用户名: 密码: 验证码:
循环流化床锅炉选择性排渣冷却系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型CFB锅炉技术的发展十分迅猛,技术已较为成熟,且已成为我国劣质燃料高效清洁利用的主要途径。然而在大容量化、高参数化的发展和应用过程中仍然存在一些问题,其中以底渣系统故障、底渣热量回收利用问题和炉内受热面磨损问题最为突出,严重制约了我国CFB锅炉的可用率和运行可靠性。出现这些问题的本质是我国CFB锅炉在大量燃用劣质燃料后炉内床料粒度分布大大偏离了设计值,影响锅炉的正常运行。而调节炉内床料粒度分布最有效、最直接、最灵活的方式恰为通过选择性排渣来实现。因此,在研究CFB锅炉床料粒度分布的形成机理及其调节优化方法的基础上,研发新一代的冷渣器和排渣装置,以及探讨底渣热量回收系统的经济性、冷却能力和回收效率等问题,有非常重要的意义。
     为此,本文首先从理论上探讨了CFB锅炉炉内床料粒度分布的形成机理及其调节方法,并研究了锅炉底渣热量回收利用的冷却能力、经济性等相关问题。其次针对现有底渣系统存在的问题提出了对宽筛分底渣进行分选并按粒径分级冷却的思路,开发出了带颗粒粒径分选思想的流化床冷渣器系列专利及与之配套的相关专利技术。然后分别对所提出的专利技术“排渣分选装置”和“复合式冷渣装置”进行了可行性研究。最后对复合式冷渣装置进行了半工业的冷态试验和工业应用研究。本文的主要研究内容及创新点是:
     ①通过建模研究了选择性排渣和排循环灰对炉内床料粒度分布的调节作用
     探讨了CFB锅炉炉内床料粒度分布的形成机理及其发生变化后产生的影响,并通过分析总结得出采用选择性排渣是调节炉内床料粒度分布最佳的方法。之后通过建立的物料平衡一维静态模型分别对不回收、回收底渣细颗粒和排放循环灰三种工况进行了计算,计算结果表明,选择性排渣和排放循环灰对炉内床料粒度分布的调节作用恰好相反,选择性排渣可以使得炉内床料粒度变细,而排放循环灰将使炉内床料粒度变粗。
     ②首次系统地研究了底渣热量回收时的能力限制、对机组经济性的影响等问题
     建立了分别采用纯水冷式“滚筒冷渣器”和风水联合冷却式“流化床冷渣器”两种不同底渣冷却方式回收底渣物理热时对机组热经济性的影响模型。选取了三种具有代表性的不同容量等级的CFB锅炉凝汽式发电机组(150MWe、300MWe、600MWe)作为研究对象,在定功率条件下采用热平衡法计算得出了不种底渣热量回收方式时的机组热经济性指标,并对结果进行了对比分析。此外,详细探讨了不同热量回收方式的底渣余热回收效率问题、不同冷却介质的冷却能力问题及适宜的风水冷比例问题等,并给出了相关意见建议。
     ③首次提出了一种在顺利排放底渣同时能实现底渣粗细分选的排渣分选装置针对具有自主知识产权的“一种排渣分选装置”进行了冷模试验研究,验证了技术可行性,并对该装置内的气固流动特性尤其是排渣分选特性进行了试验研究,得到了流化风速、分选隔墙高度、初始床料粒径分布等因素对分选效果的影响,以及颗粒分选效果较好时分选室与主床间的风速匹配关系。
     ④首次提出了对宽筛分底渣进行分选并按粒径分级冷却的新思路根据对宽筛分底渣按粒径分级冷却的思路,开发出了带颗粒粒径分选思想的流化床冷渣器系列专利,包括“复合式冷渣装置”、“双分选式流化床冷渣器”、“双喷动床流化床冷渣器及与之配套的回风系统”等,同时开发了多种与之配套的专利技术,均获得了我国国家发明或实用新型专利授权。
     针对复合式流化床冷渣器的研发,首先通过小型试验台的冷模试验和数值模拟研究验证了结构设计和技术的可行性;然后在一半工业试验台上针对复合式流化床冷渣器的分选特性和回灰特性进行了冷态试验研究;最后在试验研究的基础上设计了出力分别为15t/h和30t/h的复合式流化床冷渣器,并先后在攀枝花某150MWe CFB锅炉机组和安徽某300MWe CFB锅炉机组上进行工业示范验证和应用研究。工业应用结果表明复合式流化床冷渣器粗细颗粒分选分离效果明显、底渣颗粒粒度适应性和流动性较好、冷却能力较强,各项参数能够达到设计要求。复合式流化床冷渣器可作为未来大型CFB锅炉冷渣器的发展方向之一。
The large-scale circulating fluidized bed (CFB) boiler technology has been rapidlydeveloped and more mature in recent years, and becomes the main way to achieve thehigh efficiency and clean utilization on the low grade fuel in China. However, there areseveral problems during the large-scale process of development and application. Thefunctional failure of the bottom ash treatment system, the bottom ash heat recovery andthe abrasion of heating surface in furnace are the three most prominent problems, whichseverely restrict the availability factor and operational reliability of CFB boilers. Theessence of the problems is that the particle size distribution (PSD) of bed materialdeviates the scope of design after the boiler combusting a great amount of low gradefuel. Moreover, the selective discharging on bottom ash is the most efficient, direct andflexible way to regulate the PSD of bed material. Consequently, based on studying theformation mechanism and regulating method of the bed material PSD in CFB boilers,it’s very important to develop a new fluidized bed bottom ash cooler or dischargingdevice and investigate the thermal economy, cooling capacity and recovery efficiency ofthe bottom ash heat recovery system.
