用户名: 密码: 验证码:
小麦族含StH基因组植物的分子系统学及细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Dumortier)是禾本科(Poaceae)植物中一个非常重要的类群。该族约有350-450多个种,广泛分布于世界各地,特别是北半球温带地区。小麦族多年生植物含有Ns、H、P、St, Y、W、E等20多个基本基因组,这些基因组的二倍体供体通过不同天然杂交组合形成了大量的含有不同基因组组成,如StP、StY、StH、StYW、StYP等多倍体植物,进而形成了大约70%-75%的小麦族多倍体物种。其中,具有StH基因组多倍体物种由二倍体的拟鹅观草属植物(St基因组)和二倍体的大麦属植物(H基因组)经异源多倍化形成。这些物种多为草原和草甸的优良牧草,具有较高的经济和生态效益,同时还具有抗寒、抗旱、耐盐碱等特性,以及具有麦类作物缺乏的优良抗病虫害和抗逆基因,是牧草遗传育种和麦类作物遗传改良重要的基因资源。
     具有StH基因组多倍体物种全世界约有20种,分布于全球温带和暖温带地区,生长在草原、山谷、林下、草地边缘等环境中。形态上,含StH基因组的小麦族植物存在每穗节小穗从单小穗(如Elymus caninus L.)到着生2枚小穗(如Elymus sibiricusL.)到着生3枚小穗(如Elymus canadensis L.);颖从狭长(如Elymus elymoides (Raf.) Swezey)到缺失(如Elymus hystrix L.)等一系列形态特征变异。含StH基因组物种拥有两个地理分布区:欧亚大陆和北美。尽管它们含有相同的基因组组成,却表现出不同的形态特征、不同的地理分布和生境。此外,不同学者对StH基因组植物具有不同的分类处理,在小麦族分类历史上,具StH基因组物种的分类处理存在很大的分歧,它们曾被归在披碱草属(Elymus)、猬草属(Hystrix)、裂颖草属(Sitanion)及偃麦草属(Elytrigia)等不同的属中,且许多物种还作为属的模式种处理。因此,不同学者不同的分类处理,使得它们间的关系显得非常复杂,分类处理困难。
     本研究基于多拷贝的细胞核ITS序列、单拷贝的细胞核Accl(plastid acetyl-CoA carboxylase)和DMC1(disrupted meiotic cDNA)基因序列、叶绿体trnL-F以及线粒体CoxII序列的分子系统发育分析,结合胚乳细胞学特征和杂种染色体配对资料,探讨含StH基因组物种的种间系统关系、不同地理分布下植物类群间的系统关系、基因组供体来源、物种形成的母本供体、复制基因的进化动力学、植物类群发生地理分化的生物学理论依据。主要结果如下:
     1.运用nrDNA ITS序列对16个具StH基因组组成的物种及5个拟鹅观草属(St)和3个大麦属(H)的二倍体物种进行了系统发育分析。结果表明:(1)过去归属于裂颖草属的Sitanion jubatum、Sitanion hystrix和猬草属的Hystrix patula与披碱草属物种关系较近,应当划入披碱草属中;(2)地理分布相同或相近的StH基因组物种聚类在一起,其亲缘关系较近;(3)北美StH基因组物种与欧亚大陆StH基因组物种在ITS序列上存在地理分布的异质性;(4)St基因组和H基因组的二倍体物种分别存在较大的分化;(5)探讨了造成小麦族StH基因组物种变异和分化的可能原因。
     2.获得了16个StH基因组物种的叶绿体trnL-F和线粒体CoxII内含子序列,并与小麦族二倍体供体物种的trnL-F和CoxII序列构建ML系统发育树、BI系统发育树和MJ网状支系结构。结果显示:(1)所有具StH基因组组成的物种与拟鹅观草属物种聚在一起,表明了StH基因组物种母本为St基因组供体;(2)StH基因组物种的母本来源存在多源化,其中Pseudoroegneria spicata或其祖先种可能充当了部分StH基因组物种的母本供体;(3)具St基因组的二倍体物种和StH基因组物种发生了一定程度的分化;(4)Hystrix patula、Sitanion hystrix和Sitanion jubatum与披碱草属物种聚在一起,将它们划入到披碱草属中是合适的;(5)Elytrigia repens与披碱草属物种存在差异,其系统地位还有待进一步研究。
     3.从15个含StH基因组物种中分离到29个Accl基因单倍型序列,单倍型序列覆盖了所有供试物种的Accl基因在不同基因组上的直系同源序列。将这29个单倍型序列与5个拟鹅观草属物种和3个大麦属植物类群的Accl基因序列进行了序列、系统发育及基因多态性分析,结果显示:(1)Elymus virginicus (H基因组拷贝类型)和Elvmus hystrix(H基因组拷贝类型)中拥有173 bp的反转录转座插入序列;(2)北美StH基因组物种和欧亚的StH基因组物种的Accl基因在长期的进化过程中己发生了遗传分化;(3)不同的拟鹅观草属植物可能作为St基因组供体参与了StH基因组物种的形成;(4)地理分布上相近的大麦属二倍体供体与StH基因组物种具有较近的亲缘关系;(5)Accl基因在StH基因组物种中多态性水平高于二倍体的基因多态性水平。
     4.从16个含StH基因组物种中分离到31个DMCl基因单倍型序列。将这31个单倍性序列与4个拟鹅观草属物种和3个大麦属植物类群的DMCl基因序列进行了序列和系统发育分析,结果显示:(1)北美StH基因组物种和欧亚的StH基因组物种在长期的进化过程中己发生了遗传分化;(2)不同的拟鹅观草属植物可能作为St基因组供体参与了StH基因组物种的形成;(3)Elymus sibiricus的H基因组可能存在多重起源;(4)DMC1基因比Accl基因在StH基因组物种中具有更多的简约信息位点比率。
     5.对小麦族含StH、St、H基因组的16个物种的胚乳细胞特征进行观察测量,结果表明StH基因组植物种子胚乳细胞存在丰富的多样性,不同物种的胚乳细胞在大小、形状和数量上均表现出明显的差异,但不能很好的反映属以及基因组间的差异。
     6.采用属间和种间杂交的方法,对来自6个不同地区的拟鹅观草属二倍体物种Pseudoroegneria libanotica、Pse.cognata、Pse. tauri、Pse. spicata、Pse. strigosa和Pse. stipifolia,和4个不同地区的大麦属二倍体物种Hordeum bogdanii、H. brevisubulatum、H. chilense、H. stenostachys与16个StH基因组物种进行相互杂交,目前仅得到了E.wawawaiensis和E. Hystrix与亚洲分布的拟鹅观草属物种间的4组杂交组合。对其杂种F1花粉母细胞减数分裂中期I染色体配对行为及繁育特性进行分析,结果表明:(1)分布于中东和中亚的拟鹅观草属二倍体物种间St基因组同源性较高,而与分布于北美的Pseudoroegneria spicata间同源性稍低,表明二倍体St基因组间存在分化;(2)来自于北美的Elymus hystrix和E. wawawaiensis基因组同源程度较高,而北美的Elymus hystrix和亚洲的E. sibiricus的同源程度相对较低,推测来自于北美和亚洲的StH基因组物种发生了一定程度的分化。
