用户名: 密码: 验证码:
乘用车轻量化绿色效应评价理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类第三次面临的可持续发展问题,是资源耗竭、能源耗竭、环境恶化与人口激增一道袭来,因之,问题要严重、复杂得多。人类从三次危机中汲取的教训是,追求绿色效应是人类社会可持续发展的不二法门。绿色效应的广义定义是指,人类以生产、生活中的绿色伦理、理念与行为,减少对自然界的干扰,形成人类社会生态圈,使人类与自然(生物)界和谐共处,有益于人类自身,促使人类社会可持续发展与自然界的生物多样性。绿色效应的狭义定义则是指,在产品的生命周期中采用绿色理念、绿色技术、环境管理技术与相应的环境标准,使产品具有节能、节材、减排、回收重用(熔)功能,从而有利于环境的保护和社会的可持续发展。
     2010年中国大陆乘用车保有量为5330.00(万辆),是1960年的231.74倍;且大陆自主品牌乘用车整备质量的均值较发达国家同类车高8~10%,其年石油消耗量均值是日本同类车的2.5倍,欧洲同类车的2.27倍。因此,2010年中国大陆乘用车保有量消耗的石油占其石油消耗总量的30.46%,占其年石油进口总量的56.26%;该保有量年消耗的铁矿石,分别占中国大陆铁矿石消耗总量和铁矿石进口量48.77%和21.8%;该保有量在其孕育期与运行期内CO2排放量分别占中国大陆同期CO2排放总量的15.33%和4.22%。
     为了应对乘用车保有量所引发的上述问题,人们主要采取减轻乘用车的整备质量——乘用车轻量化的方式。虽然降低乘用车的整备质量可以减少乘用车在其使用阶段对能源的消耗和对环境的排放,但从乘用车轻量化的生命周期来看,由于不同的轻量化材料在其生产过程中对资源和能源的消耗和对环境排放的种类和数量均不尽相同。因此,不能够简单地认为乘用车轻量化一定能够产生降低乘用车对资源、能源的消耗和减少对环境的排放效果,即乘用车轻量化的绿色效应一定会提高;而需从生命周期角度出发,对乘用车轻量化的绿色效应给予综合的评价,才能够得出正确的结论,并为国家产业政策的调整提供有益的建议。
     本文主要研究的内容如下:
     (1)对绿色效应的问题进行了溯源,并提出了乘用车轻量化绿色效应的概念及问题。
     (2)以工业工程(IE)消除无效劳动思想对乘用车整备质量进行分析,将乘用车整备质量分解为有效整备质量、无效整备质量和条件无效整备质量;进而提出乘用车轻量化应最大程度地消除无效整备质量,以使乘用车整备质量逐渐趋于其理论极限。
     (3)依据乘用车轻量化绿色效应的定义,提出以L2R(轻量化,the Lightweight, L;再使用化,Reusing, R;再循环化,Recycling, R)为准则来追求乘用车轻量化绿色效应,以与可持续发展思想、循环经济契合;并应用目标分解法及相关文献,构建了乘用车轻量化绿色效应评价的指标体系。
     (4)提出以4F法(Material Flow, Energy Flow, Environment Factor Flow,Information Flow,)与生命周期评价(Life Cycle Assessment, LCA)耦合,计算乘用车轻量化绿色效应影响因子。
     (5)构造了基于欧氏距离的模糊物元法,用以评价、优化乘用车轻量化方案的绿色效应。
     (6)构造了3组共12个乘用车轻量化方案,用以对不同的乘用车轻量化方案的绿色效应进行评价和比较。
     在案例研究中,对H型乘用车12个轻量化方案评价的结果表明,作者在本文中提出和采用的乘用车轻量化绿色效应评价理论与方法及所建立的4F—LCA系统是有效的。
     (1)H型乘用车轻量化方案绿色效应综合评价的优先排序为:
     全再生铝结构白车身和全再生镁铸件(方案3#-3)的绿色效应优于先进高强度钢结构白车身和全再生镁铸件(方案3#-5)的绿色效应;而先进高强度钢结构白车身和全再生镁铸件(方案3#-5)的绿色效应又优于先进高强度钢结构白车身和原生镁铸件方案(方案3#-1)绿色效应。
     (2)由敏感性分析(见本文7.7节)可知,当H型乘用车以铝合金结构白车身和镁合金铸件构造轻量化方案3#-3时,其绿色效应取决于再生铝、镁合金的比例,当再生比例超过60%时,此方案方可成为第3组评价方案中的最优方案。
     (3)当再生材料比例不足,方案3#-3的绿色效应不足以满足要求时。此时先进高强度钢结构白车身和再生镁合金铸件轻量化方案的绿色效应为优,其次为先进高强度钢结构白车身和原生镁合金铸件的绿色效应。
     若以单项指标来评价乘用车轻量化方案的绿色效应,可得到与上述相似的结论。
     (1)H型乘用车轻量化方案的矿产资源耗竭排序为:,
     全再生铝结构白车身和全再生镁铸件(方案3#-3)对资源的消耗量低于先进高强度钢结构白车身和全再生镁铸件(方案3#-5),而先进高强度钢结构白车身和全再生镁铸件(方案3#-5)对资源的消耗量又低于原生普钢结构白车身和铸铁件(方案3#-1)。
     (2)H型乘用车轻量化方案的能源耗竭排序为:
     全再生铝结构白车身和全再生镁铸件(方案3#-3)的节能效果优于先进高强度钢结构白车身和全再生镁铸件(方案3#-5),而先进高强度钢结构白车身和全再生镁铸件(方案3#-5)的节能效果又优于先进高强度钢结构白车身和原生镁铸件(方案3#-4)。
     (3)H型乘用车轻量化方案的环境影响潜值排序为:
     全再生铝结构白车身和全再生镁铸件(方案3#-3)的减排效果优于原生铝结构白车身和原生镁铸件(方案3#-2),而原生铝结构白车身和原生镁铸件(方案3#-2)的减排效果又优于先进高强度钢结构白车身和全再生镁铸件(方案3#-5)。
Third crisis have been facing by Human on a sustainable development for human society,which has been becoming a complexity and seriousness because of the shocks from theexhaustion of resources, energy, environment and human population. It is the crises that havemade Human learn the lessons from ones of which there is one way only being used to searchgreen-effect for human society’s sustainable development. The generalized definition upongreen-effect is that the green ethics, green ideas and green behavior of human in life andproductive activities are being implemented so that human social ecosphere is beingestablished in which there will be harmonious coexistent situations between human and natureand then between human social sustainable development and natural biodiversity. And therestricted definition on green-effect