     In the present work, the formation mechanism and regulating method of the bedmaterial PSD was firstly discussed. Then the thermal economy, cooling capacity andrecovery efficiency of the bottom ash heat recovery system were studied. Furthermore,the thinking of particle separation and stepped cooling for the wide distribution bottomash was introduced, and a series of invention patents about fluidized bed bottom ashcooler and matching technologies were applied. Finally, the technical feasibility of theselective ash discharging device (SAD) and the compound fluidized bed ash cooler(CFBAC) were investigated, as well as the experimental study and application of theCFBAC. The main works and innovations can be list as follows:
     ①Modeling study on the regulating effect of the selective discharging of bottomash and exhausting the circulating material on the PSD of the bed material
     It was concluded that the selective discharging ash was the best method to regulatethe PSD by analyzing the formation mechanism and regulating method of the bedmaterial. Based on the one-dimensional static model established for the mass balance ofa CFB boiler, three conditions (unreturning the fine particles in the bottom ash,returning the fine particles and dishcharging the circulating material) were calculated. The results indicated that selective discharging on bottom ash and exhausting thecirculating material have just the opposite regulating effects.
     ②Systemic research on the thermal economy, cooling capacity and recoveryefficiency of the bottom ash heat recovery system
     The unit thermal economic indicators of three CFB power plants in China (150MWe,300MWe and600MWe) were derived based on heat balance calculation andanalysis on the principled thermal system in turbine heat acceptance condition, takingthe influence of two different bottom ash heat recovery modes into account. In addition,the heat recovery efficiencies of different recovery modes, the cooling capacities ofdifferent cooling medium and the proper proportion of water and air were investigated,and some related suggestions have been made.
     ③Experiment study on a selective bottom ash discharging device for CFB boilers
     The selective bottom ash discharging device can be used to achieve the selectivedischarge on the bottom ash. Through the experiments about the gas-solid flowcharacteristics conducted in a visible cold test rig, it was concluded that fluidzingvelocity, separation partition height, initial PSD of the test bed material could influencethe separation effect. The fluidizing velocity matching relationship of main bed andseparation chamber was also obtained.
     ④Development of the particle separation and stepped cooling thinking for thewide distribution bottom ash
     A series of patent technologies about fluidized bed ash cooler with the thinking ofparticle separation and stepped cooling were applied, such as “CFBAC”,“doubleseparating fluidized bed ash cooler” and “double spouted-bed fluidized bed ash coolerand its return air system”. Especially, for developing the CFBAC, experimental studyand numerical simulation about the gas-solid flow characteristics were conducted in asmall scale visible cold test bed and a semi-industrial cold test rig, respectively.According to the experiment results, the CFBACs were industrially applied in a150MWe CFB unit and a300MWe CFB unit, respectively. The application results showedthat the CFBAC had a well separation effect, an excellent adaptability on particle sizeand a strong cooling capacity, all parameters could meet the design requirements. TheCFBAC could be one direction of the future CFB boiler bottom ash cooler.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]能源科学学科发展战略研究组.2011~2020年我国能源科学学科发展战略报告[R].北京:中国科学院国家自然科学基金委员会,2011.
    [3] Enerdata.Global Energy Statistical Yearbook2011[EB/OL].http://yearbook.enerdata.net/2010-energy-consumption-data.html,2012-3-12.
    [4]李瑞忠,郗凤云,杨宁,等.2010年世界能源供需分析——《BP世界能源统计2011》解读[J].当代石油化工,2011(7):30-37.
    [5]中华人民共和国国务院.国家中长期科学与技术发展规划纲要[EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006-02-09.
    [6]徐良才,郭英海,公衍伟,等.浅淡中国主要能源利用现状及未来能源发展趋势[J].能源技术与管理,2010(3):155-157.
    [7]国际能源署(IEA).中国洁净煤战略(中文版)[M].法国巴黎:国际能源署图书,2009.
    [8]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社,2004.
    [9]岳光溪.循环流化床燃煤技术在我国的发展与前景[J].电力设备,2008,9(5):104-106.
    [10]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].北京:中国水利水电出版社,2004.
    [11]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    [12]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.
    [13] Steve.Integration of the Benson Vertical OUT technology and the compact CFB boiler
    [C].Orlando,Florida:2000.
    [14] Wen-Ching Y. Fluidization, Solids Handling, and Processing—Industrial Applications
    [M].USA:Noyes Publications,1998.