The tribe Triticeae, including about 350-450 species distributed in the temperate and subtropical and tropic regions, is of enormous important group in Poaceae. Triticeae includes about 20 basic genomes (Ns, H, P, St, Y, W, E).These basic genomes in various combinations constitute numerous polyploid speceis, such as StP, StY, StH, NsXm, StYW, StYP species, leading to 70%~75% of Triticeae species are of polyploidy origin. One important group of polyploids in Triticeae is the species with StH genomes, which orignated from hybridization between the species from Pseudoroegneria and Hordeum. They are distributed from the Arctic, to temperate and subtropical regions, and occurred on grassland, semi-desert, mountain slopes, valleys, and forest regions. Most species with StH genomes are fine herbages, and some species have disease resistance, insect resistance and stress tolerance, which are precious germplasm resources in crop improvement and forage breeding.
     The species with StH genomes, including about 20 allotetraploids (2n=4x=28)and allohexaploids (2n=6x=42),was constituted by the St and H genomes in various combinations in tribe Triticeae. Morphologically, the species with StH genomes exhibit different variations with one (Elymus caninus L.)to two (Elymus sibiricus L.)to three (Elymus canadensis L.)spikelets per node, and narrow and long (Elymus elymoides (Raf.) Swezey) to reduced (Elymus hystrix L.)glumes.All the species with StH genomes were in the inter-continental disjunction between Eurasian and North American. Despite the similarity of genomic constitution, different species with StH genomes have different morphological characters, distribution and habits. In addition, the taxonomic treatment and phylogenetic relationships of the species with StH genomes are still in dispute. The StH genome species were once included in Elymus, Hystrix, Sitanion and Elytrigia, and many species were treated as the type species. The sectional delimitation of the species with StH genomes has been proposed by different scholars, which increase the uncertainties regarding the phylogenetic relationships among these species.
     In this study, we carried out the phylogenetic analysis of the species with StH genomes based on multiple-copy nuclear ITS,single-copy nuclear Accl and DMC1, chloplastid trnL-F and mitochondrial CoxII sequences.Data from these molecular phylogenetic evidences were analysed together with the endosperm cytological structures and meiotic pairing in hybrids.The objectives were:(1)to elucidate the phylogenetic relationships of the species with StH genomes;(2)to investigate whether the phylogenetic relationships of the StH-genome species are linked with the inter-continental disjunction between Eurasian and North American; (3)to reveal the origin of the genome in the species with StH genomes;(4) to identify the maternal genome donor to the species with StH genomes; (5) to examine the level of nucleotide polymorphism in St and H genome from the species with StH genomes;(6) to document geographic diversification patterns of the species with StH genomes.The main results are as follows:
     1.Based on nrITS sequences, phylogenetic analysis was performed on sixteen species with StH genome, five Pseudoroegneria (St) species and three Hordeum (H) species in the tribe Triticeae. Phylogenetic analysis suggests that:(1)Sitanion jubatum,Sitanion hystrix and Hystrix patula were closely related to the species of Elymus, and should be included in the genus Elymus; (2) the StH-genome species from the same areas or neighboring geographic regions are closely related to each other;(3)the ITS sequence of the StH-genome species distributed in North and Eurasian is heterogeneous geographically; (4) the ITS sequence of the St and H genome species were evolutionarily distinct; (5)why the variation and differentiation occurred in the species with StH genome were also discussed.