is that product’s green-effect functions as follows: savingmineral resources, saving energy resources, decreasing environmental discharge amountbecause of being applied green ideas, green techniques, environmental techniques andstandards to the products in order to protect natural environment and human social sustainabledevelopment. In view of this, the facts below about behavior and population being increasedrapidly of passenger cars are a paradox to the definitions of green-effect of passenger cars.
     Because the passenger cars population in Chinese mainland have been increasing, onwhich the population are 5330.0 (104 cars) in 2010 that are 231.74– fold as much thepopulation as did in 1960; and the curb mass average of passenger cars of the mainland ownbrand is heavier 8~10% than the same kind of passenger cars of developed country ownbrand, the oil consumption by the passenger cars of the mainland own brand is 2.5– fold asmuch the consumption as Japan own brand one, is 2.27– fold as Europe own brand one.Therefore, the oil consumption by the population is 30.46% as much the oil consumption bythe mainland and the oil consumption by the population is 56.26% as much the oil importamount by the mainland in 2010, the iron ore consumption by the population is 21.8% asmuch the iron ore consumption by the mainland and is 48.77% as much iron ore importamount by the mainland in 2010; CO2 discharge amount by the population during it’s lifecycle and operation is separately 15.3% and 4.22% as much the amount by the mainland. Asmentioned above, an important measure is the Lightweight of passenger cars being resolvedthe problems above. The major fruits and innovations in this paper as follows.
     In order to deal with these issues have been caused by the drastic increasementpopulation of passenger cars, the means of reducing curb mass of passenger cars wereemployed. Although the amount of fuel oil can be saved by reducing passenger cars curb massduring use stage, from the Lightweight life cycle perspective of passenger cars, distinctLightweight materials will consume energy resources with different type and quantity. So the result is unclear that the Lightweight of passenger cars can improve its green-effect beforeevaluating from Life Cycle perspective.
     In this paper, research content as follow:
     (1) The background of green-effect being arisen has been traced to the source and theissues and concept of green-effect upon the Lightweight of passenger cars have been presented
     (2) The curb mass of passenger cars has been analyzed based on Industrial Engineering(IE) thinking on eliminating ineffective work and decomposed into effective, ineffective andconditional ineffective curb mass. So the aim of the Light weight of passenger cars is to lowerthe curb mass at utmost degree and make curb mass incline towards it theoretical limitation.
     (3) L2R (the Lightweight, L; Reusing, R; Recycle, R) guideline has been advanced inorder to search the green-effect of the Lightweight of passenger cars and to tally with theThinking of the Sustainable Development and Circular Economy; And the evaluating indexsystem has been constructed applying VGOCS(Values-Goals-Objectives-Criterial andStandards) method and related documents.