    [15] Basu P.,A Fraser S..Circulating Fluidized Bed Boiler-Design and Operations [M].USA:Butterwoths-Heinemann-Reed Publishing,1991.
    [16]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论、设计与运行[M].北京:中国电力出版社,1997.
    [17]刘柏谦,王立刚.大型循环流化床锅炉及化石燃料燃烧[M].北京:冶金工业出版社,2009.
    [18]裴晓东,张人伟,杜高举,等.煤矸石的综合利用技术探讨[J].煤矿安全,2008(9):99-101.
    [19]张月军,张桂英,胡亦工.煤泥、煤矸石混烧在循环流化床锅炉中的应用[J].能源技术,2007,28(3):189-193.
    [20]骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [21]行业报告:世界火电设备发展态势分析[EB/OL].http://ccn.mofcom.gov.cn/spbg/show.php?id=4742&ids=%BB%FA%D0%B5%B5%E7%D7%D3,2006-11-02.
    [22]马驰,施涵.中国能源领域若干重大科技进展(之三)——国产循环流化床锅炉的大型[J].能源研究与利用,2002(3):4-7.
    [23] Johnsson F.,Leckner B..Vertical distribution of solids in a CFB-furnace[C].Proceedings of the13th International Conference on Fluidized Bed Combustion,USA:Orlando,1995.
    [24] Belin F..Update of operating experience of B&W IR-CFB coal-fired boilers[C].Proceedings ofthe15th International Conference on Fluidized Bed Combustion,New York:ASME,1999.
    [25] Nowak W..Design and operation experience of230MWe CFB boiler at Turow Power Plant inPoland[C].Proceedings of the15th International Conference on Fluidized Bed Combustion,New York:ASME,1999.
    [26] Belin F.,Maryamchik M.,Walker D. J.,et al.The Babcock and Wilcox CFB boilers-designand experience[C].Proceedings of the16th International Conference on Fluidized BedCombustion,New York:ASME,2001.
    [27] Kandassamy K., Natarajan E., Renganarayanan S.. Producer Gas CleaningTechniques[C]. Proceedings of the17th International Conference on Fluidized BedCombustion,USA:Florida,2003.
    [28] Huenchen H.,Pahcmayer L.,Malerius O..Design and commissioning of the largest and thesmallest fluidized bed incinerator ever built by Lurgi[C].Proceedings of the17th InternationalConference on Fluidized Bed Combustion,USA:Florida,2003.
    [29] Thierry L. G.. Fuel flexibility and petroleum coke combustion at Provence250MWeCFB[C].Proceedings of the17th International Conference on Fluidized Bed Combustion,USA:Florida,2003.
    [30] Glen J.,Greg L.,Nsakala ya N.,et al.An Alstom vision of future CFB technology based powerplant concepts[C]. Proceedings of the18th International Conference on Fluidized BedCombustion,Canada:Toronto,2005.
    [31] Goidich S. J.,Hyppanen T.,Kauppinen K..CFB boiler design and operation using theINTREXTM heat exchanger[C].Proceedings of the6th International Conference on CirculatingFluidized Beds,Germay:Wurzburg,1999.
    [32] Nowak W..Clean coal fluidized bed technology in Poland[J].Applied Energy,2003(74):130-134.
    [33] Werther J.. Fluid dynamics, temperature and concentration fields in large-scale CFBcombustors[C].Proceedings of the8th International Conference on Circulating Fluidized Beds,China:Hangzhou,2005.
    [34] Ven l ìnen I.,Psik R..460MWe supercritical CFB boiler design for Lagisza power plant[C].Presented at PowerGen Europe Cologen,Vienna,Austria,2006.
    [35] Jantti T.,Sundqvist K.,Psik R..Lagisza460MWe superctitical CFB-design, start-up and initialoperation experience[C].Presented at PowerGen Europe Cologen,Germany,2009.
    [36] Gauvillé P.,Semedard J.-C.,Darling S..Experience from the300MWe CFB demonstrationplant in China[C].Proceedings of the20th International Conference on Fluidized BedCombustion,China:Xi’an,2009.
    [37] James Utt,Arto Hotta,Stephen Goidich.Utility CFB goes “Supercritical”-Foster Wheeler’sLagisza460MWe operating experience and600-800MWe Designs[C].Proceedings of theCoal-Gen Conference&Exhibition, North Carolina, USA,2009. Or:http://www.fwci.com/publications/tech_papers/files/TP_CFB_09_12.pdf,2009-8-19.
    [38] Jantti T.,Lampenius H.,Russkanen M.,et al.Supercritical OTU CFB projects–Lagisza460MWe and Novocherkasskaya330MWe[EB/OL].http://www.fwci.com/publications/tech_papers/files/TP_CFB_09_10.pdf,2009-4-28.
    [39] F.W. Global Power Group. Samcheok green power project-A new era in clean coaltechnology[EB/OL]. http://www.fwc.com/publications/pdf/FactSheets/Samcheok_Modified_071111.pdf,2011-11-30.
    [40]《四川白马300MW循环流化床示范工程总结》编委会.四川白马300MW循环流化床示范工程总结[M].北京:中国电力出版社,2007.