     2.The chloroplast trnL-F sequences and mitochondria CoxⅡintron and the combined data set of 16 StH-genome species and the related diploid species were analyzed using Maximum Parsimony (ML),Bayesian Inference (BI) and Median-joining (MJ)network approaches.Phylogenetic analysis and MJ network analysis suggest that:(1)the StH-genome species were clustered with diploid Pseudoroegneria species, indicating the St genome served as the maternal parent to the species with StH genome; (2)the StH-genome species have different maternal lineages and Pseudoroegneria spicata or its ancestry was the most possible maternal donor of some species; (3)the degree of differentiation occurred the diploid species with St genome and polyploid species with StH genome; (4)Hystrix patula and Sitanion hystrix and Sitanion jubatum were clustered with Elymus species, which is reasonable to transfer them to Elymus;(5)Elytrigia repens is different from Elymus species and its taxonomic rank is still ambiguous.
     3.Twenty-nine haplotyps of the Accl gene were isolated from fifteen StH-genome species.These haplotypes were analysis together with the haplotypes from five Pseudoroegneria and three Hordeum taxa. The results suggested that:(1)the Accl sequences from Elymus virginicus (H-copy) and E. hystrix (H-copy) had a 173 bp insertion; (2) the Accl sequence of the StH-genome species from Eurasian were evolutionarily distinct from those from North America;(3)different Pseudoroegneria species might sever as the donor during the speciation of StH-genome species; (4) the StH-genome species are closely related to the Hordeum species from the same areas or neighboring geographic regions; (5) nucleotide sequence diversity in the StH-genome species was higher than that in the St genome of diploid Pseudoroegneria and the H genome of diploid Hordeum.
     4.Thirty-one haplotyps of the DMC1 gene were isolated from 16 StH-genome species. These haplotypes were analysed together with the haplotypes from four Pseudoroegneria and three Hordeum taxa. The results suggested that:(1)the DMC1 sequences of the StH-genome species from Eurasian were evolutionarily distinct from those from North America; (2) different Pseudoroegneria species might serve as donor during the speciation of StH-genome species;(3)the StH-genome species might experience recurrent hybridization with different donor of Hordeum species; (4) the ratio of parsimony-informative sites were higher in the DMC1 sequences than that in the Accl sequences.
     5.The endosperm cytological structures of 16 Triticeae species with StH, St or H genomes were observed. The results showed that significant variations existed in the size, forms and quantity of endosperm cells in those species. The differences in genera are smaller than those in species, indicating that the characters of endosperm cells have less value in the systematic studies of those genera than in the studies of those species in Triticeae.
     6.To evaluate the genomic differentiation among the StH-genome species and to study the relationships between the StH-genome species and the species of the genus Pseudoroegneria and Hordeum,interspecific and intergeneric hybridizations were carried out among the 16 StH-genome species and between the StH-genome species and the diploid donor of Pseudoroegneria (Pseudoroegneria libanotica, Pse. cognata、Pse. tauri, Pse. spicata, Pse. strigosa and Pse. stipifolia) and Hordeum(Hordeum bogdanii, H. brevisubulatum, H. chilense and H. stenostachys).In the previous study, four intergeneric hybridizations of E. wawawaiensis and E. Hystrix were successfully carried out with Pseudoroegneria species in Asia. The fertility and chromosome pairing behavior in meiosis of the parents and their hybrids F1 were investigated. The results showed that:(1)a high homology existed in the St genome donored by Pseudoroegneria species from the middle East and central Asia, and a low homology existed in the St genome donored by Pseudoroegneria species from the middle East and North America, indicating the differentiation among the St genome; (2) a high homology existed between the North America Elymus hystrix and Elymus wawawaiensis, and a low homology existed between the North America Elymus hystrix and Asia Elymus sibiricus, which is indicative of the differentiation of StH-genome species distributed between North America and Asia.
引文
1.蔡联炳,郭本兆.1988.中国大麦属的演化与地理分布的探讨.西北植物学报,8(2):73-84
    2.蔡联炳,张树源,李健华.1991.小麦属的分类研究.西北植物学报,11(3):212-224
    3.蔡联炳.2000.鹅观草属一些种种子胚乳细胞的特征及其分类学意义的探讨.西北植物学报,20(6):1070—1075
    4.蔡联炳.2000.鹅观草属部分种的叶表皮微形态特征及其分类学意义.植物研究,20(4):372-378
    5.凡星,廖莎,沙莉娜,等.2009.猬草及其近缘属植物单拷贝核Pgkl基因序列的系统发育分析.遗传,31(10):1049-1058
    6.耿以礼.1959.中国主要植物图说-禾本科.北京:科学出版社
    7.郭本兆.1987.中国植物志(9卷3分册).北京:科学出版社
    8.李硕碧.2002.小麦籽粒胚乳结构性状的研究.西北农林科技大学学报,30(5):7-10
    9.刘成,杨足均,刘畅,等.2007.小麦族中含St染色体组物种的特异分子标记的建立.遗传,29(10):1271-1279
    10.刘静,杨瑞武,张海琴,等.2007.猬草属及其近缘属种子胚乳细胞多样性研究.四川农业大学学报,25(1):14-18
    11.卢宝荣,Salomon B.2004.种间杂种染色体配对所揭示的披碱草属植物StY基因组分化及其进化意义.生物多样性,12(2):213-226.