     (4) The coupling method has been advanced between 4F (Material Flow, F; Energy Flow,F; Environment Factor Flow, F; Information Flow, F) and LCA (Life Cycle Assessment, LCA)in order to structure the schemes for the Lightweight of passenger cars being searched thegreen-effect.
     (5) The coupling method has being advanced between Euclid Approach Degree and fuzzy– matter element in order to evaluate green-effect of the Lightweight of passenger cars.
     In the case study of this paper, the evaluation upon schemes of the Lightweight for H typepassenger cars have indicated the effectualness of the major fruits & innovations, evaluatingtheories & methods and 4F–LCA system being structured. The evaluating results as follows.
     (1) The evaluating comprehensively results on the green-effect of H type passenger carare the green-effect of scheme No.3#-3 is better than one of scheme No.3#-5,…, and so on.
     (2) As to the scheme No.3#-3 being made of aluminium alloy body in white andmagnesium alloy casting, the balance point (the proportion of recycle aluminium alloy orrecycle magnesium alloy) should be 60%, if the proportion is bigger than 60% , then thescheme No. 3# - 3 green-effect is in optimization.
     (3) If the scheme No.3#-3 green-effect is not in optimization, then the Lightweightscheme No.3#-5 green-effect is in optimization being made of AHSS (Advanced High StrengthSteel) BIW (Body in White)—recycle magnesium alloy, and the Lightweight scheme No.3#-4green-effect is in second optimization being made of AHSS BIW proto-magnesium alloy.
     And it indicates that the results being evaluating by means of single target of the greeneffectto H type passenger car are below.
     (1) The priority order according to the mineral resource’s exhaustion amount (Sbeq.) isthat the mineral resource’s exhaustion amount of scheme No. 3#-3 is better than one of schemeNo. 3#-5,…,and so on.
     (2) The priority order according to the energy resource’s exhaustion amount (MJ) are theenergy resource’s exhaustion amount of scheme No.3# - 3 is better than one of scheme No. 3# -5,…, and so on.
     (3) The priority order according to the environmental affect potential amount (Env) are theenvironmental affect potential amount of scheme No.3#-3 is better than one of schemeNo.3#-2,…, and so on.
引文
[1]冯明星.汽车的发展与石油消费[J].石油商技, 2003(6).
    [2]杨建云. 1998年世界各国汽车保有量.汽车工业研究[J]. 2001(4):36-37.
    [3]程振彪.轿车进入家庭是规律而不是赶时髦.汽车研究与开发[J].1997(4):34.
    [4]中国汽车技术研究中心,中国汽车工业协会. 2006年中国汽车工业年鉴[M].中国汽车年鉴编委员2006(9):707.
    [5]童晓光,赵林,汪如朗.对中国石油对外依存度的思考[J].经济与管理研究,2009(4).
    [6]中华人民共和国统计局. 2007中国统计年鉴[M].北京:中国统计出版社, 2007.
    [7]中华人民共和国统计局. 2008中国统计年鉴[M].北京:中国统计出版社, 2008.
    [8]中国机械工业年鉴编辑委员会,中国通用机械工业协会. 2007中国机械工业年鉴[M].北京:机械工业出版社,2007(10):129.
    [9]中国机械工业年鉴编辑委员会,中国通用机械工业协会. 2008中国机械工业年鉴[M].北京:机械工业出版社,2008(10).
    [10]陈勇主编.中国能源与可持续发展[M].北京:科学出版社, 2007(2):2-10,78-85.
    [11]朱训主编.中国矿情(第2卷)[M].北京:科学出版社, 1999(8):68-69.
    [12]中华人民共和国国土资源部.中国矿产资源报告(97,98)[M].北京:地质出版社,1999(7):111.
    [13]刘树臣,闫卫东.世界矿产资源年评2003-2004[M].北京:地质出版社,2005(12).
    [14]胡凯.钢材上游产业之铁矿石市场概况[EB/OL].(2009-4-13)http://www.shfe.com.cn.
    [15]刘小丽.中国国民经济增长与CO2排放量的关系研究[J].工业技术经济. 2009(2).
    [16]刘畅,郭建斌.汽车使用对生态环境污染的分析[J].环境科学与管理. 2008(12): 152- 155.
