用户名: 密码: 验证码:
心电信号分析与虚拟式心电自动分析仪的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心电图(electrocardiogram,简称ECG)是心脏电活动在体表的综合反映,对心电信号进行分析进而诊断心脏疾病具有重要研究价值。目前对于心电信号分析方法尽管较多,但对于心电特征波的定位分析还不理想,在理论上还有进一步创新的余地。作为实现临床心电检测的心电自动分析仪,目前大多是国外产品,它们价格高昂,市场普及率不高。国内缺少具有完全自主知识产权的产品。虚拟仪器具有的优越性能使其成为测试仪器未来发展的主流方向,因此开发具有完全自主知识产权的虚拟式心电自动分析仪,并将其推向市场,是一项十分有意义的工作。基于以上理论研究的需要和现实市场的需求,作者开展了心电信号处理、分析及心电自动分析仪开发等方面的研究工作。
    本文首先综述了当前的心电信号预处理、心电特征分析以及心电自动分析仪器开发的研究现状。
    然后在分析几种常用于心电分析仪的快速预处理算法之后,分别研究并设计了基于窗函数的FIR 带通数字滤波器、改进的自适应相干模板去噪算法和小波与LMS自适应算法相结合的去噪算法。它们分别适用于不同的心电信号分析要求。基于窗函数的FIR 带通数字滤波器具有快速实时、简洁高效的特点,能够同时滤去基线漂移和工频干扰,适合于心电监护类仪器,实现长时间采集时的及时分析。自适应相干模板法能够有效滤去工频干扰,但同时也会导致低端截止频率不够低,影响心电低频信息的完整性。本文对此进行了改进,提出了二级级联滤波器的滤波方法:即利用50Hz 模板信号和100Hz 模板信号频谱间的关系,构造出新的只滤除50Hz 的滤波器,然后将其与原自适应相关模板法滤除工频干扰的滤波器级联,组成两级滤波器,解决了低端截止频率和工频干扰滤除效果之间的矛盾。对心电信号多尺度小波变换后,直接把高尺度下的逼近信息置零再重构,可以滤除基线漂移,但它容易导致心电的P、T 波等低频成分失真,本文创新性地将小波变换与LMS自适应算法相结合,根据心电信号多级分解后的特点,将其高尺度下的逼近信息作为LMS 算法的输入端,参考端以常数输入,经LMS 递推运算后,再对ECG 进行重构。实验对比显示:该算法能够在滤去基线漂移的同时,有效降低心电信号中的低频成分(如P 波和T 波)的失真度,为更好的分析P 波和T 波特征信息提取提供了基础。
    接着本文重点研究了心电特征信息提取方法。在对两种目前较成熟运用于心电分析仪上的特征波识别算法进行分析、改进和实验之后,作者对小波变换检测信号奇异点原理及当前基于小波的心电特征识别算法进行了研究,在此基础上创新
Electrocardiogram (ECG) is a synthetic reflection of the heart electricity on body surface. It is very valuable to analyze the ECG signal to diagnose the heart disease. At present there are many analysis methods on ECG signal, yet accurately locating the characteristic waves of ECG is still difficult. So there is room for innovation in theory. As the tools of detecting ECG information, automatic ECG analyzers mainly comes from oversea presently, and the products with complete independent intellectual property are very lacking inland, which conduces its higher price and lower market occupancy. Virtual instrument with predominant performances represents the future mainstream direction of measurement instrument. Developing the virtually automatic ECG analyzer with complete independent intellectual property and pushing them to market are obviously worthy. Based on the demands of academic research and market, author has done research work on signal process, ECG analysis methods and developing the automatic ECG analyzer.
    In this thesis the currently preprocess and analysis methods of ECG signal and the present status of developing automatic ECG analyzer are first summarized.
