identification MIT Press, London, England.
    [39]Desborough, L.; Harris, T.,1992. Performance assessment measures for univariate feedback control. Canadian Journal of Chemical Engineering, 70(6):1186-1197.
    [40]Huang, B.,2002. Minimum variance control, and performance assessment of time-variant processes. Journal of Process Control,12(6):707-719.
    [41]Huang, B.,1999. Performance assessment of processes with abrupt changes of disturbances. Canadian Journal of Chemical Engineering,77(5):1044-1054.
    [42]Olaleye, F.; Huang, B.; Tamayo, E.,2004. Performance assessment of control loops with time-variant disturbance dynamics. Journal of Process Control, 14(8):867-877.
    [43]Olaleye, F. B.,2002. Controller performance assessment of time-variant processes. University of Alberta, Canada, M.Sc.
    [44]Olaleye, F.; Huang, B.; Tamayo, E.,2004. Industrial Applications of a Feedback Controller Performance Assessment of Time-Variant Processes. Industrial & Engineering Chemistry Research,43(2):597-607.
    [45]Olaleye, F. B.; Huang, B.; Tamayo, E.,2004. Feedforward and Feedback Controller Performance Assessment of Linear Time-Variant Processes. Industrial & Engineering Chemistry Research,43(2):589-596.
    [46]Xu, F.; Huang, B.; Tamayo, E. C.,2008. Performance assessment of MIMO control systems with time-variant disturbance dynamics. Computers & Chemical Engineering,32(9):2144-2154.
    [47]Seborg, D. E., et al,1989. Process Dynamics and Control. John Wiley & Sons, New York.
    [48]Qin, S. J.; Badgwell, T. A.,1997. An Overview of Industrial Model Predictive Control Technology. AIChE Symposium Series, USA,232-232.
    [49]Morari, M.; H. Lee, J.,1999. Model predictive control:past, present and future. Computers & Chemical Engineering,23(4-5):667-682.
    [50]Qin, S. J.; Badgwell, T. A.,2003. A survey of industrial model predictive control technology. Control Engineering Practice, 11(7):733-764.
    [51]Garcia, C. E.; Prett, D. M.; Morari, M.,1989. Model predictive control: Theory and practice--A survey. Automatica,25(3):335-348.
    [52]Grimble, M. J.; Ordys, A. W.,2001. Predictive Control for industrial applications. Annual Reviews in Control,25:13-24.
    [53]Jalali, A. A.; Nadimi, V.,2006. A Survey on Robust Model Predictive Control from 1999-2006. International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on Computational Intelligence for Modelling, Control and Automation, Sydney, Australia,207-207.
    [54]Camacho, E. F.; Bordons, C.,2003. model predictive control. Springer-Verlag, London.
    [55]Rossiter, J. A.,2003. Model-Based Predictive Control:A Practical Approach CRC Press, Florida.
    [56]钱积新;赵均;徐祖华,2007.预测控制.化学工业出版社,北京.
    [57]丁宝苍,2008.预测控制的理论与方法.机械工业出版社,北京.
    [58]Richalet, J.; O'donovan, D.,2009. Predictive Functional Control:Principles and Industrial Applications Springer, Berlin.
    [59]邹涛;丁宝苍;张端,2010.模型预测控制工程应用导论.化学工业出版社,北京.
    [60]Clarke, D. W.; Mohtadi, C.; Tuffs, P. S.,1987. Generalized predictive control-PART I. The basic algorithm. Automatica,23(2):137-148.
    [61]Clarke, D. W.:Mohtadi, C.; Tuffs, P. S.,1987. Generalized predictive control-PART Ⅱ. Extensions and interpretations. Automatica,23(2):149-160.
    [62]邹志云;顾钟文;周春晖,1988.新型自适应模型算法控制算式.控制与决策,3(3):11-16.
    [63]Campo, P. J.; Morari, M.,1987. Robust Model Predictive Control. American Control Conference, Minneapolis, MN, USA,1021-1026.
    [64]Zeman, J.; Rohal'-Ilkiv, B.,2003. Robust min-max model predictive control of linear systems with constraints. Maribor, Slovenia,930-935.
    [65]Kothare, M. V.; Balakrishnan, V.; Morari, M.,1996. Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361-1379.
    [66]Lelic, M. A.; Zarrop, M. B.,1987. Generalized pole-placement self-tunning controller:PART 1. Basic algorithm. International Journal of Control, 46(2):547-568.