    [17]汽车商业评论.汽车轻量化历程.[EB/OL]. (2010-11-1).http://www.xplus.com/newmagx/content.php?mid=116113&newsid=54
    [18]进口车市.奥迪公司的汽车轻量化历程[EB/OL]. (2009-09-21).http://www.okeycar.com/news/c-17/1119.html
    [19] Kim Hyung-Ju ; Keoleian Gregory A. ; Skerlos Steven J. Economic Assessment ofGreenhouse Gas Emissions Reduction by Vehicle Lightweighting Using Aluminum andHigh-Strength Steel[J]. Journal of Industrial Ecology. 2011, Vol, 15(1): 64-80
    [20] Kim Hyung-Ju ; McMillan Colin ; Keoleian Gregory A. ; Skerlos, Steven J. GreenhouseGas Emissions Payback for Lightweighted Vehicles Using Aluminum and High-StrengthSteel [J]. Journal of Industrial Ecology. 2010, Vol, 14(1): 929-946
    [21] Kang, Yong-Lin. Lightweight vehicle, advanced high strength steel and energy-saving andemission reduction[J]. Kang T'ieh/Iron and Steel. 2008, Vol, 43(6): 1-7
    [22] Waurzyniak, Patrick. Advanced materials in automotive: Newer steels, aluminum,magnesium, and other materials lead to more lightweight, economical vehicles[J].Manufacturing Engineering. 2009, Vol, 143(3)
    [23] Tonn B.E ; Schexnayder S.M Peretz J.H; Das S ; Waidley, G.4. An assessment of wasteissues associated with the production of new, lightweight, fuel-efficient vehicles[J].Journal of Cleaner Production. 2003, Vol, 11(7): 753-765
    [24] Masataka Hakamada, Tetsuharu Furuta. Life cycle inventory study on magnesium alloysubstitution in vehciles[J]. Energy. 2007(32): 1352-1360
    [25]黄皓.中国汽车轻量化技术创新战略联盟成立.[EB/OL]. (2008-01-09).http://auto.sina.com.cn/news/2008-01-09/0915340311.shtml.
    [26]冯奇,范军锋等.汽车轻量化技术与节能环保[J].汽车工艺与材料. 2010(2): 4-7
    [27]陈铭年,潘翔,梁霖锋.汽车轻量化是节能环保的有效措施[J].福建工程学院学报. 2008(12): 26-28
    [28]李昂,曹占义.镁合金在汽车使用中的节能效果评价[J].汽车技术. 2009(10): 59-61
    [29]丹尼斯?米都斯等.增长的极限[M].吉林:吉林人民出版社, 1997(10):1~3。
    [30]于成学.工业企业绿色物流一体化研究[D].大连:大连理工大学. 2006(12):34~37.
    [31]丹尼斯?米都斯等.增长的极限[M].吉林:吉林人民出版社, 1997(10):97,125,128.
    [32]诸大建.生态经济学:可持续发展的经济学和管理学[J].学科发展,2008(6): 521~522.
    [33]李景源,杨通进,余涌.论生态文明[N].光明日报. 2004-4-30.
    [34] Ayres R U,Ayres L U. Industrial ecology: towards closing the materials cycle [M].Cheltenham,UK: Edward Elgar, 1996.
    [35]林毅夫,沈明高.我国经济改革与发展战略抉择[J].经济研究,1989(3): 28~35.
    [36]李鹏,杨桂华.生态经济学学科基本问题的新思考[J].前沿论坛,2010(10): 36~47.
    [37]刘斌,王冲,张根水.循环经济理论在生态城市建设中的应用[J].科技创业月刊,2005(11):17-18.
    [38]丁同玉.刍议发展循环经济的社会必然趋势[J].经济师,2004(10): 66~67.
    [39]顾朝林等.中国城市地理[M].北京:商务印书馆, 1999: 418.
    [40]张凯.循环经济理论研究与实践[M].北京:中国环境科学出版社,2004(5): 111~120.
    [41]陈文哲.工业工程与管理[M].中国台北:兴管理顾问公司,1976(08):22.
    [42] (美)G?萨尔文迪.现代管理工程手册[M].北京:机械工业出版社,1987(05):1~2.
    [43]陈文哲.工业工程与管理[M].中国台北:中兴管理顾问公司,1976(08):21~22.
    [44] F?W?泰勒.科学管理原理[M].北京:机械工业出版社,2007(01):7~15.
    [45] (美)G?萨尔文迪.现代管理工程手册[M].北京:机械工业出版社,2005(10):4~10.
    [46]王恩亮.工业工程手册[M].北京:机械工业出版社. 2005(10):2~4.
    [47] Liu Hai-Dong,Liu Guo-Liang. Research on the Core of Industrial Engineering[C].Proceedings of 2009 International Conference on Informatio9n Management andIndustrial Engineering, 26-27 December 2009, Xi’an, China, Volume 1, pp.163-167.
    [48]亚当?斯密.国民财富的性质和原因的研究[M].北京:商务印书馆出版社,1972(12):6~10.
