用户名: 密码: 验证码:
水泥—石灰石粉胶凝体系特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为在水泥混凝土中科学、合理和安全地应用石灰石粉,以达到节能利废,同时产生良好的技术、经济和生态效益,本文开展了“水泥-石灰石粉胶凝体系特性研究”,为构建石灰石粉基胶凝材料的制备与应用技术体系提供理论和试验依据。
     本文主要工作和取得的研究成果如下:
     1.系统研究了C_3S-CaCO_3-H_2O和C_3A-CaCO_3-H_2O两个三元体系的水化特性和相关规律
     1)XRD、TG-DSC、IRS微观测试和量热分析表明,CaCO_3促进了C_3S早期水化,阻碍了其后期水化;CaCO_3的加入并未导致C_3S水化产物新相的生成,而主要使C_3S水化历程发生了改变,发现其表现规律为显著压缩了诱导期;25%CaCO_3的掺入使C_3S水化的第一放热峰比纯C_3S的放热峰明显增高、变窄和前移,24h放热量增加18.3%;在系统研究基础上,构建了具有CaCO_3加速特征的C_3S-CaCO_3-H_2O体系水化历程模型。
     2)XRD、TG-DSC、IRS分析和SEM观测说明,CaCO_3对C_3A的水化产物C_3AH_6的生成有抑制和加速双重效应,水化初期表现为抑制作用,随着水化的进行,逐渐转为加速作用;CaCO_3抑制了C_4AH_(13)和C_2AH_8的出现,并导致半碳铝酸钙水化物(C_3A·0.5CACO_3·0.5Ca(OH)_2·11.5H_2O)和单碳铝酸钙水化物(C_3A·CaCO_3·11H_2O)的形成;半碳铝酸钙水化物出现在水化初期,水化1d后已全部转变。单碳铝酸钙水化物从水化初期1h至28d一直稳定存在,其形貌特征表现为早期呈长厚片状,随后逐渐向长棒状转变,水化至28d,已转变成细针状;量热分析发现,CaCO_3致使C_3A的水化放热出现了有别于纯C_3A水化放热的“双峰”现象;30%CaCO_3的掺入使24h单位质量C_3A放热量比纯C_3A的放热量增加了2倍多。
     2.研究了C_3A-CaSO_4·2H_2O-CaCO_3-H_2O四元体系
     由XRD和DSC分析得到,C_3A-CaSO_4·2H_2O-CaCO_3-H_2O四元体系水化产物是C_3AH_6、C3_A·CaCO_3·11H_2O、C_3A·0.5CaCO_3·0.5Ca(OH)_2·11.5H_2O、AFt和AFm;CaSO_4·2H_2O使C_3AH_6形成时间提前,延迟了单碳铝酸钙和半碳铝酸钙水化物的形成,半碳铝酸钙水化物稳定时间延长;CaCO_3提高了钙矾石的稳定性;通过量热分析,揭示了CaCO_3和CaSO_4·2H_2O共同作用下C_3A水化放热特点,其表现为第一放热峰之后新增加了两个放热峰。
     3.研究了工程应用实际体系—水泥-石灰石粉胶凝体系的水化特性及孔结构
     1)通过XRD、TG-DSC和量热微观测试分析得出,水泥-石灰石粉胶凝体系水化产物和水化速度与两个三元体系C_3S-CaCO_3-H_2O、C_3A-CaCO_3-H_2O和四元体系C_3A-CaSO_4·2H_2O-CaCO_3-H_2O的规律基本相同。随着石灰石粉掺量增加,单碳铝酸钙形成提前;石灰石粉延迟了钙矾石的生成,对钙矾石起到了稳定作用;石灰石粉改变了水泥水化历程,与纯水泥水化放热相比,10%石灰石粉的掺入致使第一放热峰明显增高、前移,诱导期缩短,提前大约40分钟进入加速期;石灰石粉使单位质量的水泥24h放热量增加了8.5%。
     2)MIP分析表明,随水化龄期增长,石灰石粉使水泥浆体孔结构由小孔向大孔转变,产生了孔粗化效应;增大石灰石粉的细度和减小水胶比有利于改善硬化浆体孔结构。
     4.研究了水泥-石灰石粉胶凝材料的物理力学性能
     1)随石灰石粉掺量增加,浆体流动度减小,砂浆和混凝土的流动度增大,凝结时间缩短;随石灰石粉细度增加,浆体、砂浆和混凝土流动度增大,凝结时间缩短。
     2)石灰石粉对水泥早期水化的促进作用,提高了水泥混凝土早期强度,而石灰石粉对水泥混凝土的孔粗化效应导致其后期强度低于基准强度。1d、3d和7d龄期时,随石灰石粉掺量增加,水泥混凝土强度呈先增加后下降的趋势,石灰石粉掺量为10%,增强其早期强度效果最明显,石灰石粉掺量超过20%时,对早期强度没有改善作用。28d龄期时,掺有石灰石粉的水泥混凝土强度全部低于基准强度,石狄石粉掺量愈高,其强度下降愈多。
     5.研究了水泥-石灰石粉胶凝体系的耐久性能
     1)在硫酸盐以及硫酸盐+氯盐的环境因素下,水泥-石灰石粉胶凝材料耐久性研究表明,其外观破坏形式为试件开裂、表面软化、脱落和溃烂。在单因素(硫酸盐)作用下,6个月时,已造成水化产物碳铝酸钙分解,其破坏主要是由石膏膨胀和碳铝酸钙水化物分解共同造成的;在双因素(硫酸盐+氯盐)作用下,6个月左右时,胶凝材料中主要有CaAl_2(CO_3)_2(OH)_4·6H_2O和氯铝酸钙过渡产物产生,并有较大量的石膏生成。20个月时,CaAl_2(CO_3)_2(OH)_4·6H_2O和氯铝酸钙已分解,并产生了易溶于水的CaCl_2。其早期破坏主要因石膏结晶引起体积膨胀造成的,后期破坏主要由石膏以及CaAl_2(CO_3)_2(OH)_4·6H_2O和氯铝酸钙分解和CaCl_2溶解共同造成并导致腐蚀加剧。
     2)无论是在单因素还是在双因素作用下,石灰石粉都加速了水泥基材料的腐蚀破坏,并随石灰石粉掺量增加,其劣化加重。但在双因素作用下,氯盐的存在使试件在腐蚀前后期石膏生成量相差不大,缓解了试件的腐蚀程度。
To achieve scientific,rational and safe use of ground limestone,attain the purpose of energy saving and waste recycling,and consequently bring technical, economic and ecological benefits,the characteristics of cement-ground limestone gelation system is studied in detail in this dissertation.The study results can provide the theoretical and experimental basis for the technical system of production and application of ground limestone based cementitious material.
     The main contributions of this thesis are as follows:
     1.The hydration characteristic and relative rules of the ternary system of C_3S-CaCO_3-H_2O and C_3A-CaCO_3-H_2O are studied systematically.