    [41]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术,2002,33(7):1-6.
    [42]刘德昌,吴正舜,张世红,等.我国循环流化床锅炉的发展现状及建议[J].动力工程,2003,23(3):2377-79.
    [43]吕俊复,岳光溪.水冷异型分离循环流化床燃烧技术[J].洁净煤技术,1998,4(4):31-35.
    [44]钟辉,王晓严.循环流化床燃烧技术的发展[J].发电设备,2005,19(2):130-134.
    [45]牛天况,顾凯棣,朱国桢,等.上海锅炉厂有限公司循环流化床锅炉技术发展的现状[J].锅炉技术,2000,31(6):1-6.
    [46]于龙.哈锅循环流化床锅炉的发展历程[J].锅炉制造,2005(3):1-2.
    [47] Yue G. X.,Yang H. R.,Lu J. F.,et al.Latest development of CFB boilers in China[C].Proceedings of the20th International Conference on Fluidized Bed Combustion,China:Xi’an,2009.
    [48] Guo Q.,Zheng X. S.,Zhou Q.,et al.Operation experience and performance of the first300MWe CFB boiler developed by DBC in China[C].Proceedings of the20th InternationalConference on Fluidized Bed Combustion,China:Xi’an,2009.
    [49]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电,2004,33(9):1-3.
    [50]李建锋,郝继红,吕俊复,等.中国300MWe级循环流化床锅炉机组运行现状分析[J].锅炉技术,2010,41(5):37-41.
    [51]李晶晶,吕俊复,米子德.300MWe等级循环流化床电站锅炉技术特点[J].电站系统工程,2010,26(6):1-4.
    [52]潘昕,孟洛伟,江建忠.东锅自主开发型300MW循环流化床锅炉运行分析及完善[J].电力建设,2010,31(5):108-110.
    [53]张立新,杜海涛.300MW等级新型循环流化床锅炉介绍[J].锅炉制造,2011(1):25-27.
    [54]马怀新.从国情出发,适应节能减排大势,自主创新研发我国超临界600MWe循环流化床锅炉[C].循环流化床锅炉技术2010年会论文集,长沙,2010,1-5.
    [55] Ommen J. R.,Schaaf J.,Schouten J. C.,et al.Optimal placement of probes for dynamicpressure measurements in large-scale fluidized beds[J].Powder Technology,2004,139(3):264-276.
    [56] Lundqvist R. G.. Designing Large-scale Circulating Fluidized Bed Boilers[J]. PowderTechnology,2003,83(10):41-47.
    [57] Victor A. S.,Werner F.,Peter G.,et al.Ukraine's first large-scale CFB200MWE anthracitefired Starobeshevo Power Plant[C].Proceedings of the18th International Conference onFluidized Bed Combustion,Toronto,Canada,2005,65-74.
    [58] David P.,Filip J..Macroscopic modelling of fluid dynamics in large-scale circulating fluidizedbeds[J].Progress in Energy and Combustion Science,2006,32(5-6):539-569.
    [59]陈继辉.大型CFB锅炉气固流动若干关键性技术研究[D].重庆:重庆大学博士学位论文,2008.
    [60]熊天柱,田子平,李俊,等.循环流化床锅炉的大型化[J].锅炉技术,2004,35(2):1-6.
    [61]樊旭,张炳,赵泽光.循环流化床大型化若干问题及解决方案的优劣比较[J].锅炉制造,2004(4):32-33.
    [62] Zhang J. Q.,Jones W. F.,Lau I. T.,et al.Effects of fuel type and operating conditions on SO2emission in fluidized bed combustion[J].Canadian Journal of Chemical Engineering,1992,70(5):998-1007.
    [63] Desroches D. E.,Dolignier J. C.,Marty E.,et al.Modeling of gaseous pollutants emissions incirculating fluidized bed combustion of municipal refuse[J].Fuel,1998,77(13):1399-1410.
    [64]曾庭华,方健,刘义,等.300MW循环流化床锅炉深度脱硫的实践[C].循环流化床锅炉技术2010年会论文集,长沙,2010:81-86.
    [65]陈继辉,卢啸风,刘汉周.城市生活垃圾循环流化床处理技术的研究进展[J].燃烧科学与技术,2006,12(5):473-479.
    [66] Collings M. E.,Mann M. D.,Young B. C..Effect of coal rank and circulating fluidized bedoperating parameters on Nitrous oxide emissions[J].Energy&Fuels,1993,7(4):554-558.
    [67] Leckner B.,Amand L-E,Lucke K,et al.Gaseous emissions from co-combustion of sewagesludge and coal/wood in a fluidized bed[J].Fuel,2004(83):477-486.
    [68] Cook J.,Beyea J..Bioenergy in the United States: progress and possibilities[J].Biomass andBio-energy,2000,18(6):441.
    [69] Mandal K. G.,Saha K. P.,Ghosh P. K.,et al.Bio-energy and economic analysis ofsoybean-based crop production systems in central India[J].Biomass and Bio-energy,2002,23(5):337-345.