    12.卢宝荣.1995.小麦族遗传资源的多样性及其保护.生物多样性,3(2):63-68
    13.马虹,王迎春,屠骊珠.1996.诺丹冰草的胚和胚乳的发育.内蒙古大学学报,27(5):717-721
    14.王立宏,魏益民,李志西.1993.小麦籽粒胚乳微观结构与品质关系的研究.西北植物学报,13(2):150-153
    15.王丽,赵桂仿.2002.华山新麦草胚和胚乳的发育研究.西北植物学报,22(4):786-790
    16.颜济,杨俊良.2008.小麦族系统学(第4卷).北京:中国农业出版社
    17.颜济,杨俊良.1990.耿氏草属Kengkilia,中国禾本科小麦族一新属.四川农业大学学报,8(1):75-76
    18.杨瑞武,周永红,郑有良,等.2004.赖草属种子胚乳细胞多样性研究.西北植物学报,24(1):38-42
    19.张春,王晓丽,于海清,等.2009.拟鹅观草属与鹅观草属和披碱草属属间及种间杂种的细 胞学研究.草业学报,3:86-93
    20.张改生,赵惠燕.1990.谷类作物胚乳的遗传.生物学通报,12:17-19
    21.张荣萍,王长发,张嵩午.2002.小麦胚乳充实特性研究初报.麦类作物学报,2(4):54-57
    22.周永红,杨俊良,颜济等.1999.小麦族下Hystrix longearistata和.Hystrix duthiei的生物学研究.植物分类学报,37(4):386-393
    23.周永红,郑有良,颜济,等.1999.10种披碱草属植物的RAPD分析及共系统学意义.植物分类学报,37(5):425-432
    24.周永红,郑有良,杨俊良,等.2000.利用RAPD分子标记评价仲彬草属的种间关系.植物分类学报,38(5):515-521
    25.周永红.2001.染色体组分析在小麦族系统分类学研究中的应用.植物科学进展,4:93-100.
    26. Alvarez L, Wendel JF.2003.Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol.,29:417-434
    27.Assadi M, Runemark H.1995.Hybridisation, genomic constitution and generic delimitation in Elymus s.l. (Poaceae:Triticeae). Plant Syst. Evol.,194:189-205
    28.Assadi M.1995.Meiotic configuration and chromosome number in some Iranian species of Elymus L. and Agropvron Gaerter (Poaceae:Triticeae). Bot. J.Linn Soc.,117(2):159-168
    29. Baldwin B G, Sanderson M J, Porter J M, et al.1995.The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard.,82:247-277
    30. Bandelt HJ, Forster P, Rohl A.1999.Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol.16:37-48
    31.Barrier M, Robichaux R H, Purugganan M D.2001.Accelerated regulatory gene evolution in an adaptive radiation. Proc. Natl. Acad. Sci. USA,98:10208-10213
    32. Bates L S, Bender M.1980. Eastern gama grass seed structure and protein quality. Cereal Chem., 58(2):138-141
    33.Bothmer R von, Jacobsen N, Baden C, et al.1991.An ecogeographical study of the genus Hordeum. Systematic and Ecogeographical studies on crop genepools 7, IBPGR. Rome, pp.127
    34.Bothmer R von, Jacobsen N, Baden C, et al.1995.An ecogeographical study of the genus Hordeum.2nd ed. Rome, Italy:IPGRI
    35.Bothmer R von, Salmon B.1994. Triticeae:a tribe for food, feed and fun. In:Wang R R-C,K B Jensen, C Jaussi (eds), Proc 2nd Intern Triticeae Symp Logan, USA, Logan:Utah State University, pp1-12
    36. Buckler E S I V, Holtsford T P.1996. Zea systematics:ribosomal ITS evidence. Mol Biol Evol., 13:612-622
    37.Cassens I,Mardulyn P, Milinkovitch M C.2005.Evaluating intraspecific "Network" construction methods using simulated sequence data:Do existing algorithms outperform the global maximum parsimony approach?.Systematic Biology.,54(3):363-372
    38.Clevinger J A, Panero J L.2000.Phylogenetic analysis of Silphium and subtribe Engelmanniinae (Asteraceae:Heliantheae) based on ITS and ETS sequence data. Amer. J. Bot.,87:565-572
    39.Cronn R C,Small R L, Wendel J F.1999. Duplicated genes evolve independently after polyploid formation in cotton. Proc.Natl. Acad. Sci. USA,96:14406-14411
    40.Davis C C, Anderson W R, Donoghue M J.2001.Phylogeny of malpighiaceae:evidence from chloroplast ndhF and trnL-F nucleotide sequences. Amer. J.Bot.,88(10):1830-1846
    41.Dewey D R.1970.Genome relations among Elymus canadensis, E. triticoides, E. dasystachys and Agropyron smithii. Bot. Gaz.131:57-64
    42.Dewey D R.1972.The origin of Agropyron leptourum [=Elymus transhyrcanus (Nevski) Tzvelev]. Amer. J.Bot.,59:836-842
    43.Dewey D R.1976. The genome constitution and phylogeny of Elymus ambiguus. Amer. J.Bot.,63: 626-634