     1) Microscopic tests of XRD,TG-DSC,IRS and calorimetry show that the addition of CaCO_3 can change the hydration process of C_3S without new hydration product and reduce induction period significantly.The first exothermic peak of the sample containing 25%CaCO_3 appears in advance and is higher and narrower than that of the pure sample.The 24h exothermic quantity increases by 18.3%.Based on these,a hydration process model of C_3S-CaCO_3-H_2O ternary system with acceleration characteristics of CaCO_3 is proposed.
     2) XRD,TG-DSC and IRS analysis and SEM observation show that CaCO_3 inhibits the generation of C_3AH_6 at early hydration period but promotes it along with the hydration process.CaCO_3 inhibits the appearance of C_4AH_(13) and C_2AH_8,and causes the formation of C_3A·0.5CaCO_3·0.5Ca(OH)_2·11.5H_2O and C_3A·CaCO_3·11H_2O. The former appears in early hydration,totally being transferred after 1d hydration. The latter exists all the time during the initial hydration to 28d,and their appearance changes from thick flake in early hydration to long rod shape,being fine-needle when hydrated by 28d.The calorimetric analysis indicates that with the addition of CaCO_3. the hydration heat of C_3A has double-peak,which is different from that of pure C_3A only.The hydration heat of C_3A in 24h with the addition of 30%CaCO_3 appears 2 times more than that of the pure C_3A.
     2.The hydration characteristic of the quaternary system of C_3A-CaSO_4·2H_2O-CaCO_3-H_2O are studied.
     XRD and DSC analysis prove that the hydration products of C_3A-CaSO_4·2H_2O-CaCO_3-H_2O quaternary system are composed of C_3AH_6, C_3A·CaCO_3·11H_2O,C_3A·0.5CaCO_3·0.5Ca(OH)_2·11.5H_2O,AFt and AFm.The formation time of C_3AH_6 is advanced by CaSO_4·2H_2O.Meanwhile,the hydration products'generation of C_3A·0.5CaCO_3·0.5Ca(OH)_2·11.5H_2O and C_3A·CaCO_3·11H_2O is deferred,and the stability time of hydration product of C_3A·0.5CaCO_3·0.5Ca(OH)_2·11.5H_2O is elongated by CaSO_4·2H_2O.The stability of ettringite is also improved by CaCO_3.The results of calorimetric analysis reveal that the hydration-induced heat-releasing characteristic of C_3A under the co-action of CaCO_3 and CaSO_4·2H_2O is plotted as three peaks.
     3.The hydration characteristic and pore structure of cement-ground limestone cementitious material system are studied.
     1) XRD,DSC and calorimetric analysis present almost a same law between the cementitious material system and single-mine.With the increase of ground limestone amount,C_3A·CaCO_3·11H_2O advances its generation.Ground limestone defers the formation of ettringite and improves the stability of ettringite.The calorimetric analysis proves that the hydration process of cement is changed by the ground limestone.The addition of 10%ground limestone advances heat-releasing of cement hydration,increases heat-releasing speed and amount,shortens the induction period, advances the entering into the acceleration period ahead about 40 minutes and increases 8.5%heat of cement of per unit mass in 24h.