    [67]Lelic, M. A.; Wellstead, P. E.,1987. Generalized pole-placement self-tunning controller:PART 2. Application to robot manipulatior control. International Journal of Control,46(2):569-601.
    [68]诸静,2002.智能预测控制及其应用.浙江大学出版社,杭州.
    [69]Scokaert, P. O. M.; Mayne, D. Q.; Rawlings, J. B.,1999. Suboptimal model predictive control (Feasibility implies stability). IEEE Transactions on Automatic Control,44(3):648-654.
    [70]Sohlberg, B.,2003. Grey box modelling for model predictive control of a heating process. Journal of Process Control,13(3):225-238.
    [71]Henson, M. A.,1998. Nonlinear model predictive control:Current status and future directions. Computers and Chemical Engineering,23(2):187-202.
    [72]Allgower, F.; Zheng, A.,2000. Nonlinear model predictive control. Birkhauser Verlag, Boston.
    [73]张克进,2000.延迟焦化装置模型化与控制研究.华东理工大学博士论文,上海.
    [74]张立丽;郑国庆,2007.延迟焦化装置先进过程控制的应用.齐齐哈尔大学学报(自然科学版),23(2):35-35.
    [75]朱怀欢,2008.先进控制技术在延迟焦化装置的应用.炼油技术与工程38(9):45-49.
    [76]苟兴华;邓飞;徐博文,2008. RMPCT先进控制在延迟焦化装置的应用.自动化仪表,29(4):36-38.
    [77]王美志,2007.延迟焦化装置先进控制系统开发.化工自动化及仪表,34(6):69-71.
    [78]Zhang, R.; Wang, S.,2007. Predictive Functional Controller with a Similar Proportional Integral Optimal Regulator Structure:Comparison with Traditional Predictive Functional Controller and Application to Heavy Oil Coking Equipment. Chinese Journal of Chemical Engineering,15(2):247-253.
    [79]张建明;谢磊;苏成利;张日东;王树青;毛国平;付刚强,2006.焦化加热炉先进控制系统.华东理工大学学报,32(7):814-817.
    [80]张日东;苏成利;张建明;王树青;毛国平;魏少毅;郑炜,2006.PFC-PID控制在加热炉炉膛压力控制中的应用.华东理工大学学报(自然科学版)32(7):750-753.
    [81]苏成利;李平;张日东;张建明;王树青,2007.预测函数控制在焦化加热炉氧含量控制中的应用.石油化工自动化,(2):33-36.
    [82]Zhang, W.; Huang, D.; Wang, Y.; Wang, J.,2008. Adaptive State Feedback Predictive Control and Expert Control for a Delayed Coking Furnace. Chinese Journal of Chemical Engineering,16(4):590-598.
    [83]Chang, A. I.; Nishioka, K.; Yamakawa, T.,2001. Advanced control project stabilizes delayed coker, increases throughput. Oil and Gas Journal, 99(34):52-56.
    [84]Jia, L.; Yu, I.,2002. Consider a neuro-fuzzy system to model a delayed coking process. Hydrocarbon Processing,81(9):67-70.
    [85]Zhang, K.; Yu, J.,1999. Modeling delayed coking plant via RBF neural networks. Proceedings of the International Joint Conference on Neural Networks,5:3483-3486.
    [86]宋晓峰;俞欢军;陈德钊;胡上序,2004.藉助自适应支持向量机为延迟焦化反应过程建模.化工学报,55(1):147-150.
    [87]Lee, K. S.; Chin, I.-S.; Lee, H. J.; Lee, J. H.,1999. Model predictive control technique combined with iterative learning for batch processes. AIChE Journal,45(10):2175-2187.
    [88]Lee, J. H.; Lee, K. S.; Kim, W. C.,2000. Model-based iterative learning control with a quadratic criterion for time-varying linear systems. Automatica, 36(5):641-657.
    [89]Natarajan, S.; Lee, J. H.,2000. Repetitive model predictive control applied to a simulated moving bed chromatography system. Computers and Chemical Engineering,24(2):1127-1133.
    [90]Erdem, G.; Abel, S.; Morari, M.; Mazzotti, M.; Morbidelli, M.; Lee, J. H., 2004. Automatic Control of Simulated Moving Beds. Industrial and Engineering Chemistry Research,43(2):405-421.
    [91]Cueli, J. R.; Bordons, C.,2008. Iterative nonlinear model predictive control. Stability, robustness and applications. Control Engineering Practice, 16(9):1023-1034.
    [92]Lababidi, H. M. S.; Kotob, S.; Yousuf, B.,2002. Refinery advanced process control planning system. Computers and Chemical Engineering, 26(9):1303-1319.