    44.Dewey D R.1982. Genomic and phylogenetic relationships among North American perennial Triticeae. In:Estes J R, et al.(eds).Grasses and Grasslands. Norman:University of Oklahoma Press, pp51-88
    45.Dewey D R.1984.The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In:Gustafson J P (ed).Gene Manipulation in Plant Improvement. New York:Plenum Press, pp209-279
    46. Doyle J J, Doyle J L, Brown A H D, et al.2002.Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex:histone H3-D gene sequences. Evolution,56:1388-1402
    47.Doyle J J, Doyle J L.1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.,19:11-15
    48.Doyle J J, Doyle J L.1997.The cytosolic glutamine synthetase gene family in Leguminosae:Gene phylogeny and evolution of its role in nodulation. Amer. J. Bot.,84S:188
    49. Dubcovsky J, Schlatter A R, Echaide M.1997. Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome,40:505-520
    50. Emshwiller E, Doyle J J.2002. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae).2. Chloroplast-expressed glutamine synthetase data. Amer. J. Bot.,89 (7): 1042-1056
    51.Fan X, Sha L N, Yang R W, et al.2009. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol. Biol.,9:247
    52. Fan X, Zhang H Q, Sha L N, et al.2007. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae:Triticeae) based on the sequences of gene encoding plastid acetyl-CoA carboxylase. Plant Sci.,172:701-707
    53.Ford V S,Gottlieb L D.2002. Single mutations silence PgiC2 genes in two very recent allotetraploid species of Clarkia. Evolution,56:699-707
    54. Fortune P M, Schierenbach K A, Ainouche A K, et al.2007. Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species. Mol. Phylogenet. Evol.,42:1040-1055
    55. Ge S, Sang T, Lu B R, et al.1999. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard.,88:373-457
    56. Gornicki P,Fans J,King I, et al.1997.Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc. Natl. Acad. Sci. USA,4:14179-14184
    57.Gugerli F, Senn J, Anzidei M, et al.2001.Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine(Pinus pumila). Mol. Ecol., 10(6):1489-1497
    58.Hamby R K, Zimmer E A.1992.Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis P S, Soltis D E, Doyle J J (eds), Molecular Systematics of Plants. New York:Chapman & Hall, pp50-91
    59.Helfgott D M, Mason-Gamer R J.2004.The evolution of North American Elymus (Triticeae, Poaceae) allotetraploids:evidence from phosphoenolpyruvate carboxylase gene sequences.Syst. Bot.,29(4):850-861
    60. Hsiao C,Chatterton N J, Asay K H, et al.1995. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,38:221-223
    61.Huang G, Mccrate A J.1983.Caryopsis structural and imbibitional characteristics of some hard red and white wheats. Cereal Chem.,60(2):161-165
    62.Huang S X, Sirikhachornkit A, Faris J D, et al.2002. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses.Plant Mol. Biol.,48: 805-820
    63.Huang S X, Sirikhachornkit A, Su S J,et al.2002. Gene encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutinary history of polyploid wheat. Proc. Natl. Acad. Sci. USA,99:8133-8138
    64. Huang S X, Su X J, Haselkorn R, et al.2003.Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci.,164: 43-49
    65.Huelsenbeck J P, Ronquist F.2001.MrBayes:Bayesian Inference of Phylogenetic Trees. Bioinformatics,17:754-755
    66. Hughes C E, Bailey C D, Harris S A.2002. Divergent and reticulate species relationships in Leucaena (Fabaceae) inferred from multiple data sources:insights into polyploid origins and nrDNA polymorphism. Amer. J. Bot.,89:1057-1073