     2) The amount and fineness of ground limestone and water-binder ratio have effect on pore structure of harden paste by MIP analysis.The more the limestone is, the bigger the average diameter of harmful pore is,which means ground limestone increasing the probability of internal defect in cement paste.Using finer ground limestone and reducing water-binder ratio are beneficial to improve the pore structure of harden paste.
     4.The physical and mechanical property of cement-ground limestone cementitious material system are studied.
     1) With the increase of ground limestone amount,the fluidity of paste reduces while the fluidity of mortar and concrete increases,and the setting time is shortened. With the increases of ground limestone fineness,the fluidity of paste,mortar or concrete increases and the setting time is shortened.
     2) Ground limestone promotes the earlier hydration of cement and early strength of cement and concrete,but makes the later strength lower than normal concrete due to its pore coarsening effect.The strength of cement and concrete at 1d,3d and 7d increase firstly and then decrease along with the increasing of ground limestone.10% of ground limestone has the most obvious effect on improving early strength.When the amount of ground limestone is more than 20%,the addition of ground limestone does not improve the early strength(1~7d) of concrete.The strength of the sample containing ground limestone at 28d is lower than normal concrete,and the more of the limestone,the lower of the strength.
     5.The durability of cement-ground limestone cementitious material system are studied.
     1) Under the condition of sulfate or sulfate and chloride,the study on the durability of cement-ground limestone cementitious materials shows that the damages of the appearance including cracking,softening,abscission and ulceration.Under the action of single factor(sulfate),the hydration product of calcium carboaluminate can be decomposed after 6 months.The damage of specimens is mainly induced by the expansion of gypsum and the decomposition of hydration products of calcium carboaluminate.Under the action of two factors(sulfate+chloride),CaAl_2 (CO_3)_2(OH)_4·6H_2O and transition product of calcium chloroaluminate are produced in the cementitious materials,accompanying with the appearance of much gypsum after 6 months.Both CaAl_2(CO_3)_2(OH)_4·6H_2O and calcium chloroaluminate can be decomposed,producing easy-soluble CaCl_2 after 20 months.Early damage of specimens is caused by volume expansion induced by gypsum crystallization,while further damage is mainly caused by gypsum,decomposition of CaAl_2(CO_3)_2(OH)_4·6H_2O and calcium chloroaluminate,and the dissolution of CaCl_2.
     2) The ground limestone accelerate the erosion damage of cement-based materials regardless of single factor or two factors,and the more of the ground limestone,the more of the deterioration.But under the two factors,chloride ions make no obvious difference in the generation of gypsum for the sample before and after being eroded,which relieves the erosion degree of the sample.
引文
[1]胡曙光,李悦.石灰石硅酸盐水泥的研究进展[J].新世纪水泥导报,1997,3(5):11-13
    [2]G.Men(?)ndez,V.Bonavetti,E.F.Irassar.Strength development of ternary blended cement with limestone filler and blast-furnace slag[J].Cem.Concr.Res.,2003,25(1):61-67
    [3]涂成厚译.石灰石粉的应用[J].国外建材科技,1999,20(4):47-51