    [49] [日]大野耐一.丰田生产方式[M].北京:铁道出版社,2006(04):24~25.
    [50] [日]日比宗平,寿命周期费用评价法—方法及实例[M].高克绩等译.北京:机械工业出版社,1984(12):4.
    [51]中华人民共和国国家质量监督检验检疫总局发布。GB/T24040─1999[S]. 1999年11月01日实施:629.
    [52]邓南圣,王小兵.生命周期评价[M].北京:化学工业出版社,2003(08):38.
    [53]弗·恩格斯.英国工人阶级状况[M].北京:人民出版社.中共中央马克思恩格斯列宁斯大林著作编辑局译,1956:81,87-88.
    [54]弗·恩格斯.英国工人阶级状况[M].北京:人民出版社.中共中央马克思恩格斯列宁斯大林著作编辑局译,1956:294.
    [55]宫克.世界八大公害与绿色GDP[J].沈阳大学学报,2005(8):3-6.
    [56]弗·恩格斯.自然辩证法[M].北京:人民出版社.中共中央马克思恩格斯列宁斯大林著作编辑局译,1971.
    [57] J?rgen Nilsson, Mats Bj?rkman. End-of-life Treatment from Technical and EconomicalPerpectives- A Cornerstone of Efficient Design for Recycling[C]. Proceedings of the1999 IEEE International Symposium on Electronics and Environment, 1999.
    [58] C. Nagel, J. Nilsson, C. Boks, European End-of-Life Systems for Electrical andElectronic Equipment[C]. Proceedings of IEEE International Symposium on Electronicsand Environment. Oak Brook, USA, 1998.
    [59] C.Jensea Recycling of electronic products in Sweden - an overview[J]. Dept ofMechanical Engineering, Linkoping University. 1998.
    [60] Ochsner M. Pollution Prevention-An Overview of Regulatory Incentives and Barriers.New York University Environmental Law Journal. 2001 Vol.6 No.3:586-617
    [61] US EPA. Pollution Prevention Act of 1990. United States Code Title 42 The Public Healthand Welfare Chapter 133
    [62]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥工业大学.2004(3):18-20
    [63]汪劲松,向东,段广洪.产品绿色化工程概论[M].北京:清华大学出版社,2010(3):28-32
    [64]刘光复,刘志峰,李钢.绿色设计与绿色制造[M].北京:机械工业出版社,2000
    [65]汪永超等.绿色产品概念及实施策略[J].现代机械. 1999(1):5-9
    [66] T.Harjula, B.Rapola, W.A.Knight. Design for Manufacturablility[J]. ASME.1995,1,Vol.45(1):109-114.
    [67] I.Kosuke. Life-cycle Engineering[J]. Design:Design for Manufacturability ASME.1995:39-45.
    [68] Zhang HC, Kuo H T, Hang S H. Environmentally Conscious Design and Manufacturing:A State-of–the–Art Surey[J]. Journal Manufacturing Systems. 1997(8), Vol.42 (2):456-462
    [69] Leo Alting. Life-Cycle Engineering and Design. Annals of the CRIP[J]. 1993,Vol.42(2):456-462
    [70]国际在线.比利时一项研究显示轿车重量最近十年增长了30%[EB/OL]. [2006-05-18]. http://news.sina.com.cn/w/2006-05-18/20268961980s.shtml
    [71]胡亚庄等.简明汽车知识词典[M].北京:北京理工大学出版社,2001:75.
    [72]张文春.汽车理论[M].北京:机械工业出版社,2005(7):31.
    [73]张文春.汽车理论[M].北京:机械工业出版社,2005(7):38.
    [74] LIU Hai-dong, LIU Guo-liang. Research on the Core of Industrial Engineering[J]. 2009International Conference on Information Management, Innovation Management andIndustrial Engineering. 2009,Vol.1:163-167.
    [75] JianXu, XiaomingBu, FengliZeng. Manufacturing Industry Green Product AppraisalSystem Based on Product Life Cycle. The Sixth Wuhan International Conference on EBusiness——Innovation Management Track[C]. 2008:3258-3261
    [76]李昂,曹占义.镁合金在汽车使用中的节能效果评价[J].汽车技术. 2009(10):60.
    [77] Masataka Hakamada, Tetsuharu Furuta, Yasumasa China, Youqing Chen, Hiromu Kusuda,Mamoru Mabuchi. Life cycle inventory study on magnesium alloy substitution invechicles[J]. Energy. 2007:pp1352-1360.
    [78] Pingtao Yan, Mengchu Zhou, Donald Sebastian. Multi-life cycle product and processdevelopment: selection of optimal production,usage, and recovery processes. Proceedingsof the 1999 IEEE International Symposiun on Electronics and the Environment.1999:274-279.