    [70] Consonni S.,Giugliano M.,Grosso M..Alternative strategies for energy recovery frommunicipal solid waste: Part B: Emission and cost estimates[J].Waste Management,2005,25(2):137-148.
    [71] Chen J. H.,Lu X. F..Progress of petroleum coke combusting in circulating fluidized bed boilers–A review and future perspectives[J].Resources, Conservation and Recycling,2007,49(3):203-216.
    [72] Jia L.,Anthony E. J.,Charland JP.Investigation of vanadium compounds in ashes from aCFBC firing100%petroleum coke[J].Energy&Fuels,2002,16(2):397-403.
    [73]王文龙,施正伦,骆仲泱,等.流化床脱硫灰渣的特性与综合利用研究[J].电站系统工程,2002,18(5):19-21.
    [74]孟洛伟.大型循环流化床锅炉降低厂用电率的措施[J].节能技术,2007,25(1):90-93.
    [75]苏建民.基于流态重构的循环流化床锅炉节能燃烧技术的应用实践[J].动力工程学报,2011,31(3):170-175.
    [76] Carrea E.,Scavizzi G. C.,Barsin J. A..Dry bottom ash removal-ash cooling vs. Boilerefficiency effects[C].Presented to the International Joint Power Generation Conference inBaltimore,MD,1998.
    [77]舒茂龙,陈继辉,卢啸风,等.大型CFB锅炉流化床冷渣器技术探讨[J].电站系统工程,2007,23(2):29-31.
    [78]郭涛.410t/h CFB锅炉选择性流化床冷渣器气固流动特性冷态试验研究与数值模拟[D].重庆:重庆大学硕士学位论文,2006.
    [79] Yue G. X., Lu J. F., Zhang H., et al. Design theory of circulating fluidized bedboilers[C].Proceedings of the18th International Conference on Fluidized Bed Combustion,Toronto,Canada,2005.
    [80]蒋敏华,肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009:256-270.
    [81]吴文超.大型循环流化床锅炉冷渣器的选型[J].电力设备,2007(8):64-67.
    [82]马立慧.循环流化床锅炉冷渣器的选型[J].河北电力技术,2005(6):26-28.
    [83]程真何,刘义成,李桂.负压式超强钢带冷渣器在循环流化床锅炉中的应用[J].电力设备,2005,6(2):43-47.
    [84]孙即涛,张勇,王京波,等.大型CFB锅炉采用滚筒冷渣机的运行效果分析[J].电站系统工程,2006,22(1):56-58.
    [85]刘远超,尹洪超,刘建平.循环流化床锅炉滚筒式冷渣器冷态及热态特性试验研究[J].电站系统工程,2006,22(5):35-38.
    [86] Wang Wei,Si Xiaodong,Yang Hairui,et al.Heat-transfer model of the rotary ash cooler usedin circulating fluidized-bed boilers[J].Energy Fuels,2010,24(4):2570-75.
    [87]李金晶,王巍,杨石,等.滚筒冷渣器传热特性的试验研究[J].电站系统工程,2009,25(1):11-13.
    [88] Zeng B.,Lu X. F.,Liu H. Z..Industrial Application Study on New-type Mixed-flow FluidizedBed Bottom Ash Cooler[C].Proceedings of the20th International Conference on Fluidized BedCombustion,Xi’an,China,2009.
    [89] Butler J. J.,Mohn N. C.,Semedard J. C.,et al.CFB technology:can the original clean coaltechnology continue to compete[C].Power Gen International Conference,Nevada:USA,2005.
    [90] Nowak W..Design and operation experience of230MWe CFB boilers at Turow power plant inPoland[C].Proceedings of the15th International Conference on Fluidized Bed Combustion,ASME,New York,1999.
    [91]肖平,郭涛,徐正泉,等.大容量流化床式冷渣器的开发与运行性能研究[J].中国电机工程学报,2009,29(S):113-117.
    [92] Lu X. F.,Li Y. L..A Cold Model Experimental Study on the Flow Characteristics of BedMaterial in a Fluidized Bed Bottom Ash Cooler in a CFB Boiler[J].Journal of ThermalScience,2000,9(4):381-384.
    [93] Guo T.,Lu X. F.,Liu H. Z.,et al.Cold Model Experiments and Numerical Simulation on aSelective Fluidized Bed Bottom Ash Cooler in a410t/h CFB Boiler[C].Proceedings of the19thInternational Conference on Fluidized Bed Combustion,Vienna,Austria,2006.
    [94]舒茂龙.大型循环流化床锅炉混流式流化床冷渣器研制[D].重庆:重庆大学硕士学位论文,2007.
    [95]李永茂.37t/h风水联合冷渣器在300MW CFB锅炉的应用[J].热力发电,2011,40(6):85-88.
    [96]肖峰.循环流化床底渣冷却方法[P].中国,ZL200910054142.5,2009-12-9.
    [97]肖峰,王冬福,李炳顺,等.上锅循环流化床锅炉业绩和技术特点[C].循环流化床锅炉技术2010年会论文集,长沙,2010:167-175.