    [4]European Committee for Standardization,Cement:Composition,Specification and Conformity Criteria,part 1:Common Cements EN 1971-1,CEN,Brussels,2000
    [5]P.K.Mehta.Advancements in concrete Technology[J].Concrete International,1999,(6):69-76
    [6]吴中伟,廉惠珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [7]霍冀川,卢忠远,张红英等.石灰石硅酸盐水泥的研究[J].矿产综合利用2000,(6):41-44
    [8]陈冀宇.磨细石灰石水泥的研究[J].四川水泥,2000,(4):42-43
    [9]马烨红,吴笑梅,樊粤明.石灰石粉作掺合料对混凝土工作性能的影响[J].混凝土,2007,(6):56-59
    [10]张大康.高细石灰石粉用作水泥混合材料的试验研究[J].水泥,2005,(7):7-11
    [11]宋中南,石云兴.矿物微细粉复合效应对高性能混凝土工作性与流变性能的影响[J].混凝土,2003,(1):16-18,46
    [12]杨建森,张祖绵,杨维武.石灰石硅酸盐水泥性能研究[J].宁夏工学院学报(自然科学版),1996,8(2):24-30
    [13]胡曙光,李悦,陈卫军等.石灰石混合材掺量对水泥性能的影响[J].水泥工程,1996,(2):22-24
    [14]杨华山,方坤河,涂胜金等.石灰石粉在水泥基材料中的作用及其机理[J].混凝土,2006,(6):32-35
    [15]张永娟,张雄.石灰石微粉矿物外加剂性能研究[J].房材与应用,2001,29(4):34-37
    [16]贾源玲,何北建,许秀华.浅析石灰石在水泥和混凝土中的应用[J].粉煤灰, 2003,(4):12-13
    [17]胡曙光,李悦,丁庆军.石灰石混合材改善高铝水泥后期强度的研究[J].建筑材料学报,1998,1(1):49-53
    [18]李悦,丁庆军,胡曙光.石灰石矿粉在水泥混凝土中的应用[J].武汉理工大学学报,2007,29(3):35-37,41
    [19]李步新,陈峰.石灰石硅酸盐水泥力学性能研究[J].建筑材料学报,1998,1(2):186-191
    [20]李悦,胡曙光,熊振.高掺量石灰石硅酸盐水泥的研制及应用[J].水泥工程,1997,(5):29-31
    [21]侯宪钦,高培伟,方闯烈等.石灰石作水泥混合材的研究[J].山东建材,1998,(1):16-20
    [22]陈剑雄,崔洪涛,陈寒斌等.掺入超细石灰石粉的混凝土性能研究[J].施工技术,2004,33(4):39-41
    [23]李步新,李文钧,王志全.石灰石硅酸盐水泥的物理性能及水化特点[J].河南建材,1999,(1):11-14
    [24]陈剑雄,李鸿芳,陈寒斌.石灰石粉超高强高性能混凝土性能研究[J].施工技术,2005,34(4):27-28
    [25]曹鹏飞,秦鸿根,庞超明.掺石灰石粉自密实混凝土性能的研究[J].施工技术,2005,34(增刊),35-37,43
    [26]田倩.自密实高性能混凝土矿物外掺料[J].混凝土与水泥制品,2000,(5):18-20
    [27]陈改新,孔祥芝.石灰石粉—一种新的碾压混凝土掺和料[J].中国水利,2007,(21):16-18
    [28]陈剑雄,李鸿芳,陈鹏等.石灰石粉锂渣超早强超高强混凝土研究[J].硅酸盐通报,2007,26(1):190-193
    [29]陈剑雄,李鸿芳,陈寒斌等.掺超细石灰石粉和钛矿渣粉超高强混凝土研究[J].建筑材料学报,2005,8(6):672-676
    [30]崔洪涛.超磨细石灰石粉掺合料混凝土性能的研究[D].重庆:重庆大学硕士学位论文,2004
    [31]李悦.石灰石硅酸盐水泥的研究[D].武汉:武汉工业大学硕士学位论文,1996
    [32]马烨红.石灰石粉作混凝土矿物掺合料的研究[D].广州:华南理工大学硕士学位论文,2007
    [33]孔祥芝.石灰石粉用作水工碾压混凝土掺合料的研究[D].北京:中国水利水电科学研究院硕士学位论文,2006
    [34]李鸿芳.石灰复合渣超高强高性能混凝土研究[D].重庆:重庆大学硕士学位论文,2005
    [35]吴建成.低水泥用量配置高性能混凝土的研究[D].重庆:重庆大学硕士学位论文,2001
    [36]庞超明.自密实混凝土的制备、性能及机理研究[D].南京:东南大学硕士学位论文,2005
    [37]罗忠涛.水泥混凝土TSA破坏机理及其预防措施研究[D].武汉:武汉理工大学硕士学位论文,2007
    [38]蔡基伟.石粉对机制砂混凝土性能的影响及机理研究[D].武汉:武汉理工大学博士学位论文,2006
    [39]王冲.特超强高性能混凝土的制备及其结构与性能研究[D].重庆:重庆大学博士学位论文,2005
    [40]高礼雄.掺矿物掺合料水泥基材料的抗硫酸盐侵蚀性研究[D].北京:中国建筑材料科学研究院工学博士学位论文,2005
    [41]卢忠远.微纳粉体对水泥物理力学性能的影响及机理研究[D].成都:四川大学博士学位论文,2005
    [42]N.Voglis,G.Kakali,E.Chaniotakis,et al.Portland-limestone cements.Their properties and hydration compared to those of other composite cements[J].Cem.Concr.Compo.,2005,27(2):191-196
    [43]M.F.Carrasco,G.Men(?)ndez,V.Bonavetti,et al.Strength optimization of “tailor-made cement” with limestone filler and blast furnace slag[J].Cem.Concr.Res.,2005,35(7):1324-1331
    [44]M.A.Gonza'lez,E.F.Irassar.Effect of limestone filler on the sulfate resistance of low C_3A Portland cement[J].Cem.Concr.Res.,1998,28(11):1655-1667
    [45]S.A.Hartshom,J.H.Sharp,R.N.Swamy.Thaumasite formation in Portland-limestone cement pastes[J].Cem.Concr.Res.,1999,29(8):1331-1340
    [46]肖佳,邓德华,张文恩等.硫酸盐侵蚀下石膏形成引起的水泥净浆破坏[J]. 建筑材料学报,2006,9(1):19-23
    [47]邓德华,肖佳,元强等.石灰石粉对水泥基材料抗硫酸盐侵蚀性的影响及其机理[J].硅酸盐学报,2006,34(10):1243-1248
    [48]张永娟,张雄.粉煤灰改善石灰石硅酸盐水泥耐硫酸盐侵蚀的机理[J].粉煤灰综合利用,2002(1):19-21
    [49]V.L.Bonavetti,V.F.Rahhal,E.F.Irassar.Studies on the carboaluminate formation in limestone filler-blended cements[J].Cem.Concr.Res.,2001,31(6):853-859
    [50]G.Kakali,S.Tsivilis,E.Aggeli,et al.Hydration products of C_3A,C_3S and Portland cement in the presence of CaCO_3[J].Cem.Concr.Res.,2000,30(7):1073-1077