    [79] G.A.Kekoleian. The application of Life Cycle Assessment to design[J]. CleanerProduction. 1993(1):143-150
    [80] Adisa Azapagic. Life cycle assessment and its application to process selection, design andoptimization[J]. Chemical Engineering Journal. 1999(73):1-21
    [81]刘江龙.材料环境影响评价[M].北京:科学出版社,2002(10):22-25.
    [82]黄海鸿.基于环境价值分析的设计与改进理论与方法研究[D].合肥:合肥工业大学.2005(12):43-48.
    [83]刘飞,曹华军,张华.绿色制造的理论与技术[M].科学出版社. 2007(9):69-73.
    [84]韩明汉,金涌.绿色工程原理与应用[M].北京:清华大学出版社,2005(11):64-69.
    [85]刘飞,陈晓慧,张华.绿色制造[M].北京:中国经济出版社,1999.
    [86] Junning Sun, Bin Han, Stephen Ekwaro-Osire, Hong-Chao Zhang. Design forEnvironment: Methodologies, Tools and Implementation[J]. Journal of Integrated Designand Process Science. 2003,7(1):59-75
    [87]刘飞,曹军华,何乃军.绿色制造的研究现状与发展趋势[J].中国机械工程.2000(11):105-107
    [88] Deanna J Richards, Braden R Allenby,W.Dale Compton. Information Systems and theEnvironment[M]. National Academy Press. 2001
    [89]刘华.绿色产品评价的理论与方法及其在粉末冶金中的应用[D].广洲:华南理工大学,2005(4):22.
    [90] Hao-Lifen; Bai-Jingli. Software design of LCA for coal-fired power generation purposeslife cycle[C]. ICCASM 2010 - 2010 International Conference on Computer Applicationand System Modeling, Proceedings. 2010,Vol9:9242-9244
    [91] :Mizutani, Yoshinobu; Takada, Satomi; Murata, Kosei; Ozawa, Daisaku; Kobayashi,Ryoji; Nakamura, Yasuhiro. Safety assessment of Multi Purpose Small Payload Rack(MSPR)[C]. Proceedings of the 4th IAASS Conference - Making Safety Matter. 2010
    [92]张青山等.制造业绿色产品评价体系[M].北京:电子工业出版社. 2009(2):155-157.
    [93] .刘志峰,刘光复.绿色产品与绿色标志.合肥工业大学学报[J].1999(5)
    [94] Liu-zhifeng, Liu-xueping. Study on Systematic Configuration and Modeling of GreenDesign. Proceeding of International Conference on Sustainable Manufacturing. Shang haiJiao Tong University Press. 1999(11)
    [95]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥:合肥工业大学.2004(3):23-24.
    [96]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥:合肥工业大学.2004(3):24-31.
    [97] Hitimi K. Manufacturing excellence for 21st century production. Technovation,1996,16(1):33-41
    [98] Blustein H.A.forgotten pioneer of sustainability. Journal of Cleaner Production,2003,(11):339-341.
    [99] Jansen L. The chanllenge of sustainable development. Journal of Cleaner Production,2003,(11):231-245.
    [100] Costanza. Introduction to Ecological Economics[M]. America: CRC Press, 1997.
    [101] Common. Ecological Economics[M]. America: Cambridge, 2005.
    [102]赫尔曼.E.戴利.超越增长——可持续发展的经济学[M],诸大建等译.上海:上海文艺出版社,2001.
    [103] Daly.生态经济学——原理与应用[M],徐中民等译.河南:黄河水利出版社,2007.
    [104]来切尔·卡逊.寂静的春天[M].吕瑞兰译.北京:科学出版社,1979:1-72.
    [105]世界环境与发展委员会.我们共同的未来[M].国家环保局译.世界知识出版社,1993:8-41
    [106]刘钢机.机电产品全生命周期环境经济性能评估理论与方法研究[D].北京:清华大学,2003(10).
    [107] UNCSD. United National Commission on Sustainable Development. Indicators ofSustainable Development Framework and Methodologies. New York:UN Commissionon Sustainable Development,1996
    [108] Organization for Economic Cooperation and Development(OECD).OECD core set ofindicators for environmental performance reviews(R).Paris:OECD,1 993.
    [109] Organization for Economic Cooperation and Development(OECD).Towardssustainable development:environmental indicators. Pairs:OECD, 1998.