    Then some fast preprocess algorithms usually used by ECG analyzer are analyzed, and their performances are evaluated. The FIR digital filter based on window function, improved adaptive coherent template algorithm, and wavelet transform and LMS adaptive united algorithm are separately researched and designed. They are applicable for different ECG analysis. The FIR digital filter based on window function is faster, real-time and efficient. Baseline drift and power line interference can be filtered by the filter at the same time. It is applicable for ECG monitor to collect and analysis ECG signal immediately for long time. Power line interference can be cancelled by the adaptive coherent template algorithm, yet it can lead the low critical frequency not lower enough and affect the integrality of low frequency information. The algorithm is improved in this thesis through the second cascade filter. According to the frequency relations between 50Hz template signal and 100Hz template signal, a new filter which only cancels 50Hz is structured. And then it is cascaded with the filter used in previous adaptive coherent template algorithm to cancel power line interference. The method can solve the conflict between critical frequency and power line interference. If the ECG signal is transformed by wavelet and the approach information of higher scale is set
    zero, then the base line drift will be cancelled in the reconstructed ECG signal. But the method will result in the distorted low frequency component like P and T waves. In this thesis an innovative algorithm combined wavelet transform and LMS is presented. The approach information at higher scale is used as the input of LMS algorithm and constant as reference value, the new signal is obtained through the LMS operation, which is used as the new approach information to restructure the ECG signal. Massive experiments show that the method can cancel the base line drift and remarkably reduce the degree of distortion of low frequency component, which provide a better foundation to analyze P and T waves. Then the methods of extracting ECG characteristic information are principally researched. Two algorithms identifying ECG characteristic waves which maturely applied in ECG analyzer are analyzed and improved, and validating experiments are done. An in-depth research on the principle of wavelet transform detecting singular point and some algorithms identifying ECG characteristic waves based on wavelet are also researched and evaluated. Then author innovatively presents the united algorithm based on wavelet to identify and locate the ECG characteristic waves. The principle is: the shapes of transformed ECG characteristic waves are classified first, and then the shapes of detected characteristic waves and peaks are determined by the number of modulus maximum pairs produced by transformed ECG signal at specified scale. Finally the onset and offset of characteristic wave will be determined by amplitude and slope criterion. The differentia with common wavelet algorithm is that the united algorithm first determines wave shape and second locates onset and offset, and then different methods are applied in response to different shapes. The precision to locate ECG characteristic waves, especially to P and T waves, is greatly improved by the algorithm. For a long time it is difficult to identify and locate the low amplitude and multi-shape ECG characteristic waves like P and T wave, Using the algorithm can solve the problem. Massive comparison experiments have been down, which shows that the algorithm is exact and reliable. Arrhythmias and heart rate variability (HRV) have been researched deeply in this thesis. Some familiar arrhythmias have been sum up, and seven criterions have been put forward. HRV is researched from time and frequency domain separately. Power spectrum density of HRV signal is analyzed from time-frequency domain using three-dimensional “color spectrum”. The innovative method can directly reflect the energy value of HRV signal at some time and some frequency, which provides for
    doctors and researchers more information to analyze ECG signal. The developing technique of virtual instrument (VI) has been research. Component technique is introduced to develop VI, and the developing method of VI based on component technique is presented, which can effectively improve the speed and quality of VI development. Based on above research achievements, author develops the virtually automatic ECG analyzer. The instrument has not only all functions of hardware-based ECG analyzer, but also has richer function, smarter measurement and lower price. Experiments with clinic datum show that compared with results from manual detection the results is validate and steady , and error is within clinic permit. So it can fulfill the clinic requirement. Data-base management function is also developed in the ECG analyzer, which can provide more information and datum for researching and diagnosing cardiovascular disease. Lastly the next research works are presented at the end of the thesis.