    [51]高小建,马保国,朱洪波.含石灰石粉砂浆在低温环境中的硫酸盐侵蚀[J].材料研究学报,2005,19(6):644-650
    [52]Yongjuan Zhang,Xiong Zhang.Research on effect of limestone and gypsum on C_3A,C_3S and PC clinker system[J].Construction and Building Materials.2007,22(8):1634-1642
    [53]M.A.Trezza,A.E.Lavat.Analysis of the system 3CaO·Al_2O_3-CaSO_4·2H_2O-CaCO_3-H_2O by FT-IR spectroscopy[J].Cem.Concr.Res.,2001,31(6):869-872
    [54]H.J.Kuzel,H.P(o|¨)llmann.Hydration of C_3A in the presence of Ca(OH)_2,CaSO_4·2H_2O and CaCO_3[J].Cem.Concr.Res.,1991,21(5):885-895
    [55]李悦,胡曙光,杨德坡等.铝酸盐矿物与碳酸钙的水化活性作用[J].河北理工学院学报,1996,(2):54-57
    [56]#12
    [57]P.Fierens,A.Verhaegen,J.P.Verhaegen.Etude de la Formation de I'hydrocarboaluminate de calcium[J].Cem.Concr.Res.,1974,4(5):695-707
    [58]R.F.Feldman,V.S.Ramchandran,P.J.Sereda.Influence of CaCO_3 on the hydration of 3CaO·Al_2O_3[J].J.Am.Ceram.Soc.,1965,48(1):25-30
    [59]V.S.Ramachandran.Thermal analysis of cement components hydrated in the presence of calcium carbonate[J].Thermochimica Acta,1988,127:385-394
    [60]V.S.Ramachandran,Zhang Chun-Mei.Hydration kinetics and microstructural development in the 3CaO·Al_2O_3-CaSO_4·2H_2O-CaCO_3-H_2O system[J].Materiaux et Constructions.1986,19:437-444
    [61]C.Vermet,G.Noworyta.Mechanisms of limestone reactions in the system (C_3A-CaSO_42H_2O-CH-H_2O):Competion between calcium monocarbo-and monosulfo-aluminate hydrates formayion,Proc.Int Congr.Chem.Cem.,9~(th),Vol.Ⅳ,New Delhi,India,1992:430-436
    [62]V.S.Ramachandran,Zhang Chun-mei.Thermal analysis of the 3CaO·Al_2O_3-CaSO_4·2H_2O-CaCO_3-H_2O system[J].Thermochimica Acta,1986,106:273-282
    [63]L.Montanaro,A.Negro,M.Regourd.Action de CaCO_3,CaSO_4 et CaSO_4·2H_2O sur l'hydratation de C_3S[J].Cem.Concr.Res.,1988,18(3):431-437
    [64]J.Pe'ra,S.Husson,B.Guilhot.Influence of finely ground limestone on cement hydration[J].Cem.Concr.Compos.,1999,21(2):99-105
    [65]S.Tsivilis,G.Kakali,E.Chaniotakis,A.Souvaridou.A study on the hydration of portland limestone cement by means of TGA[J].J Therm Anal,1998,52(4):863-870
    [66]V.S.Ramachandran,Zhang Chun-Mei.Dependence of fineness of calcium carbonate on the hydration behavior of tricalcium silicate[J].Durability Build Mater,1986(4):45-66
    [67]章春梅,V.S.Ramachandran.碳酸钙微集料对硅酸三钙水化的影响[J].硅酸盐学报,1988,16(2):110-117
    [68]陆平,陆树标.CaCO_3埘C_3S水化的影响[J].硅酸盐学报,1987,15(4):289-294
    [69]K.Ingram,K.Daugherty,Limestone additions to Portland cement:Uptake,chemistry and effects[A],Proc 9~(th) Int Congr.Chem.Cem.,New Delhi Ⅲ 1992,180-186
    [70]H.Uchikawa,R.Furuta.Hydration of C_3S-pozzolana paste estimated by trimethylsilylation[J].Cem.Concr.Res.,1981,11(1):65-78
    [71]I.Soroka,N.Setter.The effect of fillers on strength of cement mortars[J].Cem.Concr.Res.,1977,7(4):449-456
    [72]K.O.Kjellsen,B.Lagerblad.Influence of natural minerals in the filler fraction on hydration and properties of mortars,Swedish Cem.Concr.Res.Institute,Report S-100 44,Stockholm(1995) 41p
    [73]S.P.Jiang,J.C.Mutin,A.Nonat.Effect of fillers on the kinetics of cement hydration[A],Proc.3~(rd) Int.Symposium on Cement and Concrete,Beijing,1993,3:126-131
    [74]V.Bonavetti,H.Donza,V.Rahhal,et al.Influence of initial curing on the properties of concrete containing limestone blended cement[J].Cem.Concr.Res.,2000,30(5):703-708
    [75]P.Lawrence,M.Cyr,E.Ringot.Mineral admixtures in mortars-effect of inert materials on short-term hydration[J].Cem.Concr.Res.,2003,33(12):1939-1947