    [110]韩庆利,王军.关于循环经济3R原则优先顺序的理论探讨[J].环境保护科学.2006(2)
    [111]罗伟其.信息系统层次结构与系统集成的关系结构模型[J].计算机科学. 2002(7)
    [112] Michael D Meyer, Eric J Miller. Analytical Transportation Planning[M]. America, 2001
    [113]向东,段广洪,汪劲松.产品绿色度评价基准选择研究[C].第一届国际机械工程学术会议论文集. 2000
    [114] Zhang Qingshan, Xu Wei, Wu Hua. A comprehensive method of optimizing Greenproduct for manufacturing industry based on imformation entropy. The 13th InternationalConference on Industrial Engineering and Engineering Management. 2006(8):1594-1598
    [115] Qingshan Zhang, Wei Xu. The research on System for Green Manufacturing Assessment.Chinese Business Review. 2005, 4(4): 22-26
    [116] Qingshan Zhang, Wei Xu, Luping Zhang. The Research on Comprehensive Appraisalsystem for Green Products. 2005 International Seminar of Management Science andEngineering. 2005(10)
    [117] Xu Jian. Manufacturing industry green product appraisal system based on product lfiecycle. The Sixth Wuhan International Conference on E-Business-Innovation Managementtrack. 2007(5):3284-3290
    [118]张仕荣.世界能源技术的三次革命与中国国际地位的变迁[J].内蒙古大学学报.2008(3):80~85
    [119]弗?恩格斯,中共中央马克思恩格斯列宁斯大林著作编译局.英国工人阶级状况[M].北京:人民出版社,1956:87.
    [120]爱杰么么,Fly you.八大公害事件[EB/OL].(2011-02).http://baike.baidu.com/view/268835.htm.
    [121]高德步.英国的工业革命与工业化——制度变迁与劳动力转移[M].北京:中国人民大学出版社,2006(5):110, 113~114.
    [122]张隆高,张晖,张农.美国企业史[M].辽宁:东北财经大学出版社,2005(8): 92,124.
    [123]韦洪莲.生命周期影响评价的3F综合分析法及其应用[D].北京:北京大学,2000:24-27
    [124] Hendrickson, C. T.; Lave, L. B.; Matthews, H. S. Environmental Life-CycleAssessment of Goods and Services: An Input-Output Approach; Resources for theFuture: Washington, D.C., 2006
    [125] Lave, L. B.; Cobas-Flores, E.; Hendrickson, C. T.; McMichael, F.C. Using input-outputanalysis to estimate economy-wide discharges. Environ. Sci. Technol. 1995, 29 (9),420A-426A.
    [126] Nakamura, S.; Kondo, Y. Input-output analysis of waste management. J. Ind. Ecol.2002: 6: 39-64
    [127] Baumann H, Ekvall T, Rydberg T, et al. Aggregation and operative units for impactAnalysis in Environmental Life Cycle Assessment (LCA) of products. SETAC Workshopon LCA, Leiden. 1991: 87-94
    [128] J. Guinée, R. Heijungs. A proposal for the definition of resource equivalency factors foruse in product Life-Cycle Assessment. Environental Toxicology Chemistry, 1995, 14(5):917-925
    [129] Fava J, Denison R, Dickson K, et al. A conceptual framework for Life Cycle ImpactAssessment. SETAC, Pensacola, Florida. 1993
    [130] J. Guinée, R. Heijungs. A proposal for the definition of resource equivalency factors foruse in product Life-Cycle Assessment. Environental Toxicology Chemistry, 1995, 14 (5):917-925
    [131] Fava J, Denison R, Dickson K, et al. A conceptual framework for Life Cycle ImpactAssessment. SETAC, Pensacola, Florida. 1993
    [132] L. van Oers, A. de Koning, J.B. Guinée, et al. Abiotic resource depletion in LCA.Institute of Environmental Sciences-Leiden University. 2002
    [133] M. Goedkoop, R. Spriensma. The Eco-indicator 99: A damage oriented method for lifecycle Impact assessment methodology report. PRéConsultants, Amersfoort, 2000
    [134] Müller-Wenk, R.. Depletion of Abiotic Resources Weighted on the Base of "Virtual"Impacts of Lower Grade Deposits in Future. University of St. Gallen, Germany, 1998
    [135] G?ran Finnveden, Per ?stlund. Exergies of natural resources in life-cycle assessment andother applications. Energy. 1997, 22(9): 923-931
    [136]高峰.生命周期评价研究及其在中国镁工业中应用[D].北京:北京工业大学,2008(3):17-22
    [137]熊文强,郭孝菊,洪卫.绿色环保与清洁生产概论[M].北京:化学工业出版社,2003:1-20.
    [138] Contribution of Working GroupⅠto the Fourth Assessment Report of the IPCC. IPCCFourth Assessment Report Climate-Change 2007: the Physical Scientific Basis.Cambridge University Press,UK,2007.