    [98]施正伦,王勤辉,程乐鸣,等.兼具冷却和细灰分选功能的冷渣器设计及应用[J].电站系统工程,2000,16(6):326-329.
    [99]程乐鸣,王勤辉,骆仲泱,等.流化移动叠置式冷渣器的发展与运行经验[J].动力工程,2000,20(6):974-979.
    [100]叶科.流化床冷渣器流化特性的研究[D].北京:清华大学硕士学位论文,2006.
    [101]张森.大型循环流化床锅炉冷渣器研发[D].北京:华北电力大学硕士学位论文,2009.
    [102]邓学志,黄长军.筛选式流化床冷渣器[P].中国,ZL200520098802.7,2005-11-17.
    [103]阮奕绍.一种组合式流化床冷渣器[P].中国,ZL200910105021.9,2009-1-13.
    [104]周一工,邱智威,居慧敏.流化床风水联合冷渣器[P].中国,ZL200420036974.7,2004-6-30.
    [105]司小东,吕俊复,杨海瑞,等.一种循环流化床锅炉底渣冷却系统[P].中国,ZL201010287485.9,2010-9-19.
    [106]王勤辉,徐志,刘彦鹏,等.流化床锅炉燃烧中煤颗粒粒径对灰渣形成特性影响试验研究[J].热力发电,2011,40(10):17-20.
    [107]杨海瑞,岳光溪,王宇,等.循环流化床锅炉物料平衡分析[J].热能动力工程,2005,20(3):291-295.
    [108]杨海瑞.循环流化床锅炉物料平衡研究[D].北京:清华大学博士学位论文,2003.
    [109]王进伟,赵新木,李少华,等.循环流化床锅炉煤灰成分对其磨耗特性的影响[J].化工学报,2007,58(3):739-743.
    [110]吕俊复,杨海瑞,张建胜,等.流化床燃烧煤的成灰磨耗特性[J].燃烧科学与技术,2003,9(1):1-5.
    [111]李海明,杨海瑞.煤的成灰磨耗特性对循环流化床内物料平衡的影响[J].煤炭转化,2004,27(1):36-39.
    [112] Yue G. X.,Wang L.,Li Y.,et al.Ash size formation characteristics in CFB coalcombustion[C]. Proceedings of the12th International Conference on Fluidized BedCombustion,1993:110-115.
    [113]华玉龙.循环流化床锅炉流动、传热和燃烧模型[D].武汉:华中科技大学博士学位论文,2005.
    [114]杨海瑞,吕俊复,岳光溪.循环流化床锅炉的设计理论与设计参数的确定[J].动力工程,2006,26(1):42-48.
    [115]杨石,杨海瑞,吕俊复,等.新一代节能型循环流化床锅炉燃烧技术[J].动力工程,2009,29(8):728-732.
    [116]杨海瑞,岳光溪,吕俊复,等.低床压降循环流化床锅炉燃烧工艺方法[P].中国,ZL200710176731.1,2009-5-27.
    [117] Werther J.,Reppenhagen J..Catalyst attrition in fluidized-bed systems[J].AIChE Journal,1999,45(9):2001-10.
    [118] Redemann K.,Hargte E.-U.,Werther J..A particle population balancing model for acirculating fluidized bed combustion system[J].Powder Technology,2009(191):78-90.
    [119] Kono K..Attrition rates of relatively coarse solid particles in various types of fluidizedbeds[J].AIChE Symposium Series,1981,77(205):96-106.
    [120] Tang Z.,Lu J. F.,Cao Y..A simple method to investigate the ash size distribution and itsattrition[C].Proceedings of the5th International Conference on Measurement and Control ofGranular Materials,Xi’an,China,2000:118-122.
    [121]杨金华.高温旋风分离器中心管的改进与问题探讨[J].工业锅炉,1998,29(4):16.
    [122] Muschelknautz U.,Muschelknautz E..Special design of inserts and short entrance ducts torecirculating cyclones[A]. Circulating Fluidized Bed Technology V,Beijing,China:SciencePress,1997,597-602.
    [123]白玉刚,吕俊复,岳光溪,等.入口带有加速段方形分离器结构优化的试验研究[J].中国粉体技术,1999,5(6):1-4.
    [124] Kaan Y.. Optimisation using prediction models: air cyclones’ body diameter/pressuredrop[J].Filtration&Separation,2005,42(10):32-35.
    [125] Lim K. S.,Kim H. S.,Lee K. W..Characteristics of the collection efficiency for a cyclonewith different vortex finder shapes[J].Journal of Aerosol Science,2004,35(6):743-754.
    [126] Youngmin J.,Chi T.,Madhumita B. R..Development of a post cyclone to improve theefficiency of reverse flow cyclones[J].Powder Technology,2000,113(1-2):97-108.
    [127]卢啸风,曾兵,舒陈.一种排渣分选装置[P].中国,ZL201010188349.4,2011-12-21.
    [128]李政,倪维斗,张巍,等.循环流化床整体物料平衡通用动态数学模型[J].清华大学学报(自然科学版),1997,37(2):24-27.