    67. Jaaska V.1992. Isoenzyme variation in the grass genus Elymus (Poaceae).Hereditas,117:11-22.
    68.Jakob S S, Blattner F R.2006. A chloroplast genealogy of Hordeum (Poaceae):long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol. Biol. Evol.,23:1602-1612
    69. Jauhar P P, Crane C F.1989.An evaluation of Baum et al's assessment of the generic system of classification in the Triticeae. Amer. J.Bot.,76:571-576
    70. Jensen K B, Wang R R C.1997.Cytological and molecular evidence for transferring Elymus coreanus from the genus Elymus to Leymus and molecular evidence for Elymus californicus (Poaceae:Triticeae).Inter. J.Plant Sci.,158:872-877
    71.Jensen K B.1989. Cytology and origin of Elymus abolinii, and its F1 hybrids with Pseudoroegneria spicata, E. lanceotalus, E. dentatus ssp. ugamicus, and E. drobovii (Poaceae: Triticeae). Genome,32:468-474
    72. Jensen K B.1990. Cytology and Taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus and E. batalinii (Triticeae:Poaceae).Genome,33(3):563-570
    73.Jensen K B.1990. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus, and E. batalinii (Poaceae:Triticeae). Genome,33:668-673
    74. Jiang J M, Friebe B, Gill B S.1994. Recent advances in alien gene transfer in wheat. Euphytica,73: 199-212
    75.Jiang J, Gill B S.1994. Nonisotopic in situ hybridization and plant genome mapping:the first 10 years.Genome,37:717-725
    76. Johnson L A, Soltis D E.1995.Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann.Missouri Bot. Gard.,82:149-175
    77.Kihara H, Nishiyama I.1930. Genomanalyse bei Triticum und Aegilops.I. Genomaffini-taten tri-, tetra-und pentaploiden Weizenbastarden. Cytologia,1:270-284
    78.Kihara H.1975.Interspecific relationship in Triticum and Aegilops. Seiken Zih.,15:1-12
    79.Kilian B, Ozkan H, Deusch O, et al.2007.Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol.,24:217-227
    80. Kimber G, Alonso L G.1981.The analysis of meiosis in hybrids. Ⅲ.Tetraploid hybrids. Can. J. Genet. Cytol.,23:235-254
    81.Kimber G.1983.Genome analysis in the genus Triticum. In:Saksmoto S (ed).Proceedings of the 6th International Wheat Genetics'Symposium. Japan, Kyoto, Kyoto University Press, pp23-28
    82.Klimyuk V I,Jones J D G.1997. At DMC1, the Arabidopsis homolog of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. The Plant Journal,11:1-14
    83.Kumar S, Tamura K, Nei M.2004. Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform.,5:150-163
    84.Lihova J, Shimizu K K, Marhold K.2006. Allopolyploid origin of Cardamine asarifolia (Brassicaceae):incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol. Phylogenet. Evol.,39:759-786
    85.Linde-Laursen I, Seberg 0, Salomon B.1994.Comparison of the Giemsa C-banded and N-banded karyotypes of two Elymus species, E. dentatus and E. glaucescens (Poaceae:Triticeae).Plant Syst. Evol.,192:165-176
    86. Linder C R, Rieseberg L H.2004. Reconstructing patterns of reticulate evolution in plants. Amer. J. Bot.,91:1700-1708
    87.Liu Q L,Ge S,Tang H B,et al.2006. Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol.,170:411-420
    88.Love A.1980. IOPB chromosome number reports.LXVI. Poaceae-Triticeae-Americanae. Taxon, 29:163-169
    89. Love A.1982. Generic evaluation of the wheatgrass. Biol. Zentralbl.,101:199-212
    90.Love A.1984. Conspectus of the Triticeae. Feddes Repertorium,95:425-521
    91.Lu B R, Bothmer R von.1990.Genome constitution of Elymus parviglumis and E. pseudonutans (Triticeae:Poaceae).Hereditas,113:109-119
    92.Lu B R, Bothmer R von.1990.Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas,112:109-116
    93.Lu B R, Bothmer R von.1992.Interspecific hybridzation between Elymus himalayanus and E. schrenkianus, and other Elymus species (Triticeae:Poaceae). Genome,35:230-237
    94.Lu B R, Jensen K B, Salomon B.1993.Biosystematic study of hexaploid Elymus tschimganicus and E. glaucissimus.Ⅱ.Interspecific hybridization and genomic relationship.Genome,36: 1157-1168
    95.Lu B R, Salomon B.1992. Differentiation of the SY genomes in Asiatic Elymus. Heredidas,116: 121-126
    96.Lu B R.1994.Meiotic analysis of the intergeneric Hybrids between Pseudoroegneria and tetraploid Elymus.Cathaya,6:1-14
    97.Lu B R.1994. The genus Elymus L. in Asia. Taxonomy and biosystematics with special reference to genomic relationships.Proceedings of the 2nd Intenational Triticeae Symposium, Logan, Utah, USA.pp219-233
    98.Maddison W P.1997.Gene trees in species trees. Syst. Biol.,46:523-536
    99. Mason-Gamer R J,Kellogg E A.1996. Chloroplast DNAanalysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. In:Jauhar P P (ed), Methods of Genome Analysis in Plants. Boca Raton:CRC Press, FLA, pp 310-325
    100. Mason-Gamer R J, Kellogg E A.2000. Phylogenetic analysis of the Triticeae using the starch synthase gene, and a preliminary analysis of some North American Elymus species. In:Jacobs S W L, Everett J (eds), Grasses:systematics and evolution. CSIRO, Melbourne, pp.102-109
    101. Mason-Gamer R J, Orme N L, Anderson C M.2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 45:991-1002
    102. Mason-Gamer R J, Orme N L, Anderson C M.2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 45:991-1002
    103.Mason-Gamer R J,Weil C F, Kellogg E A.1998.Granule-bound starch synthase:structure function,and phylogenetic utility. Mol.Biol. Evol.,15:1658-1673
    104.Mason-Gamer R J.2001.Origin of North American Elymus (Poaceae:Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. Syst. Bot.,26 (4):757-768
    105.Mason-Gamer R J.2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst. Biol.,53(1):25-37
    106. Mason-Gamer R J.2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst. Biology.,53:25-37
    107.Mason-Gamer R J.2008.Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae). Mol. Phylogenet. Evol.,47:598-611
    108.McMillan E, Sun G L.2004. Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions.Theor. Appl. Genet.,108:535-542
    109. Moench C.1794. Methodus Plantas Horti Botanici et Agri Marburgensis a Staminum Situ Describendi. Margburgi Cattorum.