    [139] WMO(World Meteorological Orgnization ). Scientific assessment of ozon depletion:1998. Global Ozone Research and monitoring Project-Report No44. Geneva, Swizerland,1999.
    [140] WMO(World Meteorological Orgnization ). Scientific assessment of ozon depletion:2002. Global Ozone Research and monitoring Project-Report No44. Geneva, Swizerland,2003.
    [141] Hauschild M and Wenzel H.Environmental Assessment of products, Volume 2:Scientific background. London: Champman&Hall. 1998
    [142] Andersson-Skold Y, Grennfelt P and Pleijel K. Photochemical ozone creation potentials:a study of different concepts. J.air Waste Manage. Assoc.1992, 42(9):1152-1158
    [143] Derwent RG, Jenkin ME and Saunders SM. Photochemical Ozone creations Potentialsfor a Large Number of Reactive Hydrocarbons under European Conditions. AtmosphericEnvironment. 1992, 42(9):1152-1158
    [144] Derwent RG, Jenkin ME and Saunders SM. Photochemical Ozone creations Potentialsfor a Large Number of Reactive Hydrocarbons under European Conditions. AtmosphericEnvironment. 1996, 30(2):181-199
    [145] Derwent RG, Jenkin ME and Saunders SM. Photochemical Ozone creations Potentialsfor a Large Number of Reactive Hydrocarbons under European Conditions. AtmosphericEnvironment. 1998, 32:2429-2441
    [146] JenkinME and HaymanGD. Photochemical ozone creation potentials for oxygenatedvolatile organic compounds: sensitivity to variations in kinetic and mechanisticparameters.
    [147] Carter WPL. Development of Ozone Reactivity Scales for Volatile Organic CompoundsJounral of Air & Waste Management association. 1994, 44:881-899.
    [148] William P.L.Carter, John A.Piece, Dongmin Luo and Irina L.Malkina. Envrionmentalchamber study of maximum incremental reactivities of volatile organic compounds.Atmospheric Environment. 1995, 29(18): 2499-2512.
    [149] Carter WPL. Estimations of upper limit maxmum incremental reactivities of VOCs.Report to alifonria Air Resources Board Reactivity Research Advisory Committee, 1997.
    [150] Qiao, Min ; Zheng, Yuan-Ming ; Zhu, Yong-Guan. Material flow analysis of phosphorusthrough food consumption in two megacities in northern China[J]. Chemosphere. 2011
    [151] da Silva, A.A.M; Arruti.E. Material flow and mechanical behaviour of dissimilarAA2024-T3 and AA7075-T6 aluminium alloys friction stir welds[J]. Materials andDesign. 2011, 32(4): 2021-2027
    [152] Park, Jeong-A; Hong, Seok-Jin; Kim, Ik; Lee, Ji-Yong; Hur, Tak. Dynamic material flowanalysis of steel resources in Korea[J]. Resources, Conservation and Recycling.2011(4):456-462
    [153] Kanianskia, Radoslava1 ; Gu?tafiková, Tatiana1. Material flow and life cycle analysis ofagricultural biomass in Slovakia[C]. 2010 2nd International Conference on Chemical,Biological and Environmental Engineering, Proceedings. 2010:238-241
    [154]刘志峰,夏链,刘光复.基于知识的“绿色”产品评价系统建立初探[J].轻工机械.1997(4): 13-19
    [155]刘志峰,许永华,刘学平.绿色评价方法研究[J].中国机械工程. 2000, 11(9): 13-19
    [156] Zhang Qingshan, Xu Wei, Wu Hua. A comprehensive method of optimizing Greenproduct for manufacturing industry on information entropy[C]. The 13th InternationalConference on Industrial Engineering and Engineering Management. 2006(8): 1594-1598
    [157]刘志峰.绿色产品综合评价及模糊物元分析方法研究[D].合肥工业大学. 2004(3):53-59
    [158]陈鸿起,汪妮,申毅荣,解建仓.基于欧式贴近度的模糊物元模型在水安全评价中的应用[J].西安理工大学学报. 2007, 23(1): 37-42
    [159]魏权龄,刘起运,胡显佑.数量经济学(第二版)[M].北京:中国人民大学出版社.2007(9): 183-190
    [160]林驰.桥梁生命周期环境影响评价及其应用研究[D].武汉:武汉理工大学.2007(11): 37-43.
    [161]杨建新.产品生命周期评价方法及应用[M].北京,气象出版社. 2002(6): 96-97
    [162]于利伟.基于目标距离原理的产品生命周期影响评价方法研究[D].山东:山东大学. 2009(5): 29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700