引文
[1] 王志毅,高克俭.心电图形态诊断学
    [2] 黄大显.现代心电图学.北京:人民军医出版社.1997
    [3] Warlar R, Eswaran C. Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50Hz and 100Hz interference from the ECG. Med & Biol. Eng. & Comp. 1991, 29: 333-336
    [4] 孙京霞,白延强,杨玉星.一种抑制心电信号50 Hz 工频干扰的改进Levkov 方法.航天医学与医学工程.2000, 13(3): 1-5
    [5] Yelderman M,Widrow B,et al. ECG enhancement by adaptive cancellation of electrosurgical interference. IEEE Trans, BME. 1982, 29: 458-460
    [6] 李刚, 林凌等, 滤除工频干扰的自适应相关模板法. 中国生物医学工程学报.1997, 16(3):281-284
    [7] Shuren Qin. Integrated testing technology and virtual instrument. In: proceeding of 1st ISIST. 1999: 66-71
    [8] Kunt M, Rey H. Preprocessing of electrocardiograms by digital techniques. Signal Processing, 1982, 4(1):215-222
    [9] Keselbrener L. Nonlinear high pass filter for R-Wave detection in ECG signal. Med.Eng.Phys. 1997, 19(5): 481-484
    [10] Xue QZ, Hu yuhen, Tompkins WJ. Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng., 1992, 39(4): 317-324
    [11] 夏恒超,詹永麟.一种新的基于三次样条插值技术的心电图基线漂移消除方法.生物医学工程学杂志.2003, 20(3): 524-526
    [12] 陆英北,张增芳,蔡坤宝等.基于小波变换的心电信号基线矫正方法.北京生物医学工程.2000, 19(4): 235-239
    [13] Afonso VX,Tompkins WJ. ECG beat detection using filter banks. IEEE Trans BME, 1999, 46(2): 192-202
    [14] Szilagyi SM,Szilagyi L,David L. Comparison between neural-network based adaptive filtering and wavelet transform for ECG characteristic points detection. Proceedings 19th International Conference IEEE EMBS, Chicago,IL.USA, 1997: 272-274
    [15] Yang Mingyao, Hu Weichih, Shyu LiangYu. ECG events detection and classification using wavelet and neural networks. Proceedings 19th International Conference IEEE EMBS, Chicago,IL.USA.1997:280-282
    [16] 李刚,刘巍等.抑止工频干扰及基线漂移的快速算法.中国生物医学工程学报.2000, 19(1): 99-103
    [17] Zumrary Dokur,Tamer Olmez,Ertugrul Yazgan,et al. Detection of ECG waveforms by neural networks. Medical Engineering and Physics, 1997, 19(8): 738-741
    [18] L Senhadji, F Wang, A I Hernandez, G Carrault. Wavelets extrema representation for QRS-T cancellation and P wave detection. Computer in cardiology. 2002, (29): 37-40
    [19] Wei-Wen Dai,Zhe Yang,Soon Lee Lim,Olga Mikhailova. Processing and analysis of ECG signal using nonorthogonal wavelet transform. Proceedings of 20th annual international conference of the IEEE engineering in medicine and biology society, 1998, 20(1): 139-142
    [20] 秦树人,虚拟仪器──测试仪器从硬件到软件.振动、测试与诊断.2000, 20(1): 1-6
    [21] 秦树人,虚拟仪器及其最新发展.振动、测试与诊断.2000 ,20(增刊): 123-129
    [22] 秦树人,张思复,汤宝平等.集成测试技术与虚拟仪器. 中国机械工程.1999, 10(1): 77-80
    [23] 张乾,赵春晖.一种滤除心电信号中噪声的形态滤波方法.应用科技.2002, 19(9): 9-11
    [24] Eckeharr C, et al. Estimation and removal of power line interference in the electrocardiogram: a comparison of digital approaches. Med.& Biol Eng. 1987, 20: 12-18
    [25] Juan Pablo Martinez, Ana Paula Rocha. A wavelet-based ECG delineator: evaluation on standard databases. IEEE transactions on biomedical engineering. 2004, 51(4):570-581
    [26] M. Unser, A. Aldroubi. A review of wavelets in biomedical applications. Proceedings of IEEE. 1996,84(4): 626-638
    [27] Oseph D. Time-frequency signal representation for biomedical signals, CRC Press, IEEE Press, 1995: 866-885
    [28] M. Akay. Time frequency and wavelets in biomedical signal processing. IEEE Press. 1997
    [29] Mitra, S.K., Digital signal processing, 2nd ed., McGraw-Hill, 2001: Sections 4.4.2 and 8.2.5
    [30] Paul JS, Reddy MR, Kumar VJ. A QRS estimator using linear prediction approach. Signal processing. 1999, 72: 15-22
    [31] 赵治栋,藩敏等.ICA 及其在消除心电信号中肌电伪迹的应用.浙江大学学报.2004, 38(1): 103-107
    [32] Pan J, Tompkins WJ. A real time QRS detection algorithm. IEEE Trans, Biomed. Eng., 1985, 32(2): 6-30
    [33] Daskalov IK, Christov II. Electrocardiogram signal preprocessing for automatic detection of QRS boundaries. Medical Engineering and Physics, 1999, 21: 37-44
    [34] 谭小刚.多抽样率频率抽样FIR 数字滤波器设计.电子科技大学学报.2002, 31(5): 460-464.