    [129]杨晨.大型循环流化床锅炉整体数学模型的建模与仿真方法研究[D].重庆:重庆大学博士学位论文,1999.
    [130]房德山.循环流化床锅炉整体动态数学模型及运行特性分析[D].南京:东南大学博士学位论文,2002.
    [131] Wang Q. H.,Luo Z. Y.,Ni M. J.,et al.Particle population balance model for a circulatingfluidized bed boiler[J].Chemical Engineering Journal,2003,93(2):121-133.
    [132] Yang H. R.,Yue G. X.,Xiao X. B.,et al.1D modeling on the material balance in CFBboiler[J].Chemical Engineering Science,20005,60(20):5603-11.
    [133] Redemann K.,Hartge E.-U.,Werther J..Ash management in circulating fluidized bedcombustors[J].Fuel,2008,87(17-18):3669-80.
    [134]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003,112-133.
    [135] Ergun S..Fluid flow through packed beds[J].Chemical Engineering Progress,1952,48:89-94.
    [136] Kunii D.,Levenspiel O..Fluidization Engineering[M].Washington:Butterworth-Heinemanna division of Reed Publishing(USA),1991:61-106.
    [137] Hannes J. P..Mathematical modeling of circulating fluidized bed combustion[D].DoctorDissertation of RWTH Aachen,Duitsland,1996.
    [138] Johnsson F.,Vrager A.,Leckner B..Solids flow pattern in the exit region of a CFB furnace–influence of exit geometry[C].Proceedings of the15thInternational Conference onFluidized Bed Combustion,Savannah,1999.
    [139] Kwauk M.,Wang N.,Li Y.,et al.Fast fluidization at ICM[M].Circulating Fluidized BedTechnology,Toronto:Pergamon Press,1986,33-62.
    [140]李佑楚,凌学军,王风鸣.快速流化床燃煤分布一维分布两相模型[C].第六届全国流态化会议论文集,武汉,华中科技大学,1993:304-310.
    [141] Haider A.,Levenspiel O..Drag coefficient and terminal velocity of spherical and nonsphericalparticles[J].Powder Technology,1989,58(1):63-70.
    [142] Geldart D.,Cullinan J.,Georghiades S.,et al.The effect of fines on entrainment from gasfluidized beds[J].Transction of Institution of Chemical Engineers,1979,57:269-273.
    [143] Wen C. Y.,Chen L. H..Fluidized bed freeboard phenomena: Entrainment and elutriation[J].AIChE Journal,1982,28(1):117-128.
    [144] Hoffmann A.C,Stein L.E,彭维明,等.旋风分离器:原理、设计和工程应用[M].北京:化学工业出版社,2004:30-40,65-81.
    [145] Overcamp T. J., Mantha S. V.. A simple method of estimating cyclone efficiency[J].Environmental Progress,1998,17(2):77-79.
    [146]唐家毅,卢啸风,赖静,等.循环流化床锅炉旋风分离器入口烟道内气固流动特性的试验研究[J].动力工程,2009,29(4):348-352.
    [147] Merrick D., Highley J.. Particle size reduction and elutriation in a fluidized bedprocess[J].AIChE Symposium Series,1974,70(137):366-378.
    [148]张宁,孙奉仲,丁兴武,等.CFB锅炉水冷排渣余热利用的分析与优化[J].热能动力工程,2006,21(3):311-313.
    [149]刘彦鹏,王勤辉,骆仲泱,等.不同煤种下循环流化床灰渣特性的试验研究[J].锅炉技术,2004,35(3):18-22.
    [150]刘宝森,李正义,姜义道,等.循环流化床锅炉对煤种的适应性及灰平衡与煤种的关系[J].电站系统工程,2000,16(2):71-74.
    [151]贺辉宝,胡南,吕俊复,等.低灰燃料循环流化床锅炉的外加物料河沙粒度分析[J].动力工程学报,2010,30(6):409-413.
    [152]黄中.循环流化床锅炉安全高效运行与环保达标排放关键技术[R].中国资源综合利用协会煤矸石发电分会专题研讨会,重庆,2011-12-22.
    [153]郑体宽.热力发电厂[M].北京:中国电力出版社,2000:217-253.
    [154]李中华,刘建军,柳正军.降低电站锅炉排烟温度新技术研究与应用[J].中国电力,2001,34(1):13-15.
    [155]卢啸风,甘露,曾兵.双喷动床式冷渣器及与之配套的回风系统[P].中国,ZL201110100031.0,2011-7-20.
    [156]黄新元,孙奉仲,史月涛.火电厂热系统增设低压省煤器的节能效果[J].热力发电,2008,37(3):56-58.
    [157]刘建忠,张保生,周俊虎,等.石煤燃烧特性及其类属研究[J].中国电机工程学报,2007,27(29):17-22.
    [158] Zeng B.,Lu X. F.,Liu H. Z..Influence of CFB boiler bottom ash heat recovery mode onthermal economy of units[J].Energy,2010,35(9):3863-3869.
    [159]李默.循环流化床(CFB)锅炉排渣系统故障及处理方法[J].电站系统工程,2009,25(6):45-46.