    110. Mogensen H L.1996. The hows and whys of cytoplasmic inheritance in seed plants.Amer. J. Bot., 83:383-404
    111.Mori N,Miyashita NT, Terachi T, et al.1997. Variation in coxⅡ Intron in the wild ancestral species of wheat. Hereditas,126 (3):1601-5223
    112.Mort ME, Crawford D J.2004. The continuing search:low-copy nuclear sequences for low-level plant molecular phylogenetic studies.Taxon,53:257-261
    113.Nevski S A.1933.Uber das System der Tribe Hordeae Benth. Flora et Systematica Plantae Vasculares. Ser 1.Fasc 1.Leningrad. pp9-32
    114. Olmstead R G, Palmer J D.1994. Chloroplast DNA systematics:A review of methords and data analysis. Amer. J. Bot.,81:1205-1224
    115.φrgaard M, Anamthawat-Jonsson K.2001.Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae:Triticeae). Genome,44:275-283
    116. Pelser P B, Gravendeel B,Meijden R V D.2003.Phylogeny reconstruction in the gap between too little and too much divergence:the closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Mol.Phylogenet. Evol.,29:613-628
    117.Petersen G, Seberg O, Yde M, et al.2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of common wheat(Triticum aestivum).Mol. Phylogenet. Evol.,39:70-82
    118.Petersen G, Seberg O.1997.Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol.Phylogenet. Evol.,7:217-230
    119.Petersen G, Seberg O.2002.Molecular evolution and phylogenetic application of DMC1.Mol. Phylogenet. Evol.,22:43-50
    120.Petersen G,Seberg O.2003.Phylogrnetic analysis of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Syst. Bot.,28:293-306
    121.Posada D,Crandall K A.1998.Modeltest:testing the model of DNA substitution. Bioinform.,14: 817-818
    122.Posada D, Crandall K A.2001.Intraspecific gene genealogies:trees grafting into networks. Trends Ecol. Evol.,16:37-45
    123.Posada D, Crandall KA.2002.The effect of recombination on the accuracy of phylogeny reconstruction. J.Mol. Evol.,54:396-402
    124. Redinbaugh M G, Jones T A, Zhang Y T.2000.Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome,43:846-852
    125.Richardson J E, Fay M F, Cronk Q C B, et al.2000. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-Y plastid DNA sequences.Amer. J. Bot.,87:1309-1324
    126. Rozas J, Sanchez-DelBarrio J C, Messeguer X, et al.2003.DNA polymorphism analyses by the coalescent and other methods. Bioinform.,19(18):2496-2497
    127. Sakamoto S, Muramatsu M.1966. Cytogenetics studies in the tribe Triticeae III. Pentaploid Agropyron hybrids and genome relationships among Japanese and Nepalese species. Japan J. Genet.,41:155-168
    128.Sang T, Crawford D J, Stuessy T.1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot.,84:1120-1136
    129. Sang T.2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Mol. Biol.,37:121-147
    130. Savolainen V, Chase M W.2003.A decade of progress in plant molecular phylogenetics. Trends Genet.,19:717-724
    131.Sears E R.1981.Transfer of alien genetic material to wheat. In:Evans LT, Peacook W J (eds). Wheat Science Today and Tomorrow. Cambridge University Press, pp75-89
    132. Semerikov VL, Lascoux M.2003.Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. Amer. J. Bot.,90:1113-1123
    133.Sha L N, Fan X, Yang R W, et al.2010.Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Accl,DMC and chloroplast trnL-F sequences. Mol. Phylogenet. Evol.,54:327-335
    134. Sha L N, Yang R W, Fan X, et al.2008.Phylogenetic analysis of Leymus (Poaceae:Triticeae) inferred from nuclear rDNA ITS sequences. Biochem. Genet.,46:605-619
    135.Sharma H C, Gill B S.1983.Current status of wide hybridization in wheat. Euphytica,32(1): 17-31
    136. Slotte T, Ceplitis A, Neuffer B, et al.2006. Intrageneric phylogeny of Capsella (Brassicaceae) and the origin of the tetraploid C. bursa-pasteris based in chloroplast and nuclear DNA sequences. Amer. J. Bot.,93:1714-1724
    137. Small R L, Ryburn J A,Cronn R C, et al.1998.The tortoise and the hare:choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Amer. J.Bot.,85:1301-1315
    138.Smith J F, Funke M M, Woo V L.2006. A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae):phylogenetic analysis and evolution.Plant Syst. Evol.,261: 245-256
    139. Soltis D E, Solis P S,Tate J A.2003.Advances in the study of polyploidy since Plant speciation. New phytol.,161:173-191
    140. Soltis D E, Solis P S.1999. Polyploidy:recurrent formation and genome evolution. Trends Ecol. Evol.,14:348-352
    141.Soltis D E, Soltis P S.1998.Choosing an approach and an appropriate gene for phylogenetic analysis. In:Soltis D E, Soltis P S,Doyle J J (eds). Molecular Systematics Plants.Ⅱ. DNA Sequencing. Boston:Kluwer Academy Publications, pp1-42
    142.Soltis P S, Soltis D E.2000. The role of genetics and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA,97:7051-7057
    143.Stebbins J L, Pun F T.1953.Artificial and natural hybrids in the Gramineae, tribe Hordeae. V. Diploi'd hybrids of Agropyron. Amer. J.Bot.,40:444-449
    144. Sun G L, Daley T, Ni Y.2007.Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. Plant Mol.Biol.,64:645-655
    145.Sun G L, Salomon B,Bothmer R von.1997. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers.Genome,40:806-814
    146. Sun G L, Yan N, Daley T.2008.Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol. Phylogenet. Evol.,46:897-907
    147.Swofford D L.2003. PAUP*:Phylogenetic analysis using parsimony(*and other method). Version 4.0b 10. Sinauer Associates, Sunderland, Massachusetts, USA.