    [93]Bauer, M.; Craig, I. K.,2008. Economic assessment of advanced process control-A survey and framework. Journal of Process Control,18(1):2-18.
    [94]Canney, W. M.,2003. The future of advanced process control promises more benefits and sustained value. Oil and Gas Journal,101(16):48-54.
    [95]Edgar, T. F.,2004. Control and operations:When does controllability equal profitability? Computers and Chemical Engineering,29(1):41-49.
    [96]Xu, F.; Huang, B.; Akande, S.,2007. Performance assessment of model pedictive control for variability and constraint tuning. Industrial and Engineering Chemistry Research,46(4):1208-1219.
    [97]Bauery, M.; Craig, I. K.; Tolsma, E.; De Beer, H.,2007. A profit index for assessing the benefits of process control. Industrial and Engineering Chemistry Research,46(17):5614-5623.
    [98]Zhou, Y.; Forbes, J. F.,2003. Determining controller benefits via probabilistic optimization. International Journal of Adaptive Control and Signal Processing,17(7-9):553-568.
    [99]Muske, K. R.,2003. Estimating the economic benefit from improved process control. Industrial and Engineering Chemistry Research,42(20):4535-4544.
    [100]Latour, P. R.,1996. Process control:CLIFFTENT shows it's more profitable than expected. Hydrocarbon Processing,75(12):75-80.
    [101]Loeblein, C.; Perkins, J. D.,1996. Economic analysis of different structures of on-line process optimization systems. Computers and Chemical Engineering, 20(Suppl pt A):S551-S556.
    [102]Zhou, Y.; Bao, J.; McLellan, P. J.; Forbes, J. F.,2002. Estimation of controller benefits:An optimization-based approach. Pulp and Paper Canada, 103(10):23-27.
    [103]Martin, G. D.; Turpin, L. E.; Cline, R. P.,1991. Estimating control function benefits. Hydrocarbon Processing,70(6):68-73.
    [104]Martin, G.,2004. Understand control benefits estimates. Hydrocarbon Processing,83(10):43-46.
    [105]Zhao, C.; Su, H.; Gu, Y.; Chu, J.,2009. A Pragmatic Approach for Assessing the Economic Performance of Model Predictive Control Systems and Its Industrial Application. Chinese Journal of Chemical Engineering, 17(2):241-250.
    [106]Zhao, C.; Zhao, Y.; Su, H.; Huang, B.,2009. Economic performance assessment of advanced process control with LQG benchmarking. Journal of Process Control,19(4):557-569.
    [107]Marlin, T. E.; Perkins, J. D.; Barton, G. W.; Brisk, M. L.,1991. Benefits from process control:results of a joint industry-university study. Journal of Process Control, 1(2):68-83.
    [108]Craig, I. K.; Henning, R. G. D.,2000. Evaluation of advanced industrial control projects:A framework for determining economic benefits. Control Engineering Practice,8(7):769-780.
    [109]Canney, W. M.,2005. Are you getting the full benefits from your advanced process control systems? Hydrocarbon Processing,84(6):55-58.
    [110]Kern, A. G.,2005. Online monitoring of multivariable control utilization and benefits. Hydrocarbon Processing,84(10):43-47.
    [111]瞿国华,2008.延迟焦化工艺与工程.中国石化出版社,北京.
    [112]张立新,2005.中国延迟焦化装置的技术进展.炼油技术与工程,35(6):1-7.
    [113]周晓龙,1995.残渣油热转化复杂反应学模型研究.华东理工大学博士论文,上海.
    [114]杨继涛;陈进荣;孙在春;范耀华,1992.减压渣油焦化反应的两种动力学模型.石油学报(石油加工),8(4):1-8.
    [115]马伯文,1999.延迟焦化装置工艺模型的开发与应用.华东理工大学博士论文,上海.
    [116]Takatsuka, T.; Kajiyama, R.; Hashimoto, H.; Matsuo,I.; Miwa, S.,1989. Practical model of thermal cracking of residual oil. Journal of Chemical Engineering of Japan,22(3):304-310.
    [117]Shigley, J. K.; Fu, T.-W.,1988. Coke forming reaction kinetic study on petroleum based feeds. Los Angeles, CA, USA,420-426.
    [118]Janssen, H. R.; Leaman Jr, G. L.,1984. Improved coking design can up liquid yields. Oil and Gas Journal,82(26):79-83.