    [160]薛雷,李峰.CFB锅炉的排渣运行和控制[J].华东电力,2003(4):8-10.
    [161]王晓兵.浅谈风水联合冷渣器及L阀的使用和改进[J].锅炉技术,2006,37(2):64-70.
    [162]吕怀安,徐正泉,马丽锦,等.国产410t/h循环流化床锅炉底灰处理系统技术研究[J].热力发电,2000(3):1-5.
    [163]彭辉,张济宁.流化床二组分混合物的适宜分离气速[J].化学反应工程与工艺,1996,12(3):271-280.
    [164] Bosma J. C.,Hoffmann A. C..On the capacity of continuous powder classification in a gas-fluidized bed with horizontal sieve-like baffles[J].Powder Technology,2003(134):1-15.
    [165] Johnsson F.,Leckner B..Vertical Distribution of Solids in a CFB-Furnace[C]. Proceedings ofthe14th International Conference on Fluidized Bed Combustion, ASME,New York,1995.
    [166] Na Y.,Yan G.,Sun X.,et al.Large and Small Particles in CFB Combustors[C].Pre Printsof International Conference on Circulating Fluidized Beds,Beijing,1996.
    [167]贾永会.流化床分选器的冷态试验研究[D].中国科学院硕士学位论文,2007.
    [168]施正伦,骆仲泱,周劲松,等.流化床垃圾焚烧炉灰渣冷却分选装置分选特性的试验研究[J].动力工程,2000,20(4):745-749.
    [169]施正伦,王勤辉,程乐鸣,等.兼具冷却和细灰分选功能的冷渣器设计及应用[J].电站系统工程,2000,16(6):326-329.
    [170]卢啸风,曾兵,舒茂龙,等.复合式冷渣装置[P].中国,ZL200710092413.7,2010-1-20.
    [171] Daizo K.,Octave L..Fluidization Engineering[M].Washington:Butterworth-Heinemanna division of Reed Publishing(USA),1991:61-106.
    [172] Lim C. J.,Mathur K. B..Modeling of Particle Movement in Spouted Beds[J].Cambri dgeUniversity Press.Cambridge,1978:104-109.
    [173] Kutuoglu E.,Grace J. R..Particle Segretion in Spouted Beds[J].Canada Journal of ChemicalEngineering,1983:308-316.
    [174] Leva M..Elutriation of fines from fluidized system[J].Chemical Engineering Progress,1951(47):39.
    [175] Geldart D..Elutriation[M].in: Davidson J.F.,Clift R.,Harrison D.(Eds.),Fluidization,Academic Press Inc.,London,1985:383-409.
    [176] Wen C.Y., Chen L.H.. Fluidized bed freeboard phenomena: entrainment andelutriation[J].American Institute of Chemical Engineers Journal,1982(28):117-128.
    [177] Pemberton S.T.,Davidson J.F..Elutriation from fluidized beds—I. Particle ejection from thedense phase into the freeboard[J].Chemical Engineering Science,1986,41(2):243-251.
    [178] Santana D.,Rodríguez J.M.,Macías-Machín A..Modelling fluidized bed elutriation of fineparticles[J].Powder Technology,1999(106):110-118.
    [179] Guo T.,Lu X. F.,Liu H. Z.,et al.Cold model experiments and numerical simulation on aselective fluidized bed bottom ash cooler in a410t/h CFB boiler [C].Proceedings of the19thInternational Conference on Fluidized Bed Combustion,Vienna,Austria,2006.
    [180] Lu X. F.,Li Y. L..A cold model experimental study on the flow characteristics of bed materialin a fluidized bed bottom ash cooler in a CFB boiler[J].Journal of Thermal Science,2000,9(4):381-384.
    [181] Zhang M.,Bie R. S.,Xue Q. G..Fluidized bed ash cooler used in a circulating fluidized bedboiler:An experimental study and application[J].Powder Technology,2010,201(2):114-122.
    [182]叶学民,李春曦,樊旭,等.非均等配风下的风水冷选择性冷渣器冷态排渣特性[J].热能动力工程,2005,20(1):73-76.
    [183] Wen C. Y.,Yu Y. H..Mechanics and fluidization[J].Chem Eng Prog Symp Series,1966,62:100~111.
    [184] Syamlal M..The Particle-Particle drag term in a multi-Particle model of fluidization[J].National technical information service. Springfield,VA.1987,DOE/MC/2353~73.
    [185]孙学信.燃煤锅炉燃烧试验技术与方法[M].北京:中国电力出版社,2002:251-265.
    [186]卢啸风,曾兵,王伟林.防卡涩锁气式旋转排渣阀[P].中国,ZL201020589354.1,2011-8-10.
    [187]卢啸风,曾兵,王伟林.一种防堵螺旋排渣机[P].中国,ZL201020534046.9,2011-3-16.
    [188]卢啸风,曾兵,王伟林.高温含尘烟气闸板阀[P].中国,ZL201010285524.1,2012-1-11.
    [189]何川,郭立君.泵与风机[M].北京:中国电力出版社,2008:55-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700