    [76]Anne-Mieke Poppe,Geert De Schutter.Cement hydration in the presence of high filler contents[J].Cem.Concr.Res.,2005,35(12):2290-2299
    [77]P.Brookbanks.Properties of fresh concrete,Performance of Limestone Filled Cements[M].Proc.BRE/BCA Seminar,Garston,(1989) 4.1-4.15
    [78]张雄,韩继红,郭利群.特殊混合材对水泥浆流变性的影响[J].同济大学学报,1998,26(3):299-302
    [79]J.Gibbs,P.J.M.Bartos,W.Zhu,M.Sonebi,A.Tamimi,Task 4-Properties of Hardened Concrete,Final report of the European SCC project-Rational production and improved working environment through using self-compacting concrete,1996-2000,web site:http://scc,ce.luth.se,2000
    [80]S.N.Neto,V.C.Campitelli,The influence of limestone additions on the rheological properties and water retention value of portland cement slurries[S],ASTM Spec Tech Publ 1064(1990):24-29
    [81]A.Ghezal.Mode(?)lisation statistique du comportment des be(?)tons autoplacant et optimization[D].MASc Thesis,Sherbrooke University(1999) 231 p
    [82]A.Yahia,M.Tanimura,Y.Shimoyama.Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio[J].Cem.Concr.Res.,2005,35(3):532-539
    [83]M.Sonerbi,P.J.M.Bartos,W.Zhu,etal.Task 4-properties of hardened concrete,Final report,Brite EuRam Project No.BE96-3801/Contact BRPR-CT96-0366,2000,73 p
    [84]O.Petersson.Limestone powder as filler in self-compacting concrete-frost resistance and compressive strength,in:K.Ozawa,M.Ouchi(Eds.)[A],Proceedings of the Second International Symposium on Self-Compacting Concrete,COMS Engineering Corporation,Kochi,2001:277-284
    [85]J.Zeli(?),R.Krstulovi(?),E.Tkal(?)ec,et al.The properties of Portland cement-limestone-silica fume mortars[J].Cem.Concr.Res.,2000,30(1):145-152
    [86]V.B.Bosiljkov.SCC mixes with poorly graded aggregate and high volume of limestone filler[J].Cem.Concr.Res.,2003,33(9):1279-1286
    [87]P.Lawrence,M.Cyr,E.Ringot.Mineral admixtures in mortars effect of type,amount and fineness of fine constituents on compressive strength[J].Cem.Concr.Res.,2005,35(6):1092-1105
    [88]M.Gaze.The effects of varying gypsum content on thaumasite formation in a cement:lime:sand mortar at 5℃[J].Cem.Concr.Res.,1997,27(2):259-265
    [89]R.Lachaud.Thaumasite and ettringite in building materials[J].Annales ITBTP 1978,370(1):2-14
    [90]N.J.Crammond.Taumasite in failed cement mortars and renders from exposed brickwork[J].Cem.Concr.Res.,1985,15(6):1039-1050
    [91]G.Men(?)ndez *,V.Bonavetti,E.F.Irassar.Strength development of ternary blended cement with limestone filler and blast-furnace slag[J].Cem Concr Compos,2003,25(1):61-67
    [92]张永娟,张雄.改善石灰石硅酸盐水泥耐腐蚀性能的研究[J].水泥,2002(10):8-10
    [93]E.F.Irassar *,V.L.Bonavetti,M.A.Trezza,etal.Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20℃[J].Cem.Concr.Compo.,2005,27(1):77-84
    [94]E.F.Irassar *,M.Gonz(?)lez,V.Rahhal.Sulphate resistance of type V cements with limestone filler and natural Pozzolana[J].Cem.Concr.Compos.,2000,22(5):361-368
    [95]Bertil Persson*.Sulphate resistance of self-compacting concrete[J].Cem.Concr.Res.,2003,33(12):1933-1938
    [96]I.Soroka,N.Stern,Effect of calcareous fillers on sulphate resistance of Portland cement[J].Bull.Am.Ceram.Soc.,1976,55(6):594-595
    [97]G.Piasta,Z.Sawicz,G.Koprowski,Z.Owsiak,Influence of limestone powder filler on microstructure and mechanical properties of concrete under sulphate attack[A],Proc.10~(th) Int.Cong.Chem.Cem.,Sweden(1998)(4iv018 8 pp.)