    [35] Sami Sallinen,Seoop Nissila. A real-time microprocessor QRS detector system with a 1-ms timing accuracy for measurement of ambulatory HRV. IEEE Trans BME. 1997, 44(3): 159-167
    [36] Shubha Kadambe,Robin Murray. Wavelet transform based QRS complex detector. IEEE Trans BME, 1999, 46(7): 838-848
    [37] 杨福生,吕扬生.生物医学信号的处理与识别.第一版.天津:天津科技翻译出版公司.1997: 400-408
    [38] Sxilagyi L. Wavelet transform based QRS complex detection in on-line holter systems. Proceedings of the first joint BMES/EMBS conference serving Humanity, Advancing Technology, Atlanta, GA,USA., 1999: 271
    [39] Mcdarby G,Heneghan C,Celler BG. Customizing a discrete wavelet transform filter bank using the lifting scheme for improved compression ratios of an ECG. Annual international conference of the IEEE engineering in medicine and biology proceedings, 1999: 952
    [40] 王磊,郑崇勋,叶继伦等.一种高效的QRS 波实时检测方法.北京生物医学工程.1998, 17(4): 217-222
    [41] Murthy ISN, Durga PG. Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng., 1992, 39(7):741-749
    [42] Juan Pablo Martinez, Rute Almeida, Salvador Olmos. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng., 2004, 51(4): 570-581
    [43] 王宏强,孙即祥,王晓华.基于小波变换和数据融合的多导联ECG 信号QRS 波群精确检测算法.国防科技大学学报.1999, 21(4): 87-90
    [44] 刘少颖,卢继来等.基于数学形态学和小波分解的QRS 波群检测算法.清华大学学报.2004,44(6): 852-855
    [45] B.U. Kohler, C.Henng, R.Orglmeister. The principles of software QRS detection. IEEE Eng. Med. Biol. 2002, (21):42-57
    [46] 高清维,李海鹰等.基于平稳小波变换的心电信号噪声消除方法.电子学报.2003, 31(2): 1-3
    [47] Zumrary Dokur,Tamer Olmez,Ertugrul Yazgan,et al. Detection of ECG waveforms by neural networks. Medical Engineering and Physics, 1997, 19(8): 738-741
    [48] Yang Mingyao, Hu Weichih, Shyu LiangYu. ECG events detection and classification using wavelet and neural networks. Proceedings 19th international conference IEEE EMBS, Chicago,IL.USA.1997: 280-282
    [49] Skordalakis E. Syntactic ECG processing review. Pattern recognition, 1986, 19(4): 5-13
    [50] 万相奎,丁建平,梁小容.用小波变换精确检测信号奇异点.振动,测试与诊断(增刊).2004, 24(109): 212-214
    [51] Sahambi J S,Tandom S N,Bhatt P K P. Using wavelet transforms for ECG characterization. IEEE engineering in medicine and biology, 1997, 16(1): 77-83
    [52] Murthy ISN, Durga PG. Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng., 1992, 39(7): 741-749
    [53] 谢国明,聂志伟等.用小波变换结合神经网络检测ECG 信号的P 波.生物医学工程学杂志.1999, 16(3): 320-323
    [54] 杨海威,詹永麟等.12 导联心电图P 波检测算法.北京生物医学工程.2002, 21(2): 102-105.