    148.Taberlet P,Gelly L, Pautou G.1991.Universal primers for amplication of three non-coding regions of chloroplast DNA. Plant Mol. Biol.,17:1105-1109
    149.Thompson J D, Gibson T J, Plewniak F, et al.1997.The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.,24: 4876-4882
    150. Thompson J D, Higgins D G, Gibson T J.1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Res.,22:4673-4680
    151.Tiffney B H,Manchester S R.2001.The use of geological and paleontological evidence in evaluating plant phytogeographyic hypotheses in the Northern Hemisphere Tertiary. Inter. J. Plant Sci.,162(S6):S3-S7
    152.Torabinejard J, Mueller R J.1993.Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae:Triticeae). Genome,36:147-151
    153.Turano F J, Debonte L R, Wilson K G, et al.1987. Cytochrome oxidase subunit Ⅱ gene from carrot contains an intron. Plant Physiol.,84(4):1074-1079
    154. Tzvelev N N.1976. Zlaki SSSR (Grasses of the Soviet Union). Leningrad:Academiya Nauk SSSR. pp176-189
    155.Tzvelev N N.1989. The system of grass (Poaceae) and their evolution. Bot. Review,55:141-204
    156. Wang R R-C, Bothmer R von, Dvorak J, et al.1994.. Genome symbols in the Triticeae (Poaceae). In:Wang R R-C, Jensen K B,Jaussi C (eds). Proceedings of the 2nd International Triticeae Symposium. Logan, Utah, USA, pp29-34
    157. Wang R R-C, Hsiao C.1986. Genome alalysis of the tetraploid Pseudoroegneria tauri. Crop Sci., 26:723-727
    158.Wang R R-C.1992. Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas,116:133-136
    159. Wendel J F, Doyle J J.1998.Phylogenetic incongruence:window into genome history and molecular evolution. In:Soltis D E, Soltis P S, Doyle J J (eds). Molecular Systematics of Plants Ⅱ: DNA Sequencing. Dordrecht, the Netherlands:Kluwer, pp265-296
    160.Wendel J F, Schnable A, Seelanan T.1995.Bi-direction interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium).Proc.Natl. Acad. Sci. USA,92:280-284
    161.Wilson F D.1963.Revision of Sitanion(Triticeae,Gramineae).Brittonia,15:303-323
    162.Winkworth R C, Donoghue M J.2004.Viburnum phylogeny:evidence from the duplicated nuclear gene GBSSI. Mol. Phylogenet. Evol.,33:109-126
    163.Yen C, Yang J L, Yen Y.2005.Hitoshi Kihara, Askell Love and the modern genetic concept of the genera in the tribe Triticeae (Poaceae).Acta Phytota. Sinica,43:82-93
    164.Yu H Q, Fan X, Zhang C, et al.2008.Phylogenetic relationships of species in Pseudoroegneria (Poaceae:Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia,63 (4):498-505
    165.Zeng J,Fan X, Zhang L, et al.2010.Molecular phylogeny and maternal progenitor implication in the genus Kengyilia (Triticeae:Poaceae):Evidence from COXII intron sequences. Biochem. Syst. Ecol.,38:202-209
    166. Zeng J, Zhang L, Fan X, et al.2008.Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences. Biol. Plant.,52:231-236
    167. Zhang C, Fan X, Yu H Q, et al.2009. Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae:Triticeae) inferred from a gene encoding plastid acetyl-CoA carboxylase. Biochem. Syst. Ecol.,37:412-420
    168.Zhang C, Fan X, Yu H Q, et al.2009. Phylogenetic relationships among the species of Elymus sensu lato in Triticeae (Poaceae) based on nuclear rDNA ITS sequences. Russian J.Genet.,45(6): 696-706
    169. Zhang H Q,Yang R W, Dou Q W, et al.2006.Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp.longearistata (Poaceae:Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Research,14:595-604
    170. Zhang H Q, Zhou Y H,Zheng Y L.2002.Morphological and cytological studies on hybrid from Roegneria grandis x R. alashanica. Guihaia,22 (4):352-356
    171.Zhang H Q, Zhou Y H.2006. Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of genus Hystrix Moench (Poaceae: Triticeae). Plant Syst. Evol.,258:129-136
    172. Zhang H Q, Zhou Y H.2007.Meiotic analysis of the interspecific and intergeneric hybrids between Hystrix patula Moench and H. duthiei ssp.longearistata, Pseudoroegneria, Elymus, Roegneria, and Pasthyrostachys species (Poaceae, Triticeae).Bot. J. Linn.Soc.,153:213-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700