    [98]J.zelic,R.krstulovic,E.Tkalcec,etal.Durability of the hydrated limestone-silica fume Portland cement mortars under sulphate attack[J].Cem.Concr.Res.1999,29(6):819-826
    [99]A.Brosoi,S.Collepardi,L.Copolla,etal.Sulfate attack on blended Portland cement,in:V.M.Malhotra(Ed.)[A],Proceedings of the Fifth CANMET/ACI International Conference on Durability of Concrete,Barcelona,Spain,Am.Concr.Inst.SP-192,vol.Ⅰ,2000,pp.417-432
    [100]N.J.Crammond.The thaumasite form of sulfate attack in the UK[J].Cem.Concr.Compo.,2003,25(8):809-818
    [101]Thaumasite Expert Group.The thaumasite form of sulfate attack:Risks,diagnosis,remedial works and guidance on new construction;London:DETR;1999
    [102]胡明玉,唐明述,龙伏梅.新疆永安坝混凝土的碳硫硅钙石型硫酸盐腐蚀[J].混凝土,2004,(11):5-7
    [103]N.Crammond.The occurrence of thaumasite in modern construction-a review[J].Cem.Concr.Compo.,2002,24(3-4):393-402
    [104]邓德华,肖佳,元强等.水泥基材料中的碳硫硅钙石[J].建筑材料学报,2005,8(4):400-409
    [105]邓德华,肖佳,元强等.水泥基材料的碳硫硅钙石型硫酸盐侵蚀(TSA)[J].建筑材料学报,2005,8(5):532-541
    [106]胡明玉,唐明述.碳硫硅钙石型硫酸盐腐蚀研究综述[J].混凝土,2004(6):17-19
    [107]G.Collett,N.J.Crammond,R.N.Swamy,etal.The role of carbon dioxide in the formation of thaumasite[J].Cem.Concr.Res.,2004,34(9):1599-1612
    [108]Sidney Diamond.Thaumasite in Orange County,Southern California:an inquiry into the effect of low temperature[J].Cem.Concr.Compo.,2003,25(8):1161-1164
    [109]John Bensted.Thaumasite-background and nature in deterioration of cements,mortars and concretes[J].Cem.Concr.Compo.,1999,21(2):117-121
    [110]S.M.Torres,C.A.Kirk,C.J.Lynsdale,etal.Thaumasite-ettringite solid solutions in degraded mortars[J].Cem.Concr.Res.,2004,34(8):1297-1305
    [111]S.Tsivilis,G.Kakali,A.Skaropoulou,etal.Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar[J].Cem.Concr.Compo.,2003,25(8):969-976
    [112]Harald Justnes *.Thaumasite formed by sulfate attack on mortar with limestone filler[J].Cem.Concr.Compo.,2003,25(8):955-959
    [113]S.A.Harshon~(a,b),J.H.Sharp~(?),R.N.Swarmy~b.The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution[J].Cem.Concr.Compo.,2002,24(3-4):351-359
    [114]R.P.J.van *.Hees,T.J.Wijffles,L.J.A.R.van der Klugt.Thaumasite swelling in historic mortars:field observations and laboratory research[J].Cem.Concr.Compo.,2003,25(8):1165-1171
    [115]E.F.Irassar *,V.L.Bonavetti,M.A.Trezza,etal.Thaumasite formation in limestone filler cement exposed to sodium sulphate solution at 2℃[J].Cem.Concr.Compo.,2005,27(1):77-84
    [116]D.Heinz *,L.Urbonas.About thaumasite formation in Portland-limestone cement pastes and mortars-effect of heat treatment at 95 ℃ and storage at 5 ℃[J].Cem.Concr.Compo.,2003,25(8):961-967
    [117]Jerneja Strupi(?)uput ~(a,*),Ana Mladenovi(?)~a,Lidija(?)ernilogar~b,etal.Deteration of mortar caused by the formation of thaumasite on the limestone cladding of some Slovenian railway tunnels[J].Cem.Concr.Compo.,2003,25(8):1141-1145
    [118]G.Kakali~(a,*),S.Tsivilis~a,A.Skaropoulou~a,etal.Parameters affecting thaumasite formation in limestone cement mortar[J].Cem.Concr.Compo.,2003,25(8):977-981
    [119]S.M.Torres~a,C.J.Lynsdale~(a,*),R.N.Swamy~b,etal.Microstructure of 5-years-old mortars containing limestone filler damaged thaumasite[J].Cem.Concr.Res.,2006,36(2):384-394
    [120]高小健,马保国,董荣珍.Thaumasite的结构、形成机理及对混凝土的破坏 作用[J].硅酸盐通报,2005,24(1):51-54,59
    [121]马保国,罗忠涛,李相国等.含碳硫硅酸钙腐蚀产物的微观结构与生成机理[J].硅酸盐学报,2006,34(12):1503-1507