    [55] Daskalov IK, Christov I I. Automatic detection of the electrocardiogram T-wave end. Medical & biological engineering & computing. 1999, 37(3): 348-353
    [56] 吴水才等.一种心电和心室晚电位综合采集电路的设计.中国医疗器械杂志.2000, 24(1): 20-22
    [57] 李小燕,王涛等.基于小波变换的自适应滤波器消除ECG 中的基线漂移.中国科学技术大学学报.2000, 30(4): 450-454
    [58] Bin He, et al. Principle and applications of the laplacian electrocardiogram. IEEE Trans. Biomed. Eng., 1997, 44: 133-138
    [59] K. L. Park, K. J. Lee, H. R. Yoon. Application of a wavelet adaptive filter to minimize distortion of the ST-segment. Med. Biol. Eng. Computer, 1998, 36: 581-586
    [60] W.K.Ma, Y.T.Zhang,F.S.Yang. A fast recursive-least-squares adaptive notch filter and its applications to biomedical signals. Med. & Biol.Eng. & Computer., 1999, 37: 99-103
    [61] 秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社.1994
    [62] 张贤达.现代信号处理.北京:清华大学出版社.1995
    [63] Cuiwei Li, Chongxun Zheng, and Changfeng Tai. Detection of ECG characteristic points using wavelet transforms. IEEE Trans. on BME., 1995,42(1): 21-28
    [64] Zhu Hongjun, Qin Shuren. Precise detection of R-wave in ECG signal by wavelet transform.2nd international symposium on instrumentation science and technology, 2002, 2: 661-666
    [65] 陈志奎,徐铭陶,秦树人.工程信号中的小波采样和小波分析.重庆大学学报(自然科学版).1996, 11(5): 1-9
    [66] Afonso, V. X.,Tompkins, W. J.,Michler, K., and Luo, S. Comparing stress ECG enhancement algorithm. IEEE Eng. Med. Biol. Mag., 1996, 15(3): 37-44
    [67] 卢文祥,杜润生.机械工程测试·信息·信号分析. 武汉:华中理工大学出版社,1999.
    [68] 郑方,徐明星.信号处理原理. 北京:清华大学出版社,2000
    [69] Eduardo de Azevedo Botter, Cairo L. A neural network with asymmetric basis functions for feature extraction of ECG P waves. IEEE transactions on neural networks. 2001, 12(5): 1252-1255
    [70] 杨福生著.小波变换的工程分析与应用.北京:科学出版社.2003,4
    [71] Sahambi J S,Tandom S N,Bhatt P K P. An automated approach to beat-by-beat QT-interval analysis. IEEE Engineering in Medicine and Biology, 2001, 48(3): 97-101
    [72] 丁兴号,邓善熙等.基于小波和神经网络的动态心电波形分类新方法.生物物理学报.2003, 19(1): 53-57
    [73] 陈作炳,钱湘萍,李春光等.用小波变换对心电图进行分析.武汉理工大学学报.2001, 23(5): 27-29
    [74] 侯铁年.B-样条小波在加速度信号处理分析中的应用.哈尔滨理工大学学报.2002, 7(5): 40-43
    [75] 胡广书.数字信号处理——理论、算法与实现.第二版.北京:清华大学出版社.2003, 8
    [76] 张晔等.B-样条小波基的构造与实现算法.哈尔滨工业大学学报.1996, 28(6): 27-31
    [77] Wan Xiang-kui,Qin Shu-ren,Liang Xiao-rong,Ye Shun-liu.the Application of Wavelet Transform in Extracting ECG Feature. Proceedings of ISIST’2004, 3rd international symposium on instrumentation science and technology. Aug.18~22, 2004. Xi’an, China. Harbin: Harbin Institute of Technology Press, 2004: Volume 3: 671-675
    [78] Ronnan Lepage, Jean-Marc Boucher. ECG segmentation and P-wave feature extraction: application to patients prone to atrial fibrillation. Proceedings-23rd annual conference. IEEE EMBS Oct25-28, 2001
    [79] Clavier L., Boucher J.M., Blanc J.J., P-wave parameters foratrial fibrillation risk detection. 18th annual international conference of the IEEE Engineering in medicine and biology society. November 1996
    [80] Raitt M.H., Ingram K.D., Shinnamon A.F., Frequency analysis of the signal averaged P-wave differentiates patients with history of atrial fibrillation from controls in cardiology. 1993: 45-48.