    [119]Filho, R. M.; Sugaya, M. F.,2001. A computer aided tool for heavy oil thermal cracking process simulation. Computers & Chemical Engineering, 25(4-6):683-692.
    [120]Astrom, K. J.; Hagglund, T.; Hang, C. C.; Ho, W. K.,1993. Automatic tuning and adaptation for PID controllers-a survey. Control Engineering Practice, 1(4):699-714.
    [121]Astrom, K. J.; Hagglund, T.,1995. PID Controllers:Theory Design, and Tuning. Instrument Society of America, North Carolina.
    [122]Chan, K. S.; Lakshminarayanan, S.; Rangaiah, G. P.,2005. Tuning PID Controllers for Maximum Stochastic Regulatory Performance:Methods and Experimental Verification. Industrial & Engineering Chemistry Research, 44(20):7787-7799.
    [123]Basseville, M.; Benveniste, A.,1982. Sequential Segmentation of Nonstationary Digital Signals Using Spectral Analysis. Information Sciences, 29(l):57-73.
    [124]Zeng, R.; Jianyu, G.,2002. Progress in Pressure Swing Adsorption Models During the Recent 30 Years. Chinese Journal of Chemical Engineering, 10(2):228-235.
    [125]Huang, L.; Sun, L.; Wang, N.; Jin, X.,2007. Multiobjective Optimization of Simulated Moving Bed by Tissue P System. Chinese Journal of Chemical Engineering,15(5):683-690.
    [126]Shaw, K. J.; Lee, P. L.; Nott, H. P.; Thompson, M.,2000. Genetic algorithms for multiobjective scheduling of combined batch/continuous process plants. Proceedings of the 2000 Congress on Evolutionary Computation, California, USA,293-300.
    [127]Sarabia, D.; De Prada, C.; Cristea, S.,2007. Hybrid predictive control of a simulated continuous-batch process. Singapore,1400-1407.
    [128]Zou, T.; Li, S.,2005. Constraints adjustment and objectives coordination of satisfying optimal control applied to heavy oil fractionators. Chinese Journal of Chemical Engineering,13(3):380-387.
    [129]马伯文;黄慧敏;陈绍洲,1998.延迟焦化装置加热炉管内结焦模型的开发和应用炼油设计.炼油设计(5):44-47.
    [130]Kassmann, D. E.; Badgwell, T. A.; Hawkins, R. B.,2000. Robust steady-state target calculation for model predictive control. AIChE Journal, 46(5):1007-1024.
    [131]Nikandrov, A.; Swartz, C. L. E.,2009. Sensitivity analysis of LP-MPC cascade control systems. Journal of Process Control,19(1):16-24.
    [132]Rao, C. V.; Rawlings, J. B.,1999. Steady states and constraints in model predictive control. AIChE Journal,45(6):1266-1278.
    [133]王树青;金晓明,2005.先进控制技术应用实例.化学工业出版社,北京.
    [134]Contreras-Dordelly, J. L.; Marlin, T. E.,2000. Control design for increased profit. Computers & Chemical Engineering,24(2-7):267-272.
    [135]Latour, P. R.,1992. Quantify quality control's intangible benefits. Hydrocarbon Processing,71(5):61-64,67-68.
    [136]Latour, P. L.; Sharpe, J. H.; Delaney, M. C.,1986. Estimating benefits from advanced control. ISA Transactions,25(4):13-21.
    [137]Lear, J. B.; Barton, G. W.; Perkins, J. D.,1995. Interaction between process design and process control:the impact of disturbances and uncertainty on estimates of achievable economic performance. Journal of Process Control, 5(1):49-62.
    [138]Figueroa, J. L.; Bahri, P. A.; Bandoni, J. A.; Romagnoli, J. A.,1996. Economic impact of disturbances and uncertain parameters in chemical processes--A dynamic back-off analysis. Computers & Chemical Engineering, 20(4):453-461.
    [139]Loeblein, C.; Perkins, J. D.,1999. Structural design for on-line process optimization:I. Dynamic economics of MPC. AIChE Journal, 45(5):1018-1029.
    [140]Young, J. C. C.; Baker, R.; Swartz, C. L. E.,2004. Input saturation effects in optimizing control--inclusion within a simultaneous optimization framework. Computers & Chemical Engineering,28(8):1347-1360.
    [141]邹涛;李少远,2005.复杂系统CMMO问题的软约束调整与目标协调.控制与决策,20(4):387-397.
    [142]席裕庚;谷寒雨,1998.有约束多目标多自由度优化控制的可行性分析及软约束调整.自动化学报,24(6):726-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700