    [122]马保国,高小健,罗忠涛.矿物掺合料对水泥砂浆TSA侵蚀的影响[J].材料科学与工程学报,2006,24(2):230-234
    [123]高小健,马保国,邓宏卫.水泥砂浆TSA侵蚀破坏过程的性能演变[J].江苏大学学报(自然科学版),2007,28(1):68-71
    [124]高小健,马保国,赵志曼.西部地区水工混凝土长期腐蚀产物与腐蚀机理[J].中国腐蚀与防护学报,2005,25(5):299-302
    [125]马保国,董荣珍,高小建等.混凝土中Thaumasite硫酸盐侵蚀的形成与特征[J].铁道科学与工程学报,2005,2(1):14-18
    [126]高礼雄,姚燕,王玲.温度对碳硫硅钙石形成的影响[J].硅酸盐学报,2005,33(4):525-527
    [127]胡明玉,唐明述.碳硫硅钙石对混凝土的破坏作用[J].混凝土.2001(6):3-5
    [128]M.A.Eden.The laboratory investigation of concrete affected by TSA in the UK[J].Cem.Concr.Compo.,2003,25(8):847-850
    [129]I.Sims,S.A.Huntley(n(?)e Hartshorn).The thaumasite form of sulfate attack-breaking the rules[J].Cem.Concr.Compo.,2004,26(7):837-844
    [130]I.Smallwood,S.Wild,E.Morgan.The resistance of metakaolin (MK)-Portland cement(PC) concrete to the thaumasite-type of sulfate attack (TSA)-Programme of research and preliminary results[J].Cem.Concr.Compo.,2003,25(8):931-938
    [131]H.Hornain~1,J.Marchand~2,V.Duhot~3,etal.Diffusion of chloride ions in limestone filler blended cement pastes and mortars[J].Cem.Concr.Res.,1995,25(8):1667-1678
    [132]K.Aedenaert,V.Bel,G.De Schutter.Chloride penetration in self-compacting concrete by cyclic immersion.First International Symposium On Design[M],Performance and Use of Self-Compacting Concrete SCC'2005-China,26-28May 2005,Changsha,Hunan,China.p.355-361
    [133]S.Tsivilis~(a,*),G.Batis~a,E.Chaniotakis~b,et al.Properties and behavior of limestone cement concrete and mortar[J].Cem.Concr.Res.,2000,30(10):1679-1683
    [134]肖佳,邓德华,唐咸燕等.粉煤灰改善石灰石粉混凝土氯离子扩散性能研究[J].中南林业科技大学学报,2007,27(5):79-82
    [135]肖佳,邓德华,唐咸燕等.矿渣和石灰石粉双掺对混凝土抗氯离子渗透性能影响的试验[J].工业建筑,2007,37(10):73-84
    [136]肖佳,王永和,邓德华等.粉煤灰-石灰石粉高强混凝土的Cl~-扩散性能[J].建筑材料学报,2008,11(2):212-216
    [137]S.Tsivilis,E.Chaniotakis,G.Kakali,etal.An analysis of the properties of Portland limestone cements and concrete[J].Cem.Concr.Compo.,2002,24:371-378
    [138]B.Andenaert,G.de Schutter,Carbonation of SCC,in:G.Ko"nig,F.Dehn,T.Faust(Eds.),HPC Congress,University of Leipzig,Leipzig,2002,pp.853-862
    [139]王玲,田稳苓,焦晓辉.混凝土受除冰盐侵蚀破坏机理及防治措施研究[J].低温建筑技术,2001,(3):11-13
    [140]王智,郑洪伟,韦近春.钙矾石形成与稳定及对材料性能影响的综述[J].混凝土,2001,(6):44-48,56
    [141]廉惠珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社.1996
    [142]汪澜.水泥混凝土组成性能应用[M].中国建筑工业出版社.2005
    [143]刘崇熙,汪澜.水泥混凝土组成性能应用[M].中国建筑工业出版社.2005
    [144]杨南如,钟白茜,董攀等.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):155-165
    [145][英]悉尼明得斯,[美]J.弗朗西斯著,方秋清等译.混凝土[M],中国建筑工业出版社,1989
    [146][英]P.PARNES等著,吴兆琦,汪瑞芬等译.水泥的结构和性能[M],中国建筑工业出版社,1991
    [147]Barbara Lothenbach,Gween Le Saount,Emmeanuel Gallucci,Karen Scrivener.Influence of limestone on the hydration of Portland cements.[J].Cem.Concr.Res.,2008:1-13
    [148]袁润章.胶凝材料学[M],武汉工业大学出版社,1996
    [149]蒋林华,关宇刚,朱卫华.水泥基复合材料的孔结构与强度相关性研究[J].河海大学学报(自然科学版),2003,31(6):666-668
    [150]徐辉,李克亮,蔡跃波等.矿物掺合料对高性能混凝土的孔结构及抗冻性能的影响[J].工业建筑,2006,36(增刊):857-859
    [151]李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品.2004(2):6-8
    [152]赵霄龙,卫军,巴恒静.高性能混凝土抗冻性与孔结构的关系[J].工业建筑.2003,33(8):5-7,27
    [153]朱卫华,印友法,蒋林华等.硅粉水泥石中微孔孔径分布及其对强度的影响[J].建筑材料学报.2004.1,7(1):14-18
    [154]Xiao Jia,Deng Dehua,Wang Yonghe,etal.Effects of limestone filler on the behavior of mortar during external sulfate attack[M].Serviceability of Underground Structures,地下结构服役性能,同济大学出版社,2006:178-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700