    [81] 杨振野,李玲华等.一种基于函数逼近原理的心电图P 波识别的研究.生物医学工程学杂志.1998: 15(2): 120-122
    [82] 骆建华,李高平等.演化算法在T 波终点检测中的应用.中国生物医学工程学报.2002, 21(3): 211-214
    [83] Daskalov I K, Christov I I. Automatic detection of the electrocardiogram T-wave end. Medical & Biological Engineering & Computing, 1999, 37(3): 348-353
    [84] Haijiang Zhang, Clifford Thurber. Automatic P-wave arrival detection and picking with multi-scale wavelet analysis for single-component recordings. Bulletin of the seismological society of America. 2003, 93(5): 1904-1912
    [85] 杨海威,詹永麒等.12 导心电图P 波检测算法.北京生物医学工程.2002, 21(2): 102-105
    [86] 谢国明,聂志伟等.用小波变换结合神经网络检测ECG 信号的P 波.生物医学工程学杂志.1999, 16(3): 320-323
    [87] 廖旺才,胡广书等.心率变异性的非线性动力学分析及其应用.中国生物医学工程学报.1996, 15(3): 193-201
    [88] Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology Heart rate variability Standards of measurement,physiological interpretation,and clinical use. European Heart Journal 1996, 17: 354-381
    [89] Marco Di Rienzo,et al,2h sequential spectral analysis of arterial blood pressure and pulse interval in free-moving subjects.IEEE Trans on BME.1989, 36(11): 1066-1075
    [90] 郑达安等,心理应激性时青年人R-R 间期变异性的谱分析.生物医学工程学杂志.1997, 14(1): 38-45
    [91] 杨振野.评价心率变异性的一种新方法.中国生物医学工程学报.1998, 1(1): 24-30
    [92] Qin Shuren,Chen Zhikui,Tang Baoping,et al. Sampling principle and technology in wavelet analysis for signals. Chinese Journal of Mechanical Engineering.1998, 11(4): 257-263
    [93] Bahoura M, Hassani M, Hubin M. DSP implementation of wavelet transform for real time ECG wave forms detection and heart rate analysis. Computer Methods and Programs in Biomedicine, 1997, 52(1): 35-44
    [94] Sahambi J S, Tandom S N, et al. Wavelet based ST-segment analysis. Medical & Biological Engineering & Computing., 1998, 36: 568-572
    [95] 万相奎,丁建平,秦树人.嵌入式系统及其典型开发特征分析.重庆大学学报.2004, 2(27): 16-19
    [96] 万相奎,秦树人.中国机械工程.组件技术与虚拟仪器的开发.2004, 15(2): 143-145
    [97] 纪承寅,汪涛,吕军.临床心电图快速解读.北京:军事医学科学出版社,2001
    [98] 赵捷,华玫.一种滤除ECG 基线漂移和交流干扰的简单算法.中国医疗器械.1991, 15: 262-263
    [99] 国家药品监督管理局.中华人们共和国医药行业标准YY1139-2000:单道和多道心电图机.2000.01.31 发布,2000.07.01 实施
    [100] 黄国言.一种实用的心律失常分析系统的解决方案.计算机工程与设计.2003, 24(8): 87-90
    [101] Fredric M Ham, Soowhan Han. Classification of cardiac arrhythmia using fuzzy. ARTMAP. IEEE Transactions on biomedical engineering. 1996, 43(4): 425-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700